carpathian_2023_39_2_403_410_001

On the transfer of convergence between two sequences in Banach spaces


Marinescu, Dan Ştefan and Păltănea, Eugen


Full PDF

carpathian_2023_39_2_403_410

Let (X,\|\cdot\|) be a Banach space and T:A\to X a contraction mapping, where A\subset X is a closed set. Consider a sequence \{x_n\}\subset A and define the sequence \{y_n\}\subset X, by y_n=x_n+T\left(x_{\sigma(n)}\right), where \{\sigma(n)\} is a sequence of natural numbers. We highlight some general conditions so that the two sequences \{x_n\} and \{y_n\} are simultaneously convergent. Both cases: 1) \sigma(n)<n, for all n, and 2) \sigma(n)\ge n, for all n, are discussed. In the first case, a general Picard iteration procedure is inferred. The results are then extended to
sequences of mappings and some appropriate applications are also proposed.

 

Additional Information

Author(s)

Marinescu, Dan Ştefan, Păltănea, Eugen

DOI

https://doi.org/10.37193/CJM.2023.02.05