Most of the studies about hybrid mappings are carried out for single-valued mappings in Hilbert spaces. We define a new class of multivalued mappings in CAT () spaces which contains the multivalued generalization of () – hybrid mappings defined on Hilbert spaces. In this paper, we prove existence and convergence results for a new class of multivalued hybrid mappings on CAT() spaces which are more general than Hilbert spaces and CAT() spaces.
Existence and convergence for a new multivalued hybrid mapping in CAT(ĸ) spaces
Hacioğlu, Emirhan and Karakaya, Vatan
Abstract
carpathian_2017_33_3_319_326_abstractAdditional Information
Author(s) | Hacioğlu, Emirhan, Karakaya, Vatan |
---|
Search…
Magazine Issues
- Vol 40/2024 no. 1 (14)
- Vol 40/2024 no. 2 (20)
- Vol 40/2024 no. 3 (18)
- Vol 41/2025 no. 1 (16)
- Vol 41/2025 no. 2 (0)
- Vol 39/2023 no. 3 (13)
- Vol 39/2023 no. 2 (15)
- Vol 39/2023 no. 1 (24)
- Vol 38/2022 no. 1 (20)
- Vol 38/2022 no. 2 (20)
- Vol 38/2022 no. 3 (26)
- Vol 37/2021 no. 3 (15)
- Vol 37/2021 no. 2 (21)
- Vol 37/2021 no. 1 (14)
- Vol 36/2020 no. 3 (15)
- Vol 36/2020 no. 2 (16)
- Vol 36/2020 no. 1 (15)
- Vol 35/2019 no. 3 (16)
- Vol 35/2019 no. 2 (12)
- Vol 35/2019 no. 1 (12)
- Vol 34/2018 no. 1 (12)
- Vol 34/2018 no. 2 (15)
- Vol 34/2018 no. 3 (23)
- Vol 33/2017 no. 3 (14)
- Vol 33/2017 no. 2 (12)
- Vol 33/2017 no. 1 (13)
- Vol 32/2016 no. 3 (13)
- Vol 32/2016 no. 2 (15)
- Vol 32/2016 no. 1 (14)
- Vol 31/2015 no. 3 (18)
- Vol 31/2015 no. 2 (15)
- Vol 31/2015 no. 1 (16)
- Vol 30/2014 no. 3 (18)
- Vol 30/2014 no. 2 (15)
- Vol 30/2014 no. 1 (17)
- Vol 29/2013 no. 2 (17)
- Vol 29/2013 no. 1 (16)
- Vol 28/2012 no. 2 (20)
- Vol 28/2012 no. 1 (20)
- Vol 27/2011 no. 2 (14)
- Vol 27/2011 no. 1 (13)
- Vol 26/2010 no. 2 (4)
- Vol 26/2010 no. 1 (14)
- Vol 25/2009 no. 2 (13)
- Vol 25/2009 no. 1 (13)
- Vol 24/2008 no. 3 (21)
- Vol 24/2008 no. 2 (14)
- Vol 24/2008 no. 1 (19)
- Vol 23/2007 no. 1-2 (25)
- Vol 22/2006 no. 1-2 (23)
- Vol 21/2005 no. 1-2 (21)
- Vol 20/2004 no. 2 (19)
- Vol 20/2004 no. 1 (20)
- Vol 19/2003 no. 2 (11)
- Vol 19/2003 no. 1 (11)
- Vol 18/2002 no. 2 (43)
- Vol 18/2002 no. 1 (19)
- Vol 17/2001 (26)
- Vol 16/2000 no. 2 (24)
- Vol 16/2000 no. 1 (22)
- Vol 15/1999 (20)
- Vol 14/1998 no. 2 (16)
- Vol 14/1998 no. 1 (13)
- Vol 13/1997 (24)
- Vol 12/1996 (35)
- Vol 11/1995 (13)
- Vol 10/1994 (14)
- Vol 09/1993 (18)
- Vol 08/1992 (9)
- Vol 07/1991 (26)
- Vol 06/1983 (7)
- Vol 05/1980 (4)
- Vol 04/1972 (4)
- Vol 03/1971 (5)
- Vol 02/1971 (6)
- Vol 01/1969 (10)
- Uncategorized (0)
Authors
Abbas, Mujahid
Acu, Dumitru
Balaj, Mircea
Berinde, Mădălina
Berinde, Vasile
Bărbosu, Dan
Chidume, C. E.
Cho, Yeol Je
Choban, Mitrofan M.
Coroian, Iulian
Cosma, Ovidiu
Cristescu, Gabriela
Diudea, Mircea V.
Fukhar-ud-din, Hafiz
Gaidici, A.
Horvat-Marc, Andrei
Ioanoviciu, Aurel
Khan, Abdul Rahim
Kozma, Lidia Elena
Kumam, Poom
Lungu, Nicolaie
Marin, Marin
Megan, Mihail
Mortici, Cristinel
Mureșan, Anton S.
Mureșan, Viorica
Pişcoran, Laurian-Ioan
Pop, Adina
Pop, Maria Sânziana
Pop, Nicolae
Pop, Ovidiu T.
Pop, Petrică Claudiu
Pop, Vasile
Popa, Dorian
Popa, Valeriu
Pop Sitar, Corina
Păcurar, Mădălina
Păvăloiu, Ion
Rus, Ioan A.
Rusu, Cristian
Sass, Istvan Huba Attila
Suantai, Suthep
Tașcu, Ioana
Yao, Jen-Chih
Zelina, Ioana
Recently posted
- Stability of new functional equations and partial multipliers in Banach *-algebras
- Characterizations of amenable gyrogroups related to Tarski's Theorem
- Two new extragradient methods for solving pseudomonotone the equilibrium problem in Hilbert spaces
- On the error estimates for the sequence of successive approximations for cyclic \varphi–contractions in metric spaces
- Hybrid CG-Like Algorithm for Nonlinear Equations and Image Restoration
- New class of n-order fractional differential equations and solvability in the double sequence space m^2(\Delta_{v}^{u}, \phi,p)
- Constructing DNA Codes using Double Cyclic Codes of Odd and Even Lengths over F2 + u F2
- Consequences of the product rule in Stieltjes differentiability
- On the existence and uniqueness of fixed points in Banach spaces using the Krasnoselskij iterative method
- A quaternionic product of simple ratios