Bul. Ştiinţ. Univ. Baia Mare, Ser. B, Matematică-Informatică, Vol. XVIII(2002), Nr. 1, 39 - 52

Dedicated to Costică MUSTĂŢA on his 60th anniversary

STRONGLY δ -CONTINUOUS FUNCTIONS AND TOPOLOGIES ON FUNCTION SPACES

S. GANGULY and Krishnendu DUTTA

Abstract. In this paper we study the function space of strongly δ-continuous functions and have generalised some basic results of R. Arens and J. Dugundji. MSC: 54C35, 54C10

Keywords : Strongly δ -splitting , Strongly δ -conjoining.

Introduction

The concept of 'proper' and 'admissible' topology in function space were first introduced by Arens and Dugundji in [1]. These terminologies subsequently changed to 'splitting' and 'conjoining' respectively. In [4] we introduced the notion of strongly δ -continuous function and the concepts of δ -splitting and δ -conjoining topology. Here we introduce strong δ -splitting toplogy and strong δ -conjoining topology and obtain some of its properties. We also introduce the notion of 'strong δ^* ' by slightly changing the definition of 'strong δ ' and try to find its behaviour in relation to the notion of 'strong δ '. We also construct some examples of strongly δ -splitting topology and try to find the behaviour of N - R topology [3] on the set of δ -continuous functions and also on the set of strong δ -continuous functions. Lastly, we have defined the δ -upper limit of a net and have investigated the relations between different types of convergence through it.

§1. Prerequisites, Definitions & Theorems

Definition 1.1 [5] : Let X be a topological space . A set S in X is said to be regular open (respectively regular closed) if Int.(cl.S) = S (respectively Cl.(int.S) = S). A point $x \in S$ is said to be a δ -cluster point of S if $S \cap U \neq \emptyset$, for every regular open set U containing x. The set of all δ -cluster points of S is called the δ -closure of S and is denoted by $[S]_{\delta}$. If $[S]_{\delta} = S$, then S is said to be δ -closed. The complement of a δ -closed set is called a δ -open set. For every topological space (X, τ) , the collection of all δ -open sets forms a topology for X, which is weaker than τ . This topology τ^* has a base consisting of all regular open sets in (X, τ) .

Definition 1.2 [5] : A function $f : X \to Y$ is called a δ -continuous function iff for every regular open set V of Y, $f^{-1}(V)$ is δ -open in X. This can be alternatively defined as follows : a function $f : X \to Y$ is δ -continuous at a point $x \in X$ iff for every regular open nbd. V of f(x) in Y, \exists a δ -open nbd. U of x such that $f(U) \subseteq V$.

Definition 1.3 [4]: A function $f: X \to Y$ is strongly δ -continuous at a point $x \in X$ iff for any open nbd. V of f(x) in Y, \exists a δ -open nbd. Uof x in X such that $f(U) \subseteq V$; instead of taking an arbitrary nbd. of f(x)we could take a sub-basic open set containing f(x) as well.

The set of all strongly δ -continuous functions would be denoted by SD(X, Y), whereas D(X, Y) would denote the set of all δ -continuous functions from X to Y.

Obviously every strongly δ -continuous function is always continuous and the converse does also hold if X is regular.

Definition 1.4 [2] : A set $A \subset (X, \tau)$ is said to be *N*-closed in *X* or simply *N*-closed, if for any cover of *A* by τ -open sets, there exists a finite sub-collection the interiors of the closures of which cover *A*; interiors and closures are of course w.r.t τ . A space (X, τ) is said to be nearly compact iff *X* is *N*-closed in *X*.

Definition 1.5 [3] : The N - R topology on D(X, Y) (or SD(X, Y)) is generated by the sets of the form

 $\{T(C, U) : C \text{ is } N \text{-closed in } X \text{ and } U \text{ regular open in } Y\},\$

where $T(C, U) = \{ f \in D(X, Y) : f(C) \subseteq U \}.$

Definition 1.6 [5] : A net $\{x_{\lambda} : \lambda \in \Lambda\}$ in (X, τ) is said to δ -converge to a point $x \in X$ iff every regular open nbd. of x contains the net eventually ; we write $x_{\lambda} \xrightarrow{\delta} x$.

Theorem 1.7 [5]. A function $f : X \to Y$ is δ -continuous iff $\{f(x_{\lambda})\}_{\lambda \in \Lambda}$ δ -converges to f(x) for each $x \in X$ and for each net $\{x_{\lambda}\}_{\lambda \in \Lambda}$ δ -converging to x.

Theorem 1.8 [4]. A net $\{f_{\mu} : \mu \in M\}$ in D(X,Y) is said to be δ -continuously convergent to $f \in D(X,Y)$, if for any net $\{x_{\lambda} : \lambda \in \Lambda\}$ in X such that $x_{\lambda} \xrightarrow{\delta} x$, the net $f_{\mu}(x_{\lambda}) \xrightarrow{\delta} f(x)$.

Notation 1.9 : By C_{δ} we denote the class of all pairs $(\{f_{\lambda} : \lambda \in \Lambda\}, f)$ where $\{f_{\lambda} : \lambda \in \Lambda\}$ is a net in D(X, Y) which δ -continuously converges to $f \in D(X, Y)$. If τ is a topology on D(X, Y) then by $(C(\tau))_{\delta}$, we denote the class of all pairs $(\{f_{\lambda} : \lambda \in \Lambda\}, f)$, where $\{f_{\lambda} : \lambda \in \Lambda\}$ is a net in D(X, Y) which δ -converges to f in the τ -topology. **Definition 1.10 [4]**; Given three spaces X, Y, Z a function $\alpha(x, y) = z$ can be regarded as a map from $X \times Y$ to Z or as a family of maps $Y \to Z$ with X a parametric space.

For notation let $\alpha : X \times Y \to Z$ be δ -continuous at $y \in Y$ for each fixed $x \in X$, the formula $[\tilde{\alpha}(x)](y) = \alpha(x, y) \cdots (1)$ defines $\tilde{\alpha}(x) : Y \to Z$ which is δ -continuous i.e., $\tilde{\alpha}(x) \in D(Y, Z)$. So $\tilde{\alpha} : X \to D(Y, Z)$ is generated from the original mapping $\alpha : X \times Y \to Z$ as given.

Conversely given an $\tilde{\alpha} : X \to D(Y, Z)$, the formula (1) defines an $\alpha : X \times Y \to Z$ which is δ -continuous at $y \in Y$ for each fixed $x \in X$. Two maps $\alpha : X \times Y \to Z$ and $\tilde{\alpha} : x \to D(Y, Z)$ related by the formula (1) are called associates.

Definition 1.11 : A topology τ on D(Y, Z) is called δ -splitting iff for every space X the δ -continuity of a map $\alpha : X \times Y \to Z$ implies the δ -continuity of the map $\tilde{\alpha} : X \to D(Y, Z)$.

Definition 1.12: A topology τ on D(Y, Z) is called δ -conjoining iff for every space X the δ -continuity of a map $\tilde{\alpha} : X \to D(Y, Z)$ implies the δ -continuity of the map $\alpha : X \times Y \to Z$.

Theorem 1.13. A topology τ on D(Y, Z) is δ -conjoining iff the evaluation map $P: D(Y, Z) \times Y \to Z$ defined by P(f, y) = f(y) is δ -continuous.

Proof: It suffices to observe that $\alpha = P \circ (\tilde{\alpha} \times 1)$, where 1 is the identity function in Y. Moreover the evaluation function i.e. is the associate of the identity mapping on D(Y, Z).

Theorem 1.14 [4]: A topology τ on D(Y,Z) is δ -splitting iff $C_{\delta} \subseteq (C(\tau))_{\delta}$

Theorem 1.15 [4] : A topology τ on D(Y,Z) is δ -conjoining iff $(C(\tau))_{\delta} \subseteq C_{\delta}$.

§2. Strong δ -notions

We have already defined strong δ -continuity of a function in 1.3.

Definition 2.1 : A net $\{f_{\mu} : \mu \in M\}$ in SD(X, Y) is said to be strongly δ -continuously convergent to $f \in SD(X, Y)$, iff for any net $\{x_{\lambda} : \lambda \in \Lambda\}$ in X which δ -converges to $x \in X$, we have the net $\{f_{\mu}(x_{\lambda}) : (\lambda, \mu) \in \Lambda \times M\}$ converging to f(x) in Y.

Theorem 2.2 [4]. A function $f : X \to Y$ is strongly δ -continuous at a point $x \in X$ iff for every net $\{x_{\lambda} : \lambda \in \Lambda\}$ in X for which $x_{\lambda} \xrightarrow{\delta} x$, we have $f(x_{\lambda}) \to f(x)$ in Y.

Notation 2.3 : By C^*_{δ} we denote the class of all pairs $(\{f_{\lambda} : \lambda \in \Lambda\}, f)$ where $\{f_{\lambda} : \lambda \in \Lambda\}$ is a net in SD(Y, Z) which strongly δ -continuously converges to $f \in SD(Y, Z)$. If τ is a topology on SD(Y, Z) then by $(C^*(\tau))_{\delta}$, we denote the class of all pairs $(\{f_{\lambda} : \lambda \in \Lambda\}, f)$, where $\{f_{\lambda} : \lambda \in \Lambda\}$ is a net in SD(Y, Z) which converges to $f \in SD(Y, Z)$ in the τ -topology. **Definition 2.4 :** A topology τ on SD(Y, Z) is called strongly δ -splitting iff for every space X the strong δ -continuity of a map $\alpha : X \times Y \to Z$ implies the strong δ -continuity of the map $\tilde{\alpha} : X \to SD(Y, Z)$.

Definition 2.5 : A topology τ on SD(Y,Z) is called strongly δ conjoining iff for every space X the strong δ -continuity of a map $\tilde{\alpha} : X \to$ SD(Y,Z) implies the strong δ -continuity of the map $\alpha : X \times Y \to Z$.

Theorem 2.6. A topology τ on SD(Y,Z) is strongly δ -conjoining iff the evaluation map $P : SD(Y,Z) \times Y \to Z$ defined by P(f,y) = f(y) is strongly δ -continuous. The proof is straight forward in view of theorem 1.13 and with the fact that the composition of two strongly δ -continuous function is strongly δ -continuous.

Lemma 2.7 [4]: If X and Y are topological spaces & A, B are N-closed sets in X and Y respectively. If W is a δ -open set containing $A \times B$ in the product space $X \times Y$, then there are δ -open sets U & V respectively such that $A \subset U$, $B \subset V$, $U \times V \subset W$.

Notation 2.8 : Let \mathcal{A} be a family of spaces . A topology τ on SD(Y,Z) is called strongly $\delta_{\mathcal{A}}$ -splitting (respectively strongly $\delta_{\mathcal{A}}$ -conjoining) iff for an element X of \mathcal{A} , the strong δ -continuity of a map $\alpha : X \times Y \to Z$ (respectively a map $\tilde{\beta} : X \to SD(Y,Z)$) implies the strong δ -continuity of the map $\tilde{\alpha} : X \to SD(Y,Z)$ (respectively $\beta : X \times Y \to Z$)

Note 2.9 : If \mathcal{A} is the family of all spaces the notions of strongly $\delta_{\mathcal{A}}$ -splitting and strongly $\delta_{\mathcal{A}}$ -conjoining coincides with the notions of strongly δ -splitting and strongly δ -conjoining,

Theorem 2.10. A topology τ on SD(Y,Z) is strongly δ -splitting iff $C^*_{\delta} \subseteq (C^*(\tau))_{\delta}$.

Proof: Let τ be a strongly δ -splitting topology on SD(Y,Z) and let $(\{f_{\lambda} : \lambda \in \Lambda\}, f) \in C^*_{\delta}$. We prove that $\{f_{\lambda} : \lambda \in \Lambda\}$ converges to f in the τ topology. Λ is a directed set and let us add a point ∞ to Λ such that $\infty \not\in \Lambda$; to ascertain the natural order relations between ∞ and members of Λ , let us take $\infty \geq \lambda \forall \lambda \in \Lambda$. We then topologize $X = \Lambda \cup \{\infty\}$ defining any singleton $\{\lambda\}, \lambda \in \Lambda$ to be open and nbds. of ∞ the sets $\{\lambda \in X : \lambda \geq \lambda_0 \text{ for some } \lambda_0 \in \Lambda\}$. Let $\alpha : X \times Y \to Z$ be a map for which $\alpha(\lambda, y) = f_{\lambda}(y), \lambda \neq \infty$ and $\alpha(\infty, y) = f(y)$ for every $y \in Y$. The map α is strongly δ -continuous. Obviously $\tilde{\alpha}(\lambda) = f_{\lambda}$ and $\tilde{\alpha}(\infty) = f$. Since the topology τ is strongly δ -splitting , the map $\tilde{\alpha} : X \to SD(Y, Z)$ is strongly δ -continuous.

By strong δ -continuity of $\tilde{\alpha}$, we have that for every open nbd. U of f in SD(Y, Z), there exists a δ -open nbd. V of ∞ in X such that $\tilde{\alpha}(V) \subseteq U$.

By definition of the topology of $X \exists$ an element $\lambda_0 \in \Lambda$ such that $\lambda \in V \ \forall \lambda \in \Lambda$ with $\lambda \geq \lambda_0$. Hence $f_\lambda \in U \ \forall \lambda \in \Lambda$ with $\lambda \geq \lambda_0$ i.e., the net $\{f_\lambda : \lambda \in \Lambda\}$ converges to f in the τ topology. Thus $C^*_{\delta} \subseteq (C^*(\tau))_{\delta}$.

Conversely let τ be a topology on SD(Y,Z) such that $C^*_{\delta} \subseteq (C^*(\tau))_{\delta}$. We have to prove that τ is strongly δ -splitting. Let X be an aritrary space and let $\alpha : X \times Y \to Z$ be a strongly δ -continuous map. Consider the map $\tilde{\alpha} : X \to SD(Y,Z)$ (SD(Y,Z) is endowed with the τ topology). We have to prove that $\tilde{\alpha}$ is strongly δ -continuous. Let $\{x_{\lambda} : \lambda \in \Lambda\}$ be a net in Xwhich δ -converges to x. We prove that the net $\tilde{\alpha}(x_{\lambda})$ converges to $\tilde{\alpha}(x)$.

Let $\{y_{\mu} : \mu \in M\}$ be a net in Y which δ -converges to y in Y. Since the map α is strongly δ -continuous and the net $\{(x_{\lambda}, y_{\mu}) : (\lambda, \mu) \in \Lambda \times M\}$ of $X \times Y$ δ -converges to (x, y) in $X \times Y$, we have $\alpha(x_{\lambda}, y_{\mu}) \longrightarrow \alpha(x, y)$. This means that $\alpha_{x_{\lambda}}(y_{\mu}) \longrightarrow \alpha_{x}(y)$. Thus the net $\{\tilde{\alpha}(x_{\lambda}) : \lambda \in \Lambda\}$ converges to $\tilde{\alpha}(x)$. Thus the map $\tilde{\alpha}$ is strongly δ -continuous and hence τ is strongly δ -splitting.

Theorem 2.11. A topology τ on SD(Y,Z) is strongly δ -conjoining if and only if $(C^*(\tau))_{\delta} \subseteq C^*_{\delta}$

Proof : Let τ be a strongly δ -conjoining topology. Let X be the space as in the theorem of 2.10. Let $(\{f_{\lambda} : \lambda \in \Lambda\}, f) \in (C^*(\tau))_{\delta}$. Clearly the map $\alpha : X \to SD(Y, Z)$ is strongly δ -continuous where $\alpha(\lambda) = f_{\lambda}$ and $\alpha(\infty) = f$. Then the map $\tilde{\alpha} : X \times Y \to Z$ is strongly δ -continuous. We have to prove that $(\{f_{\lambda} : \lambda \in \Lambda\}, f) \in C^*_{\delta}$. Then it is sufficient to prove that if $\{y_{\mu} : \mu \in M\}$ is a net in Y which δ -converge to y in Y, then the net $\{f_{\lambda}(y_{\mu}) : (\lambda, \mu) \in \Lambda \times M\}$ converges to f(y). But the net $\{\lambda : \lambda \in \Lambda\}$ in X δ -converges to ∞ in X. Hence the net $\{(\lambda, y_{\mu}) : (\lambda, \mu) \in \Lambda \times M\}$ in $X \times Y$ δ -converges to (∞, y) in $X \times Y$. Since the map $\tilde{\alpha}$ is strongly δ -continuous , the net $\{\tilde{\alpha}(\lambda, y_{\mu}) \equiv \alpha(\lambda)(y_{\mu}) \equiv f_{\lambda}(y_{\mu}), (\lambda, \mu) \in \Lambda \times M\}$ converges to $\tilde{\alpha}(\infty, y) \equiv f(y)$.

Conversely, let τ be a topology on SD(Y, Z) such that $(C^*(\tau))_{\delta} \subseteq C^*_{\delta}$.

We prove that the topology τ is strongly δ -conjoining. Let X be an arbitrary space and let $\alpha : X \to SD(Y,Z)$ (SD(Y,Z) be endowed with the τ topology) be a strongly δ -continuous map. We prove that the map $\tilde{\alpha} : X \times Y \to Z$ is strongly δ -continuous. Let $\{(x_{\lambda}, y_{\mu}) : (\lambda, \mu) \in \Lambda \times M\}$ be a net in $X \times Y$ which δ -converge to (x, y). We prove that the net $\{\tilde{\alpha}(x_{\lambda}, y_{\mu}) : (\lambda, \mu) \in \Lambda \times M\}$ in Z converges to $\tilde{\alpha}(x, y)$.

Since the net $\{x_{\lambda} : \lambda \in \Lambda\}$ δ -converges to x in X and the map α is strongly δ -continuous, the net $\{\alpha(x_{\lambda}) : \lambda \in \Lambda\}$ converges to $\alpha(x)$. Thus by assumption the net $\{\alpha(x_{\lambda}) : \lambda \in \Lambda\}$ strongly δ -continuously converges to $\alpha(x)$. Now since the net $\{y_{\mu} : \mu \in M\}$ δ -converges to y, the net $\{\alpha(x_{\lambda})(y_{\mu}) \equiv \tilde{\alpha}(x_{\lambda}, y_{\mu}) : (\lambda, \mu) \in \Lambda \times M\}$ converges to $\alpha(x)(y) = \tilde{\alpha}(x, y)$. Hence the topology τ is strongly δ -conjoining.

Theorem 2.12. A topology τ on SD(Y,Z) is simultaneously strongly δ -splitting and strongly δ -conjoining iff $C^*_{\delta} = (C^*(\tau))_{\delta}$. The proof of this theorem follows from theorems 2.10 & 2.11.

Theorem 2.13. A topology τ on SD(Y,Z) is strongly δ -splitting iff is strongly δ_A -splitting, where A is the family of all spaces having exactly one non-isolated point.

Proof: It is enough to prove that if τ is strongly $\delta_{\mathcal{A}}$ -splitting, where \mathcal{A} is the family of all spaces having exactly one non-isolated point, then the topology τ is strongly δ -splitting.

Let $(\{f_{\lambda} : \lambda \in \Lambda\}, f) \in C^*_{\delta}$. We have to prove that $(\{f_{\lambda} : \lambda \in \Lambda\}$ converges to f in the τ topology.

Let $X = \Lambda \cup \{\infty\}$, where ∞ is a symbol such that $\infty \ge \lambda$ for every $\lambda \in \Lambda$. Then we topologize $X = \Lambda \cup \{\infty\}$ by defining any singleton $\{\lambda\}, \lambda \in \Lambda$ to be open and nbds. of ∞ the sets $\{\lambda \in X : \lambda \ge \lambda_0 \text{ for some } \lambda_0 \in \Lambda\}$. Clearly the element ∞ is the unique non-isolated point of the space X and thus $X \in \mathcal{A}$.

We consider the map $\alpha : X \times Y \to Z$ by setting $\alpha(\lambda, y) = f_{\lambda}(y) \& \alpha(\infty, y) = f(y)$. Obviously the map α is strongly δ -continuous. Now we prove that $\{f_{\lambda} : \lambda \in \Lambda\}$ converges to f in the τ topology.

Let $U \in \tau$ be an open nbd. of f. Now the topology τ is strongly $\delta_{\mathcal{A}}$ splitting. Hence the map $\tilde{\alpha} : X \to SD(Y, Z)$ is strongly δ -continuous. Also $\tilde{\alpha}(\infty) = f \& \tilde{\alpha}(\lambda) = f_{\lambda}, \lambda \neq \infty$. Thus \exists a δ -open nbd. V of ∞ such that $\tilde{\alpha}(V) \subseteq U$.

Since the set V is an δ -open nbd. of ∞ in $X \exists$ an element $\lambda_0 \in \Lambda$ such that $\lambda \in V, \forall \lambda \geq \lambda_0$. Hence $\tilde{\alpha}(\lambda) = f_{\lambda} \in U \forall \lambda \in \Lambda$ with $\lambda \geq \lambda_0$. Thus the net $\tilde{\alpha}(\lambda) = \{f_{\lambda} : \lambda \in \Lambda\}$ converges to f in the τ topology and hence τ is strongly δ -splitting.

Theorem 2.14. A topology τ on SD(Y,Z) is strongly δ -conjoining iff is strongly $\delta_{\mathcal{A}}$ -conjoining, where \mathcal{A} is the family of all spaces having exactly one non-isolated point.

The proof is similar to theorem 2.13.

§3. Strong δ^* notions on function space

Definition 3.1 : A topology τ on SD(Y, Z) is called strongly δ^* -splitting iff for every space X, the strong δ -continuity of a map $\alpha : X \times Y \to Z$ implies the δ -continuity of the map $\tilde{\alpha} : X \to SD(Y, Z)$.

Definition 3.2: A topology τ on SD(Y,Z) is called strongly δ^* conjoining iff for every space X, the δ -continuity of a map $\tilde{\alpha} : X \to SD(Y,Z)$ implies the strong δ -continuity of the map $\alpha : X \times Y \to Z$.

Theorem 3.3. The following propositions are true :

(1) Let τ be a strongly δ -splitting topology on SD(Y,Z). Then the topology τ is strongly δ^* -splitting.

(2) Let τ be a strongly δ -conjoining topology on SD(Y,Z). Then the topology τ is strongly δ^* -conjoining.

The proof of the theorem is clear.

Theorem 3.4. A toplogy τ on SD(Y,Z) is strongly δ^* -conjoining iff the evaluation map $P: SD(Y,Z) \to Z$ defined by P(f,y) = f(y) is strongly δ -continuous.

Proof: Clearly, the identity map $\tilde{\alpha} \equiv 1 : SD(Y,Z) \to SD(Y,Z)$, where SD(Y,Z) is endowed with τ topology is δ -continuous, since τ is strongly δ^* -conjoining the map $\alpha \equiv P : SD(Y,Z) \times Z$ is strongly δ continuous.

Conversely, let X be as space , $\tilde{\alpha} : X \to SD(Y,Z)$ be a δ -continuous map and $1: Y \to Y$ be the identity map. Cleaarly the map $\tilde{\alpha} \times 1: X \times Y \to SD(Y,Z) \times Y$ is also δ -continuous in the product space. Also it is given that the evaluation map $P: SD(Y,Z) \times Y \to Z$ is strongly δ -continuous. Then the composition map $P \circ (\tilde{\alpha} \times 1): X \times Y \to Z$ is strongly δ -continuous and $\alpha = P \circ (\tilde{\alpha} \times 1)$. Thus the topology τ is strongly δ *-conjoining.

§4. Examples of strongly δ -splitting topology

Example 4.1: The trivial topology on SD(Y, Z) is clearly strongly δ -splitting.

Example 4.2 : The pointwise topology τ_p on SD(Y, Z) is strongly δ -splitting.

Indeed, let X be any arbitrary space and let $\alpha : X \times Y \to Z$ be a strongly δ -continuous map. We have to show that $\tilde{\alpha} : X \to SD(Y,Z)$ is strongly δ -continuous. Let $x \in X$ and let $\tilde{\alpha}(x) \in T(\{y\}, U)$, where $y \in Y$ and U be an open set of Z. Then we have $\tilde{\alpha}(x)(y) = \alpha(x, y) \in U$. Since α is strongly δ -continuous so $\exists \delta$ -open nbds. $W_1 \& W_2$ of x & y respectively such that $\alpha(W_1 \times W_2) \subseteq U$. Which implies that $\tilde{\alpha}(W_1) \in T(\{y\}, U)$ and thus the map $\tilde{\alpha}$ is strongly δ -continuous.

Lemma 4.3: Let $\alpha : X \times Y \to Z$ be a strongly δ -continuous map, O be an open set of Z, K be a compact subset of Y and $x \in X$ be such that $\{x\} \times K \subseteq \alpha^{-1}(O)$. Then \exists a δ -open nbd. V_x of x such that $V_x \times K \subseteq \alpha^{-1}(O)$.

Proof: Let $y \in K$. Then $(x, y) \in \alpha^{-1}(O)$ which implies $\alpha(x, y) \in O$. Since α is strongly δ -continuous so \exists a δ -open nbd. V_x^y of x and an open nbd. V_y of y such that $V_x^y \times Int.cl.(V_y) \subseteq \alpha^{-1}(O)$. Also we have $K \subseteq \bigcup\{V_y : y \in K\}$. Since K is compact so \exists open sets V_{y_1}, \ldots, V_{y_k} such that $K \subseteq V_{y_1} \cup \ldots \cup V_{y_k}$.

 $K \subseteq V_{y_1} \cup \dots \cup V_{y_k}$. Let $V_x = V_x^{y_1} \cap V_x^{y_2} \cap \dots \cap V_x^{y_k} \& V'_y = V_{y_1} \cup \dots, \cup V_{y_k}$. Then V_x is a δ -open nbd. of x (since intersection of finite number of δ -open set is δ -open). We prove that $V_x \times K \subseteq \alpha^{-1}(O)$.

let $(x_1, y_1) \in V_x \times K \subseteq V_x \times Int.cl.(V'_y)$. Then $x_1 \in V_x^{y_i}$ for all i = 1, 2, ..., k and $y_1 \in V_{y_j}$ for some j = 1, 2, ..., k. Thus $(x_1, y_1) \in V_x^{y_p} \times V_{y_p}$ for

 $1 \leq p \leq k$. Which is a subset of $\alpha^{-1}(O)$. Hence $V_x \times K \subseteq \alpha^{-1}(O)$.

Example 4.4 : The compact open topology τ_c on SD(Y, Z) is strongly δ -splitting.

Let X be an arbitrary topological space and let $\alpha : X \times Y \to Z$ be a strongly δ -continuous map. We have to show that $\tilde{\alpha} : X \to SD(Y, Z)$ is strongly δ -continuous. Let $x \in X$ and let $\tilde{\alpha}(x) \in T(K, U)$ where K is a compact subset of Y and U be an open set in Z. We prove that $\exists \delta$ -open set W containing x in X such that $\tilde{\alpha}(W) \subseteq T(K, U)$. We have $\{x\} \times K \subseteq \alpha^{-1}(U)$. By the above lemma 4.3 $\exists \delta$ -open nbd. W of x such that $W \times K \subseteq \alpha^{-1}(U)$. Thus $\alpha(W \times K) \subseteq U$ and hence $\tilde{\alpha}(W) \subseteq T(K, U)$. Hence $\tilde{\alpha}$ is strongly δ -continuous.

Example 4.5: A topology τ on SD(Y, Z) is generated by the sets of the form $\{P(C, U) : C \text{ is a N-closed subset of } Y \& U \text{ be an open set in } Z\}$ where $P(C, U) = \{f \in SD(Y, Z) : f(C) \subseteq U\}$. This topology τ on SD(Y, Z) is strongly δ -splitting. To this end we first show that for a strongly δ -continuous map $\alpha : X \times Y \to Z$, if U be an open set in Z and C be a N-closed subset of Y and $x \in X$ be such that $\{x\} \times C \subseteq \alpha^{-1}(U)$, then \exists a δ -open nbd. V_x of x such that $V_x \times C \subseteq \alpha^{-1}(U)$.

Indeed for every $y \in C$, we have $(x, y) \in \alpha^{-1}(U)$ and therefore $\alpha(x, y) \in U$. Since α is strongly δ -continuous $\exists \delta$ -open nbds. $V_x^y \& V_y$ of x & y respectively such that $V_x^y \times V_y \subseteq \alpha^{-1}(U)$. Also we have $C \subseteq \bigcup \{V_y : y \in C\}$. Since C is N-closed, $\exists \delta$ -open sets V_x, \dots, V_y such that $C \subseteq V_x \cup \dots \cup V_y$.

Since C is N-closed, $\exists \delta$ -open sets $V_{y_1}, ..., V_{y_n}$ such that $C \subseteq V_{y_1} \cup ..., \cup V_{y_n}$. Let $V_x = V_x^{y_1} \cap ... \cap V_x^{y_n} \& V_y' = V_{y_1} \cup ... \cup V_{y_n}$. We prove that $V_x \times C \subseteq \alpha^{-1}(U)$. Let $(x_1, y_1) \in V_x \times C \subseteq V_x \times V_y'$. Then $x_1 \in V_x^{y_i}$ for all i = 1, ..., n. $\& y_1 \in V_{y_j}$ for some j = 1, ..., n. Thus $(x_1, y_1) \in V_x \times C \subseteq \alpha^{-1}(U)$. Thus $V_x \times C \subseteq \alpha^{-1}(U)$.

Now we prove that τ is strongly δ -splitting. Let X be any arbitrary space and let $\alpha : X \times Y \to Z$ be a strongly δ -continuous map. We have to show that the map $\tilde{\alpha} : X \to SD(Y, Z)$ is strongly δ -continuous. Let $x \in X$ and let $\tilde{\alpha}(x) \in P(C, U)$, where C is N-closed set in Y and U an open set in Z. We have $\{x\} \times C \subseteq \alpha^{-1}(U)$. Then what we have just proved above $\exists a \delta$ -open nbd. W of x such that $W \times C \subseteq \alpha^{-1}(U)$. Thus $\alpha(W \times C) \subseteq U$ and so $\tilde{\alpha}(W) \subseteq P(C, U)$. Thus the map $\tilde{\alpha}$ is strongly δ -continuous.

Remarks 4.6 : All examples that we have discussed above remain valid for the case of strongly δ^* -notions.

§5. Splittingness & conjoiningness of N-R-Topology

One natural question may come up, is there exists any topology on SD(Y, Z) which is strongly δ -splitting as well as strongly δ -conjoining.

Theorem 5.1. The N-R topology on SD(Y,Z) is strongly δ -splitting.

Proof: The N-R topology τ on SD(Y,Z) is generated by the sets of the form $T(C,U) = \{f \in SD(Y,Z) : f(C) \subseteq U\}$, where C is a N-closed subset in Y and U be regular open in Z. Since regular open sets are δ -open so in the subbasic open set of the N-R topology we can take U to be a δ -open subset of Z.

For this we first prove that for a strongly δ -continuous map $\alpha : X \times Y \to Z$, if U be an δ -open set in Z and C be a N-closed subset of Y and $x \in X$ be such that $\{x\} \times C \subseteq \alpha^{-1}(U)$, then \exists a δ -open nbd. V_x of x such that $V_x \times C \subseteq \alpha^{-1}(U)$.

Now for every $y \in C$, we have $(x, y) \in \alpha^{-1}(U)$ and hence $\alpha(x, y) \in U$. Since α is strongly δ -continuous $\exists \delta$ -open nbds. $V_x^y \& V_y$ of x & y respectively such that $V_x^y \times V_y \subseteq \alpha^{-1}(U)$, since δ -open sets are open sets. Also we have $C \subseteq \bigcup \{V_y : y \in C\}$. Since C is N-closed, $\exists \delta$ -open sets $V_{y_1}, ..., V_{y_n}$ such that $C \subseteq V_{y_1} \cup, ..., \cup V_{y_n}$.

Vy₁,..., V_{y_n} such that $C \subseteq V_{y_1} \cup ..., \cup V_{y_n}$. Let $V_x = V_x^{y_1} \cap ... \cap V_x^{y_n} \& V_y' = V_{y_1} \cup ... \cup V_{y_n}$. We prove that $V_x \times C \subseteq \alpha^{-1}(U)$. Let $(x_1, y_1) \in V_x \times C \subseteq V_x \times V_y'$. Then $x_1 \in V_x^{y_i}$ for all i = 1, ..., n. $\& y_1 \in V_{y_j}$ for some j = 1, ..., n. Thus $(x_1, y_1) \in V_x \times C \subseteq \alpha^{-1}(U)$. Thus $V_x \times C \subseteq \alpha^{-1}(U)$.

Next we show that the N-R topology is strongly δ -splitting. Let X be any arbitrary space and let $\alpha : X \times Y \to Z$ be a strongly δ -continuous map. We have to show that the map $\tilde{\alpha} : X \to SD(Y, Z)$ is strongly δ -continuous . Let $x \in X$ and let $\tilde{\alpha}(x) \in T(C, U)$, where C is N-closed set in Y and U a δ -open set in Z. We have $\{x\} \times C \subseteq \alpha^{-1}(U)$. Then by above $\exists a \delta$ -open nbd. W of x such that $W \times C \subseteq \alpha^{-1}(U)$. Thus $\alpha(W \times C) \subseteq U$ and so $\tilde{\alpha}(W) \subseteq T(C, U)$. Thus the map $\tilde{\alpha}$ is strongly δ -continuous.

Theorem 5.2. On the set SD(Y, Z) there exists the greatest strongly δ -splitting topology.

Proof: Let $\{T_{\alpha}\}$ be the set of all strongly δ -splitting topologies on the set SD(Y,Z). Let τ be the topology having the members of $\cup_{\alpha} T_{\alpha}$ as subbasis. We prove that τ is the greatest strongly δ -splitting topology. Then it is enough to prove that τ is strongly δ -splitting topology. Let Xbe any arbitrary space and let $\alpha : X \times Y \to Z$ be a strongly δ -continuous map. We have to show that the map $\tilde{\alpha} : X \to SD(Y,Z)$ is strongly δ continuous. $(SD(Y,Z) \text{ is endowed with the } \tau \text{ topology})$. Since any subbasic open set $U \in \tau$ belongs to some strongly δ -splitting topology T_{α} , we must have $\tilde{\alpha}^{-1}(U)$ is δ -open in X and hence $\tilde{\alpha} : X \to SD(Y,Z)$ is strongly δ -continuous.

Theorem 5.3. a) A topology larger than a strongly δ -conjoining topology is also strongly δ -conjoining.

b) A topology smaller than a strongly δ -splitting topology is also strongly

δ -splitting.

Proof: Let τ be a strongly δ -conjoining topology and $\tau \subset \sigma$. Since the identity map $1: SD_{\sigma}(Y, Z) \to SD_{\tau}(Y, Z)$ is strongly δ -continuous and the strongly δ -conjoining property of τ gives that the map $P: SD_{\tau}(Y, Z) \times Y \to Z$ is strongly δ -continuous. So we get $SD_{\sigma}(Y, Z) \times Y \to Z$ is also strongly δ -continuous. Thus σ is strongly δ -conjoining. The proof of (b) is similar.

Theorem 5.4. Any strongly δ -conjoining topology is larger than any strongly δ -splitting topology.

Proof: Let τ be a strongly δ -conjoining and σ be a strongly δ -splitting topology on SD(Y,Z). Then for any arbitrary space X, the strong δ -cotinuity of the map $\tilde{\alpha} : X \to SD_{\tau}(Y,Z)$ implies $\alpha : X \times Y \to Z$ is strongly δ -continuous (as τ is strongly δ -conjoining) which implies $\tilde{\alpha} : X \to SD_{\sigma}(Y,Z)$ is strongly δ -continuous (as σ is strongly δ -splitting). Thus we find that $1 : SD_{\tau}(Y,Z) \to SD_{\sigma}(Y,Z)$ is strongly δ -continuous. Which shows that $\sigma \subset \tau$.

Theorem 5.5. On the set SD(Y, Z), the N-R topology is the smallest strongly δ -conjoining topology if Y is locally nearly compact $T_2 \ \mathcal{E} \ Z$ is semiregular.

Proof: First we show that the N-R topology is strongly δ -conjoining. Any sub-basic open set of the N-R topology on SD(Y, Z) is

$$T(C,U) = \{ f \in SD(Y,Z) : f(C) \subseteq U \}$$

where C is a N-closed set in Y & U regular open in Z.

Let X be an arbitrary topological space and it is given that the map $\tilde{\alpha} : X \to SD(Y, Z)$ is strongly δ -continuous. We have to show that $\alpha : X \times Y \to Z$ is strongly δ -continuous.

Let V be an sub-basic open set in Z. Let $y \in Y$ and P' be a regular open nbd. of y in Y. Since Y is locally nearly compact T_2 so \exists an open set M containing y such that $\overline{M} \subset P'$ with \overline{M} N-closed. Then $T(\overline{M}, V)$ is a sub-basic open set in N-R topology on SD(Y, Z). Since $\tilde{\alpha}$ is strongly δ -continuous so there exists a regular open set W in X such that $\tilde{\alpha}(W) \subset$ $T(\overline{M}, V)$. Then for any $x \in W$, $\tilde{\alpha}(x) \in T(\overline{M}, V) \Rightarrow \tilde{\alpha}(x)(y) \in V($ as $y \in$ $\overline{M}) \Rightarrow \alpha(x, y) \in V$. Thus $\alpha(W \times \overline{M}) \subset V$. So for any sub-basic open set V of Z, \exists a regular open nbd. $W \times \overline{M}$ of (x, y) in the product space $X \times Y$ such that $\alpha(W \times \overline{M}) \subset V$. Hence α is strongly δ -continuous.

Now we show that it is the smallest among all the strongly δ -conjoining topology that can be given on SD(Y, Z).

Let σ be a topology on SD(Y, Z) which is strongly δ -conjoining. We show that T(C, U) is σ -open in order to show that the N-R topology is the smallest one. Now in view of theorem 2.6 the map $P: SD(Y, Z) \times Y \to Z$ defined by P(f, y) = f(y) is strongly δ -continuous. Then the set V' = $(SD(Y,Z) \times Y) \cap P^{-1}(U)$ is δ -open in $SD(Y,Z) \times Y$. If $f \in T(C,U)$ then $f(C) \subset U$ i.e., $\{f\} \times C \subset P^{-1}(U)$ i.e., $\{f\} \times C \subset V'$. Now $\{f\}$ is N-closed in SD(Y,Z) & C is so in Y so by lemma 2.7, $\exists \delta$ -open sets N of f in σ -topology such that $N \times C \subset P^{-1}(U)$. So for each $f \in N$, $f(C) \subset U \Rightarrow N \subset T(C,U)$ and so $f \in N \subset T(C,U)$. Thus T(C,U) is σ -open. As a partial converse of Theorem 5.5 we can now state and prove the following theorem.

Theorem 5.6. Let X be a non-regular T_2 topological space in which for every δ -open set U and a point $p \in U$, \exists a strongly δ -continuous function $f: X \to [0,1]$ such that $f(p) = \{1\} \& f(X \setminus U) = \{0\}$; if SD(X, [0,1])be endowed with N-R topology \Im then X must be locally nearly compact if $P: SD(X, [0,1]) \times X \to [0,1]$ is strongly δ -continuous.

Proof: Let $F: X \to [0,1]$ be defined by $F(x) = 0 \ \forall x \in X$. Then obviously $F \in SD(X, [0,1])$. Let W_0 be a nbd. of 0 in [0,1] which does not contain 1. By the strong δ -continuity of F, \exists a \Im nbd. U of F and a nbd. V of x in X such that $y \in Int.(cl.V) \& g \in Int.(cl.U)$ imply $g(y) \in W_0 \cdots (1)$. We show that \overline{V} is N-closed.

Suppose \mathcal{U} is a δ -open covering of \overline{V} ; since \overline{V} is the closure of an open set it is regularly closed and hence δ -closed; thus $X \setminus \overline{V}$ is δ -open and $\mathcal{U} \cup \{X \setminus \overline{V}\}$ is a δ -open cover of X.

Since U is a \Im -nbd. of F, $\exists A_1, A_2, ..., A_n$ N-closed in X & $U_1, U_2, ..., U_n$ regular open in [0, 1] such that $F \in T(A_1, U_1) \cap ... \cap T(A_n, U_n) \subset U$.

Let $G = Int.\overline{V} \setminus (A_1 \cup ... \cup A_n)$. Obviously $A_1 \cup ... \cup A_n$ is N-closed in X and hence δ -closed and let if possible $p \in G$ then \exists a strongly δ -continuous function $r : X \to [0,1]$ such that $r(p) = \{1\} \& r(X \setminus G) = \{0\}$. Now $r \in SD(X, [0,1])$; also $A_1 \cup ... \cup A_n \subset X \setminus G$ and thus $r(A_1) = \cdots =$ $r(A_n) = \{0\}$. Since $F(A_1) = \cdots = F(A_n) = \{0\}$, $0 \in U$; for i = 1, ..., nand as such $r \in T(A_1, U_1) \cap ... \cap T(A_n, U_n) \subset U$. But $r(p) = \{1\} \& 1 \not\in W_0$, where as $r \in U \subset Int.(cl.U) \& p \in Int.(cl.V)$ should imply $r(p) \in W_0$ (from (1)).

Thus we arrive at a contradiction ; this contradiction shows that $G = \emptyset$. For i = 1, ..., n, now $Int.\overline{V} \subseteq A_1 \cup ... \cup A_n$. But $A_1 \cup ... \cup A_n$ is a closed set and thus $\overline{V} \subseteq A_1 \cup ... \cup A_n$. Now $\mathcal{U} \cup \{X \setminus \overline{V}\}$ is a δ -open cover of $A_1 \cup ... \cup A_n$; since each A_i is N-closed , $A_i \subseteq W_{i_1} \cup ... \cup W_{i_{m_i}}$ where each $W_{i_{m_i}}$ is chosen from $\mathcal{U} \cup \{X \setminus \overline{V}\}$.

Thus \overline{V} has a finite subcovering from \mathcal{U} (in fact $X \setminus \overline{V}$ adjoined to \mathcal{U} need not occur among the members of the finite subcovering). Thus \overline{V} is N-closed.

Note 5.7 : X with the properties stated in the theorem does exist ; infact [0, 1] with the countable complement extension topology [6] satisfies this condition.

Conclusion 5.8: Now we are in a position to give answear to our question that we bring at beginnig of this article. In viewing the above results we can conclude that the N-R topology on SD(Y, Z) is the smallest strongly δ -conjoining and the largest strongly δ -splitting topology provided Y a locally nearly compact T_2 space and Z a semiregular space.

§6. δ -upper limit of a net

Definition 6.1 : With P(X) – the power set of a topological space X and $\mathcal{A}' = \{A_{\lambda} : \lambda \in \Lambda\} \subset P(X)$, where Λ is a directed set, we define the δ -upper limit for \mathcal{A}' as the set of all points $x \in X$ such that for every $\lambda_0 \in \Lambda$ and every δ -open nbd. U of x in X \exists an element $\lambda \in \Lambda$ for which $\lambda \geq \lambda_0 \& A_\lambda \cap U \neq \emptyset$. We denote the δ -upper limit for \mathcal{A}' by $\delta - \overline{\lim}_{\Lambda} (A_\lambda)$.

Theorem 6.2[4]. A net $\{f_{\lambda} : \lambda \in \Lambda\}$ on D(X,Y) δ -continuously converges to $f \in D(X,Y)$ iff $\delta - \overline{\lim_{\Lambda}}(f_{\lambda}^{-1}(K)) \subseteq f^{-1}(K)$, for every δ closed subset K of Y.

Definition 6.3: Let $\mathcal{O}(Y)$ be the family of all δ -open sets of the space Y and let $\mathcal{A} \subseteq \mathcal{O}(Y)$.

We define $C^*_{\delta}(\mathcal{A})$ on the set D(X,Y) as follows : a pair ($\{f_{\lambda} : \lambda \in$ Λ , f) $\in C^*_{\delta}(\mathcal{A})$, where $\{f_{\lambda} : \lambda \in \Lambda\}$ is a net in D(X, Y) & $f \in D(X, Y)$ if

$$f^{-1}(U) \subseteq X \setminus \delta - \overline{\lim_{\Lambda}}(X \setminus f_{\lambda}^{-1}(U))$$

or equivalently

$$\delta - \overline{\lim_{\Lambda}} f_{\lambda}^{-1}(K)) \subseteq f^{-1}(K)$$

where $K = Y \setminus U$, for every $U \in \mathcal{A}$. Obviously if $\mathcal{A} = \mathcal{O}(Y)$, then $C^*_{\delta}(\mathcal{A}) = C_{\delta}$

Lemma 6.4: Let $\mathcal{K}(Y)$ be the family of all δ -closed subset of the space

 $K_i \in \mathcal{K}(Y)$ for every $i \in I$.

Proof. (1) It is easy to see that

$$\cup \{\delta - \overline{\lim_{\Lambda}} f_{\lambda}^{-1}(K_i) : i = 1, ..., n\} \subseteq \delta - \overline{\lim_{\Lambda}} (\cup \{f_{\lambda}^{-1}(K_i) : i = 1, ..., n\})$$

We prove the reverse inclusion.

Let $x \in \delta - \overline{\lim_{\Lambda}} (\cup \{f_{\lambda}^{-1}(K_i) : i = 1, ..., n\})$. Then for every $\lambda_0 \in \Lambda$ and for every δ -open nbd. U_x of $x \exists \lambda \in \Lambda, \lambda \geq \lambda_0$ such that

$$U_x \cap (\cup \{ f_{\lambda}^{-1}(K_i) : i = 1, ..., n \}) \neq \emptyset \implies \cup \{ U_x \cap f_{\lambda}^{-1}(K_i) : i = 1, ..., n \} \neq \emptyset$$

Let $x \not\in \bigcup \{\delta - \overline{\lim}_{\Lambda} (f_{\lambda}^{-1}(K_i)) : i = 1, ..., n\}$. Then $x \not\in \delta - \overline{\lim}_{\Lambda} (f_{\lambda}^{-1}(K_i))$ for every i = 1, ..., n. This means that for every $i = 1, ..., n \exists \lambda_0^i \in \Lambda$ and a δ -open nbd. U_x^i of x such that $U_x^i \cap f_{\lambda}^{-1}(K_i) = \emptyset$ for every $\lambda \in \Lambda$ with $\lambda \geq \lambda_0^i$. Let $\lambda_0 \in \Lambda$ be such that $\lambda_0 \geq \lambda_0^i$ for every i = 1, ..., n, and let $U_x = \bigcap_{i=1}^n U_x^i$. Then for every $\lambda \in \Lambda, \lambda \geq \lambda_0$, we have

$$\cup \{U_x \cap f_\lambda^{-1}(K_i) , i = 1, ..., n\} = \emptyset.$$

which is a contradiction and thus $x \in \{\delta - \overline{\lim}_{\Lambda} (f_{\lambda}^{-1}(K_i)) : i = 1, ..., n\}.$

(2) The proof is immediate.

Theorem 6.5. The following propositions are true :

- (1) $C_{\delta} \subseteq C^*_{\delta}(\mathcal{A})$

(2) Let $\mathcal{A} \subseteq \mathcal{A}' \subseteq \mathcal{O}(Y)$. Then $C^*_{\delta}(\mathcal{A}') \subseteq C^*_{\delta}(\mathcal{A})$. (3) Let $\mathcal{A}_i \subset \mathcal{O}(Y)$, $i \in I$. Then $\cap \{C^*_{\delta}(\mathcal{A}_i) : i \in I\} = C^*_{\delta}(\cup \{\mathcal{A}_i : i \in I\})$ $I\}).$

(4) Let $\mathcal{A}, \mathcal{A}' \subseteq \mathcal{O}(Y)$. Let every element of \mathcal{A}' is the intersection of finitely many elements of \mathcal{A} . Then $C^*_{\delta}(\mathcal{A}) \subseteq C^*_{\delta}(\mathcal{A}')$

Proof. The proof of (1),(2)&(3) are clear from the definition. To prove (4), let $({f_{\lambda}, \lambda \in \Lambda}, f) \in C^*_{\delta}(\mathcal{A})$ and let $U \in \mathcal{A}'$. We have to prove that $\delta - \overline{\lim_{\Lambda}} f_{\lambda}^{-1}(K) \subseteq f^{-1}(K)$, where $K = Y \setminus U$

i.e.,
$$f^{-1}(U) \subseteq X \setminus \delta - \overline{\lim_{\Lambda}}(X \setminus f_{\lambda}^{-1}(U))$$

Now every element of \mathcal{A}' is the intersection of finitely many elements of \mathcal{A} , so $\exists U_1, ..., U_n \in \mathcal{A}$ such that $U = \cap \{U_i : i = 1, ..., n\}$ and $f^{-1}(U_i) \subseteq X \setminus \delta - \overline{\lim_{\Lambda}}(X \setminus f_{\lambda}^{-1}(U_i))$, for every i = 1, ..., n. Hence we have $f^{-1}(U) =$ $\frac{f^{-1}(\cap\{U_i : i = 1, ..., n\}) = \cap\{f^{-1}(U_i) : i = 1, ..., n\} \subseteq \cap\{X \setminus \delta - \lim_{\Lambda} (X \setminus f_{\lambda}^{-1}(U_i)) : i = 1, ..., n\} = X \setminus \cup\{\delta - \lim_{\Lambda} (X \setminus f_{\lambda}^{-1}(U_i)) : i = 1, ..., n\}$ $1, ..., n\} = X \setminus \delta - \overline{\lim}_{\Lambda} (\cup \{X \setminus f_{\lambda}^{-1}(U_i) : i = 1, ..., n\}) \text{ (by lamma 6.4)} = X \setminus \delta - \overline{\lim}_{\Lambda} (X \setminus \cap \{f_{\lambda}^{-1}(U_i) : i = 1, ..., n\}) = X \setminus \delta - \overline{\lim}_{\Lambda} (X \setminus f_{\lambda}^{-1}(\cap \{U_i : i = 1, ..., n\})) = X \setminus \delta - \overline{\lim}_{\Lambda} (X \setminus f_{\lambda}^{-1}(U))$ **Theorem 6.6.** Let $\mathcal{A}, \mathcal{A}' \subseteq \mathcal{O}(Y)$ and let every elements of \mathcal{A}' is the

union of elements of \mathcal{A} . Then $C^*_{\delta}(\mathcal{A}) \subseteq C^*_{\delta}(\mathcal{A}')$.

Proof.Let $(\{f_{\lambda}, \lambda \in \Lambda\}, f) \in C^*_{\delta}(\mathcal{A})$ and let $V \in \mathcal{A}'$. We have to prove that

$$f^{-1}(V) \subseteq X \setminus \delta - \overline{\lim_{\Lambda}}(X \setminus f_{\lambda}^{-1}(V))$$

Now from the given condition $\exists V_i \in \mathcal{A}, i \in I$ such that $V = \bigcup \{V_i : i = V\}$ 1,...,n} and $f^{-1}(V_i) \subseteq X \setminus \delta - \overline{\lim_{\Lambda}}(X \setminus f_{\lambda}^{-1}(V_i))$ for every $i \in I$. Hence we have

$$f^{-1}(V) = f^{-1}(\cup\{V_i : i \in I\}) = \cup\{f^{-1}(V_i) : i \in I\}$$
(1)

$$\subseteq \cup \{X \setminus \delta - \lim_{\Lambda} (X \setminus f_{\lambda}^{-1}(V_i)) : i \in I\}$$
(2)

$$= X \setminus \cap \{\delta - \overline{\lim}_{\Lambda} (X \setminus f_{\lambda}^{-1}(V_i)) : i \in I\}$$
(3)

$$\subseteq X \setminus \delta - \overline{\lim}_{\Lambda} (\cap \{X \setminus f_{\lambda}^{-1}(V_i) : i \in I\}) \text{ (by lamma 6.4)}$$
(4)

$$= X \setminus \delta - \overline{\lim_{\Lambda}} (X \setminus \bigcup \{ f_{\lambda}^{-1}(V_i) : i \in I \})$$
(5)

$$= X \setminus \delta - \overline{\lim_{\Lambda}} (X \setminus f_{\lambda}^{-1} (\cup \{V_i : i \in I\}))$$
(6)

$$= X \setminus \delta - \overline{\lim_{\Lambda}} (X \setminus f_{\lambda}^{-1}(V))$$
(7)

Theorem 6.7: Let $\mathcal{A} \subseteq \mathcal{O}(Y)$ and let \mathcal{A}' be the family of all δ -open sets for which every element is the union of elements \mathcal{A}_i ; $i \in I$ such that every \mathcal{A}_i , $i \in I$ is the intersection of finitely many elements of \mathcal{A} . Then $C^*_{\delta}(\mathcal{A}) \subseteq C^*_{\delta}(\mathcal{A}')$

Proof: Let $(\{f_{\lambda}, \lambda \in \Lambda\}, f) \in C^*_{\delta}(\mathcal{A})$ and let $V \in \mathcal{A}'$. We have to prove that

$$f^{-1}(V) \subseteq X \setminus \delta - \overline{\lim}_{\Lambda} (X \setminus f_{\lambda}^{-1}(V)).$$

By assumption $\exists V_1^i, ..., V_{m(i)}^i \in \mathcal{A}$, $i \in I$ such that $\mathcal{A}_i = \cap \{V_k^i : k = 1, ..., m(i)\}$, $V = \cup \{\cap \{V_k^i : k = 1, ..., m(i)\} : i \in I\}$, $f^{-1}(V_k^i) \subseteq X \setminus \delta - \overline{\lim_{\Lambda}}(X \setminus f_{\lambda}^{-1}(V_k^i))$ for every $i \in I \& k = 1, ..., m(i)$. Hence we have

$$\begin{split} f^{-1}(V) &= f^{-1}(\cup\{\cap\{V_k^i \, : \, k=1,...,m(i)\} : i \in I\}) \\ &= \cup\{f^{-1}(\cap\{V_k^i \, : \, k=1,...,m(i)\}) : i \in I\} \\ &= \cup\{\cap\{f^{-1}(V_k^i) \, : \, k=1,...,m(i)\} : i \in I\} \\ &\subseteq \cup\{\cap\{X \setminus \delta - \varlimsup(X \setminus f_{\lambda}^{-1}(V_k^i)) \, : \, k=1,...,m(i)\} : i \in I\} \\ &= \cup\{X \setminus \cup\{\delta - \varlimsup(X \setminus f_{\lambda}^{-1}(V_k^i)) \, : \, k=1,...,m(i)\} : i \in I\} \\ &= \cup\{X \setminus \delta - \varlimsup(U\{X \setminus f_{\lambda}^{-1}(V_k^i) \, : \, k=1,...,m(i)\}) : i \in I\} \\ &= \cup\{X \setminus \delta - \varlimsup(X \setminus f_{\lambda}^{-1}(V_k^i) \, : \, k=1,...,m(i)\}) : i \in I\} \\ &= \cup\{X \setminus \delta - \varlimsup(X \setminus f_{\lambda}^{-1}(\cap V_k^i) \, : \, k=1,...,m(i)\}) : i \in I\} \\ &= X \setminus 0\{\delta - \varlimsup(X \setminus f_{\lambda}^{-1}(\cap V_k^i \, : \, k=1,...,m(i)\}) : i \in I\} \\ &= X \setminus \delta - \varlimsup(X \setminus f_{\lambda}^{-1}(\cap V_k^i \, : \, k=1,...,m(i)\}) : i \in I\} \\ &\subseteq X \setminus \delta - \varlimsup(X \setminus f_{\lambda}^{-1}(\cap V_k^i \, : \, k=1,...,m(i)\}) : i \in I\} \end{split}$$

$$\begin{split} &= X \setminus \delta - \overline{\lim}_{\Lambda} (X \setminus \cup \{f_{\lambda}^{-1}(\cap \{V_{k}^{i} \ : \ k = 1, ..., m(i)\})\} : i \in I) \\ &= X \setminus \delta - \overline{\lim}_{\Lambda} (X \setminus f_{\lambda}^{-1} \{\cup (\cap \{V_{k}^{i} \ : \ k = 1, ..., m(i)\}) : i \in I\}) \\ &= X \setminus \delta - \overline{\lim}_{\Lambda} (X \setminus f_{\lambda}^{-1}(V)). \end{split}$$

References

- R. Arens & J. Dugundji. Topologies for Function Space, Pacific J. Math. 1(1951), 5–31.
- [2] D. Carnahan. Locally Nearly Compact Spaces, Boll. Un. Mat. Ital. (14) 6 (1972), 146 - 153.
- [3] S. Ganguly & K. Dutta. Further Study of N-R Topology on Function Space , Bull. Cal. Math. Soc.– to appear.
- [4] S. Ganguly & K. Dutta. $-\delta$ -continuous function & topologies on function space – communicated.
- [5] T. Noiri. On δ -continuous Function , J. Korean Math. Soc. 16(1980) , 161–166.
- [6] S. Sinha Roy & S. Bandyopadhyay.- On θ-completely regular & locally θ-H-closed spaces, Bull. Cal. Math. Soc. 87(1995), 19–28.

Received: 11. 05. 2002

Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata - 700019, India E-mail : krish_dutt@yahoo.co.in