Let be a nonempty closed and convex subset of a uniformly smooth and uniformly convex real Banach space with dual space . In this paper, a new iterative algorithm of Halpern-type is constructed and used to approximate a common element of a generalized mixed equilibrium problem and a common fixed points for a countable family of generalized nonexpansive-type maps. Application of our theorem, in the case of real Hilbert spaces, complements, extends and improves several important recent results. Finally, we give numerical experiments to illustrate the convergence of our sequence.