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Introduction

The concept of ‘proper’ and ‘admissible’ topology in function space
were first introduced by Arens and Dugundji in [1]. These terminologies
subsequently changed to ‘splitting’ and ‘conjoining’ respectively. In [4] we
introduced the notion of strongly d-continuous function and the concepts of
d-splitting and é-conjoining topology . Here we introduce strong d-splitting
toplogy and strong d-conjoining topology and obtain some of its proper-
ties. We also introduce the notion of ‘strong §*’ by slightly changing the
definition of ‘strong §’ and try to find its behaviour in relation to the no-
tion of ‘strong §’. We also construct some examples of strongly §-splitting
topology and try to find the behaviour of N — R topology [3] on the set of
d-continuous functions and also on the set of strong é-continuous functions.
Lastly, we have defined the §-upper limit of a net and have investigated the
relations between different types of convergence through it.

§1. Prerequisites, Definitions & Theorems

Definition 1.1 [5] : Let X be a topological space . A set S in X is
said to be regular open ( respectively regular closed ) if Int.(cl.S) = S (
respectively Cl.(int.S) = S ). A point z € S is said to be a d-cluster point
of Sif SNU # ( , for every regular open set U containing x. The set of
all d-cluster points of S is called the d-closure of S and is denoted by [S]s.
If [S]s = S, then S is said to be d-closed . The complement of a d-closed
set is called a d-open set .
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For every topological space (X, 7), the collection of all §-open sets forms
a topology for X, which is weaker than 7. This topology 7* has a base
consisting of all regular open sets in (X, 7).

Definition 1.2 [5] : A function f : X — Y is called a d-continuous
function iff for every regular open set V of Y, f~1(V) is d-open in X.
This can be alternatively defined as follows : a function f : X — Y is
d-continuous at a point x € X iff for every regular open nbd. V of f(z) in
Y, 3 a d-open nbd. U of z such that f(U) C V.

Definition 1.3 [4]: A function f: X — Y is strongly d-continuous at
a point x € X iff for any open nbd. V of f(z) in Y , 3 a §-open nbd. U
of  in X such that f(U) C V; instead of taking an arbitrary nbd. of f(x)
we could take a sub-basic open set containing f(z) as well.

The set of all strongly d-continuous functions would be denoted by
SD(X,Y), whereas D(X,Y’) would denote the set of all 4-continuous func-
tions from X to Y.

Obviously every strongly d-continuous function is always continuous
and the converse does also hold if X is regular.

Definition 1.4 [2] :A set A C (X, 7) is said to be N-closed in X or
simply N-closed, if for any cover of A by 7-open sets , there exists a finite
sub-collection the interiors of the closures of which cover A; interiors and
closures are of course w.r.t 7. A space (X, 7) is said to be nearly compact
iff X is N-closed in X.

Definition 1.5 [3] : The N — R topology on D(X,Y) (or SD(X,Y)
) is generated by the sets of the form

{T(C,U) : Cis N-closed in Xand U regular open in Y},

where T'(C,U) ={f € D(X,Y) : f(C)CU}.

Definition 1.6 [5] : A net {x) : A € A} in (X, 7) is said to d-converge
to a point z € X iff every regular open nbd. of x contains the net eventually
; we write x), o, x.

Theorem 1.7 [5]. A function f: X — Y is d-continuous iff {f(zx)}rea
d-converges to f(x) for each x € X and for each net {x)}xep 0-converging
to x.

Theorem 1.8 [4]. A net {f, : p € M} in D(X,Y) is said to be
d-continuously convergent to f € D(X,Y) , if for any net {x\ : X € A}
in X such that xy LI , the net f,(xy) 2, fx).

Notation 1.9 : By Cs we denote the class of all pairs ({fy : A € A}, f)
where {f) : A € A} is a net in D(X,Y’) which d-continuously converges to
f e D(X,Y). If 7 is a topology on D(X,Y) then by (C(7))s, we denote
the class of all pairs ({fy : A € A}, f), where {fy : A € A} is a net in
D(X,Y) which é-converges to f in the 7-topology.
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Definition 1.10 [4] ; Given three spaces X, Y, Z a function a(z,y) = 2
can be regarded as a map from X X Y to Z or as a family of maps Y — Z
with X a parametric space .

For notation let @ : X XY — Z be §-continuous at y € Y for each fixed
x € X, the formula [a(z)](y) = a(z,y)--- (1) defines &(z) : Y — Z which
is d-continuous i.e., &(x) € D(Y,Z) . So a: X — D(Y,Z) is generated
from the original mapping a: X X Y — Z as given .

Conversely given an & : X — D(Y, Z), the formula (1) defines an « :
X xY — Z which is é-continuous at y € Y for each fixed z € X . Two
maps @ : X XY — Z and & : ¢ — D(Y, Z) related by the formula (1) are
called associates.

Definition 1.11 : A topology 7 on D(Y,Z) is called J-splitting iff
for every space X the §-continuity of a map « : X XY — Z implies the
0-continuity of the map & : X — D(Y, Z).

Definition 1.12 : A topology 7 on D(Y, Z) is called d-conjoining iff
for every space X the d-continuity of a map & : X — D(Y, Z) implies the
d-continuity of the map a: X xY — Z.

Theorem 1.13. A topology 7 on D(Y, Z) is §-conjoining iff the evalu-
ation map P : D(Y,Z)xY — Z defined by P(f,y) = f(y) is d-continuous.

Proof : It suffices to observe that &« = Po(ax1) , where 1 is the identity
function in Y. Moreover the evaluation function i.e. is the associate of the
identity mapping on D(Y, 7).

Theorem 1.14 [4]: A topology 7 on D(Y,Z) is §-splitting iff Cs C
(C(7))s

Theorem 1.15 [4] : A topology 7 on D(Y,Z) is d-conjoining iff
(C(7))s < Cs.

82. Strong J-notions

We have already defined strong d-continuity of a function in 1.3.

Definition 2.1 : A net {f, : p € M} in SD(X,Y) is said to be
strongly d-continuously convergent to f € SD(X,Y) , iff for any net {z) :
A € A} in X which d-converges to € X , we have the net {f,(z)) :
(A, ;) € A x M} converging to f(x) in Y.

Theorem 2.2 [4].A function f: X —Y is strongly §-continuous at a
point x € X iff for every net {xx : A € A} in X for which x) R T, we
have f(xy) — f(x) in Y.

Notation 2.3 : By C§ we denote the class of all pairs ({f\ : A € A}, f)
where {f\ : A € A} isanet in SD(Y, Z) which strongly d-continuously con-
verges to f € SD(Y, Z). If 7 is a topology on SD(Y, Z) then by (C*(7))s,
we denote the class of all pairs ({fy : A € A}, f), where {fy : A€ A} isa
net in SD(Y, Z) which converges to f € SD(Y, Z) in the 7-topology.
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Definition 2.4 : A topology 7 on SD(Y, Z) is called strongly d-splitting
iff for every space X the strong d-continuity of a map o : X XY — Z implies
the strong d-continuity of the map & : X — SD(Y, Z).

Definition 2.5 : A topology 7 on SD(Y,Z) is called strongly -
conjoining iff for every space X the strong é-continuity of a map & : X —
SD(Y, Z) implies the strong d-continuity of the map o : X x Y — Z.

Theorem 2.6. A topology T on SD(Y, Z) is strongly §-conjoining iff
the evaluation map P : SD(Y,Z) x Y — Z defined by P(f,y) = f(y) is
strongly d-continuous. The proof is straight forward in view of theorem
1.13 and with the fact that the composition of two strongly §-continuous
function is strongly §-continuous.

Lemma 2.7 [4] : If X and Y are topological spaces & A, B are N-closed
sets in X and Y respectuvely . If W is a J-open set containing A X B in
the product space X x Y, then there are §-open sets U & V respectively
suchthat AcU, BCcV,UxV CW.

Notation 2.8 : Let A be a family of spaces . A topology 7 on SD(Y, Z)
is called strongly J 4-splitting ( respectively strongly 0 4-conjoining) iff for
an element X of A , the strong J-continuity of a map o« : X xY — Z
(respectively a map 3 : X — SD(Y, Z)) implies the strong d-continuity of
the map & : X — SD(Y, Z) (respectively §: X xY — Z)

Note 2.9 : If A is the family of all spaces the notions of strongly § 4-
splitting and strongly d 4-conjoining coincides with the notions of strongly
d-splitting and strongly d-conjoining,

Theorem 2.10. A topology 7 on SD(Y,Z) is strongly 0-splitting iff
Ci € (C*(™))s.

Proof : Let 7 be a strongly d-splitting topology on SD(Y, Z) and let
({fx : A€ A}, f) € C;. We prove that {fy : A € A} converges to f in the
T topology. A is a directed set and let us add a point co to A such that
oo EA; to ascertain the natural order relations between oo and members
of A, let us take co > A VA € A. We then topologize X = A U {o0}
defining any singleton {A\} ;A € A to be open and nbds. of co the sets
{Ae X : X > A forsome \g € A}, Let a : X xY — Z be a map
for which a(\,y) = fa(y),\ # oo and a(co,y) = f(y) for every y € Y.
The map « is strongly d-continuous. Obviously &(\) = fy and a(o0) = f.
Since the topology T is strongly d-splitting , the map & : X — SD(Y, Z) is
strongly J-continuous.

By strong §-continuity of &, we have that for every open nbd. U of f
in SD(Y, Z), there exists a J-open nbd. V' of co in X such that &(V) C U.

By definition of the topology of X 3 an element A9 € A such that
A eV VAeAwith A > Ag. Hence f, € U VA € A with A > Ag i.e., the
net {f) : A € A} converges to f in the 7 topology. Thus C§ C (C*(7))s.
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Conversely let 7 be a topology on SD(Y, Z) such that Cj C (C*(7))s -
We have to prove that 7 is strongly d-splitting. Let X be an aritrary space
and let a: X XY — Z be a strongly d-continuous map. Consider the map
a: X — SD(Y,Z) (SD(Y, Z) is endowed with the 7 topology ). We have
to prove that & is strongly d-continuous. Let {z) : A € A} be a net in X
which §-converges to x. We prove that the net a(x)) converges to a(z).

Let {y, : © € M} be a net in Y which d-converges to y in Y. Since
the map «a is strongly J-continuous and the net {(zx,y,) @ (A, p) € A x
M} of X XY é-converges to (z,y) in X x Y, we have a(zy,y,) — oz, y).
This means that ag,(y,) — oag(y). Thus the net {a(zy) : X € A}
converges to &(z). Thus the map & is strongly d-continuous and hence 7 is
strongly §-splitting.

Theorem 2.11. A topology T on SD(Y,Z) is strongly d-conjoining if
and only if (C*(1))s € Cj

Proof : Let 7 be a strongly d-conjoining topology . Let X be the space
as in the theorem of 2.10. Let ({f\ : A € A}, f) € (C*(1))s. Clearly the
map « : X — SD(Y,Z) is strongly d-continuous where a(A) = f\ and
a(oo) = f. Then the map & : X x Y — Z is strongly d-continuous. We
have to prove that ({f\ : A € A}, f) € C5. Then it is sufficient to prove
that if {y, : p € M} is a net in Y which d-converge to y in Y, then the
net {fi(y.) : (A, p) € A x M} converges to f(y). But the net {A : A € A}
in X d-converges to oo in X. Hence the net {(\,y,) : (A, pu) € A x M}
in X x Y J-converges to (oo,y) in X x Y. Since the map & is strongly
d-continuous , the net {&(\,y,) = a(N)(y,) = fialyu), A\ p) € A x M}
converges to a(co,y) = f(y).

Conversely , let 7 be a topology on SD(Y, Z) such that (C*(7))s € Cj.

We prove that the topology 7 is strongly d-conjoining . Let X be an
arbitrary space and let o : X — SD(Y,Z) (SD(Y,Z) be endowed with
the 7 topology ) be a strongly d-continuous map . We prove that the map
&: X xY — Z is strongly d-continuous . Let {(zx,yu) : (A, p) € A x M}
be a net in X x Y which d-converge to (z,y). We prove that the net
{a(xr,yu) : (A, ) € Ax M} in Z converges to &(x,y).

Since the net {x)y : A € A} d-converges to z in X and the map « is
strongly d-continuous , the net {a(x)) : A € A} converges to a(x). Thus
by assumption the net {a(x)) : A € A} strongly d-continuously converges
to a(x). Now since the net {y, : p € M} J-converges to y , the net
{azA)(yu) = alxr, yu) = (A, 1) € A x M} converges to ax)(y) = &(z,y).
Hence the topology 7 is strongly d-conjoining.

Theorem 2.12. A topology 7 on SD(Y, Z) is simultaneously strongly
d-splitting and strongly 6-conjoining iff C5 = (C*(7))s. The proof of this
theorem follows from theorems 2.10 & 2.11.
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Theorem 2.13. A topology 7 on SD(Y, Z) is strongly §-splitting iff
is strongly 0 4-splitting , where A is the family of all spaces having exactly
one non-isolated point.

Proof : It is enough to prove that if 7 is strongly § 4-splitting , where
A is the family of all spaces having exactly one non-isolated point, then the
topology T is strongly J-splitting.

Let ({fn : A € A}, f) € C5. We have to prove that ({fy : A € A}
converges to f in the 7 topology.

Let X = AU{oo}, where oo is a symbol such that oo > X for every A € A.
Then we topologize X = A U {oc} by defining any singleton {\}, A € A to
be open and nbds. of oo the sets {A € X : A > )¢ for some \g € A}.
Clearly the element oo is the unique non-isolated point of the space X and
thus X € A.

We consider the map a : X XY — Z by setting a(\, y) = fa(y) & a(oo,y)
f(y). Obviously the map « is strongly d-continuous . Now we prove that
{fx : A € A} converges to f in the 7 topology.

Let U € 7 be an open nbd. of f. Now the topology 7 is strongly J 4-
splitting . Hence the map & : X — SD(Y, Z) is strongly J-continuous .
Also a(00) = f& a(A) = fr, A # oo. Thus 3 a d-open nbd. V' of oo such
that a(V) C U.

Since the set V is an §-open nbd. of co in X 3 an element Ay € A such
that A € V, VA > Ag.Hence &(\) = f, € UV XA € A with A > Ap. Thus the
net @(A) = {fn : A € A} converges to f in the 7 toplogy and hence 7 is
strongly §-splitting.

Theorem 2.14. A topology T on SD(Y,Z) is strongly d-conjoining
iff is strongly 6 4-conjoining , where A is the family of all spaces having
exactly one non-isolated point.

The proof is similar to theorem 2.13.

§3. Strong §* notions on function space

Definition 3.1 : A topology 7 on SD(Y,Z) is called strongly ¢*-
splitting iff for every space X ,the strong d-continuity of a map o : X xY —
Z implies the d-continuity of the map & : X — SD(Y, Z).

Definition 3.2 : A topology 7 on SD(Y,Z) is called strongly §*-
conjoining iff for every space X ,the d-continuity of amap & : X — SD(Y, Z)
implies the strong J-continuity of the map v : X x Y — Z.

Theorem 3.3.The following propositions are true :

(1) Let T be a strongly §-splitting topology on SD(Y, Z). Then the topology
T 1is strongly 6*-splitting.

(2) Let T be a strongly §-conjoining topology on SD(Y, Z). Then the topol-
ogy T is strongly 0*-conjoining.
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The proof of the theorem is clear.

Theorem 3.4. A toplogy 7 on SD(Y,Z) is strongly 6*-conjoining iff
the evaluation map P : SD(Y,Z) — Z defined by P(f,y) = f(y) is strongly
d-continuous.

Proof : Clearly , the identity map & = 1 : SD(Y,Z) — SD(Y, Z),
where SD(Y, Z) is endowed with 7 topology is d-continuous , since 7 is
strongly d*-conjoining the map o« = P : SD(Y,Z) x Z is strongly -
continuous.

Conversely , let X be aa space ,& : X — SD(Y,Z) be a §-continuous
map and 1 : Y — Y be the identity map . Cleaarly the map ax1: X xY —
SD(Y,Z) x Y is also d-continuous in the product space. Also it is given
that the evaluation map P : SD(Y,Z) x Y — Z is strongly d-continuous .
Then the composition map Po(ax1): X XY — Z is strongly d-continuous
and @ = P o (& x 1). Thus the topology 7 is strongly §*-conjoining.

84. Examples of strongly J-splitting topology

Example 4.1: The trivial topology on SD(Y,Z) is clearly strongly
d-splitting.

Example 4.2 : The pointwise topology 7, on SD(Y, Z) is strongly
d-splitting.

Indeed, let X be any arbitrary space and let o : X XY — Z be a
strongly d-continuous map. We have to show that & : X — SD(Y,Z) is
strongly d-continuous. Let x € X and let a(z) € T'({y},U), where y € Y
and U be an open set of Z. Then we have a(z)(y) = a(z,y) € U. Since «
is strongly d-continuous so 3 d-open nbds. W7 & Wy of = & y respectively
such that a(W; x Wa) C U. Which implies that a(W1) € T({y},U) and
thus the map & is strongly d-continuous.

Lemma 4.3 : Let a: X XY — Z be a strongly d-continuous map, O
be an open set of Z, K be a compact subset of Y and x € X be such that
{2} x K C a~'(0). Then 3 a d-open nbd. V, of z such that V, x K C
a™1(0).

Proof : Let y € K. Then (z,y) € a~'(O) which implies a(z,y) € O.
Since « is strongly d-continuous so 3 a d-open nbd. V of x and an open
nbd. V, of y such that Vi x Int.cl.(V,;) € a=}(0). Also we have K C
U{V, : y € K}. Since K is compact so 3 open sets Vj,,....,V,, such that
KCV,U...UV,.

Let V, = V' NV n..nV&* & V) =V, U..,UV,. Then V, is
a d-open nbd. of x ( since intersection of finite number of d-open set is
d-open). We prove that V, x K C a~1(0).

let (z1,11) € Vo x K C V, X Int.cl.(V;). Then z; € V77 for all i =
1,2,...,k and y; €V, for some j = 1,2, ..., k. Thus (z1,y1) € Vi? x V,, for
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1 < p < k. Which is a subset of a~(0). Hence V,, x K C a~(O).

Example 4.4 : The compact open topology 7. on SD(Y, Z) is strongly

d-splitting.
Let X be an arbitrary topological space and let a : X XY — Z be a strongly
d-continuous map. We have to show that & : X — SD(Y, Z) is strongly
d-continuous. Let z € X and let a(x) € T'(K,U) where K is a compact
subset of Y and U be an open set in Z. We prove that 3 J-open set W
containing x in X such that &(W) C T'(K,U). We have {z} x K C o~ }(U).
By the above lemma 4.3 3 §-open nbd. W of = such that W x K C o~ }(U).
Thus a(W x K) C U and hence &(W) C T(K,U).Hence & is strongly 4-
continuous.

Example 4.5 : A topology 7 on SD(Y, Z) is generated by the sets of
the form {P(C,U) : C is a N-closed subset of Y & U be an open set in Z}
where P(C,U) = {f € SD(Y,Z) : f(C) C U}. This topology 7 on
SD(Y, Z) is strongly d-splitting.To this end we first show that for a strongly
d-continuous map a : X x Y — Z | if U be an open set in Z and C be a
N-closed subset of Y and x € X be such that {z} x C C a~}(U), then 3 a
§-open nbd. V;, of  such that V, x C C o~ }(U).

Indeed for every y € C, we have (z,y) € o~ ' (U) and therefore a(z,y) €
U. Since « is strongly d-continuous 3 d-open nbds. Vi & V, of z & y
respectively such that Vi x V,, C a~1(U). Also we have C C U{V, : y € C}.
Since C'is N-closed , 3 d-open sets V,, ..., V,, such that C' C V,, U, ...,UV,, .

Let V, = V'n..NnV & Vy’ =V, U...UV,,. We prove that
Ve x C C o YU). Let (z1,y1) € Vo x C C V, x Vy’. Then z; €
Vit foralli = 1,..,n. & y1 € V,, for some j = 1,...,n. Thus (z1,y1) €

LI Vy, for some p , 1 < p < n. Which is a subset of a~YU). Thus
Ve x C Ca }U).

Now we prove that 7 is strongly d-splitting. Let X be any arbitrary
space and let o : X XY — Z be a strongly §-continuous map . We have to
show that the map & : X — SD(Y, Z) is strongly d-continuous . Let z € X
and let a(x) € P(C,U), where C is N-closed set in Y and U an open set in
Z. We have {z} x C C a~}(U). Then what we have just proved above ,3
a d-open nbd. W of x such that W x C C a~(U). Thus a(W x C) C U
and so a(W) C P(C,U). Thus the map & is strongly d-continuous.

Remarks 4.6 : All examples that we have discussed above remain
valid for the case of strongly d*-notions.

85. Splittingness & conjoiningness of N-R-Topology

One natural question may come up, is there exists any topology on
SD(Y, Z) which is strongly J-splitting as well as strongly d-conjoining.
Theorem 5.1.The N-R topology on SD(Y,Z) is strongly 0-splitting.
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Proof : The N-R topology 7 on SD(Y, Z) is generated by the sets of
the form T(C,U) = {f € SD(Y,Z) : f(C) C U}, where C is a N-closed
subset in Y and U be regular open in Z. Since regular open sets are d-open
so in the subbasic open set of the N-R topology we can take U to be a
d-open subset of Z.

For this we first prove that for a strongly d-continuous map o : X xY —
Z ,if U be an é-open set in Z and C be a N-closed subset of Y and z € X
be such that {x} x C C a~}(U), then 3 a §-open nbd. V, of z such that
Ve x C Ca }U).

Now for every y € C, we have (z,y) € a~'(U) and hence a(z,y) €
U. Since « is strongly d-continuous 3 d-open nbds. Vi & V, of z & y
respectively such that VY x V, C a~Y(U), since §-open sets are open sets.
Also we have C C U{V,, : y € C}. Since C is N-closed , 3 dJ-open sets
Virs oy Vi, such that C C VU, ...,UV, .

Let V, = V/'n..nV/" &V, =V, U..UV,. We prove that
Ve x C C o t(U). Let (z1,;n1) € Vo x C C Vo x V). Then z; €
Vit foralli = 1,..,n. & y1 € V,, for some j = 1,...,n. Thus (z1,41) €

SN Vy, for some p , 1 < p < n, which is a subset of a~Y(U). Thus
Ve x C Ca YU).

Next we show that the N-R topology is strongly J-splitting. Let X be
any arbitrary space and let a : X XY — Z be a strongly §-continuous map .
We have to show that the map & : X — SD(Y, Z) is strongly -continuous
. Let z € X and let a(z) € T(C,U), where C' is N-closed set in Y and U a
§-open set in Z. We have {x} x C C o~ }(U). Then by above ,3 a J-open
nbd. W of z such that W x C C a~}(U). Thus a(W x C) C U and so
a(W) CT(C,U). Thus the map & is strongly d-continuous.

Theorem 5.2.0n the set SD(Y,Z) there exists the greatest strongly
d-splitting topology.

Proof : Let {T,} be the set of all strongly d-splitting topologies on
the set SD(Y, Z). Let 7 be the topology having the members of U,T,, as
subbasis . We prove that 7 is the greatest strongly §-splitting topology .
Then it is enough to prove that 7 is strongly d-splitting topology. Let X
be any arbitrary space and let o : X X Y — Z be a strongly J-continuous
map. We have to show that the map & : X — SD(Y,Z) is strongly J-
continuous. (SD(Y, Z) is endowed with the 7 topology). Since any subbasic
open set U € 7 belongs to some strongly d-splitting topology T, we must
have @ !(U) is é-open in X and hence & : X — SD(Y,Z) is strongly
d-continuous.

Theorem 5.3. a) A topology larger than a strongly §-conjoining topol-
ogy 18 also strongly §-conjoining.

b) A topology smaller than a strongly d-splitting topology is also strongly
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d-splitting.

Proof : Let 7 be a strongly d-conjoining topology and 7 C ¢. Since the
identity map 1: SD,(Y,Z) — SD.(Y, Z) is strongly d-continuous and the
strongly d-conjoining property of 7 gives that the map P : SD.(Y, Z)xY —
7 is strongly d-continuous. So we get SD,(Y,Z) x Y — Z is also strongly
0-continuous. Thus o is strongly d-conjoining.The proof of (b) is similar.

Theorem 5.4. Any strongly 0-conjoining topology is larger than any
strongly §-splitting topology.

Proof : Let 7 be a strongly d-conjoining and o be a strongly é-splitting
topology on SD(Y,Z). Then for any arbitrary space X , the strong o-
cotinuity of the map & : X — SD,(Y,Z) implies a : X xY — Z is
strongly d0-continuous ( as 7 is strongly d-conjoining ) which implies & :
X — SD,(Y,Z) is strongly d-continuous ( as o is strongly J-splitting).
Thus we find that 1 : SD.(Y,Z) — SD,(Y, Z) is strongly J-continuous.
Which shows that o C 7.

Theorem 5.5. On the set SD(Y,Z) , the N-R topology is the smallest
strongly d-conjoining topology if Y is locally nearly compact To & Z is
semaregular.

Proof : First we show that the N-R topology is strongly J-conjoining.
Any sub-basic open set of the N-R topology on SD(Y, Z) is

T(C,U)={fesSDY,Z) : f(C)CU}

where C' is a N-closed set in Y & U regular open in Z.

Let X be an arbitrary topological space and it is given that the map
&: X — SD(Y, Z) is strongly d-continuous . We have to show that « :
X xY — Z is strongly d-continuous.

Let V be an sub-basic open set in Z. Let y € Y and P’ be a regular
open nbd. of y in Y. Since Y is locally nearly compact 75 so 3 an open
set M containing y such that M C P’ with M N-closed. Then T(M,V)
is a sub-basic open set in N-R topology on SD(Y,Z). Since & is strongly
d-continuous so there exists a regular open set W in X such that &(W) C
T(M,V). Then for any x € W, a(z) € T(M,V) = a(x)(y) € V(asy €
M) = afz,y) € V. Thus a(W x M) C V. So for any sub-basic open set
V of Z , 3 a regular open nbd. W x M of (x,%) in the product space X x Y’
such that a(W x M) C V. Hence « is strongly d-continuous.

Now we show that it is the smallest among all the strongly d-conjoining
topology that can be given on SD(Y, Z).

Let o be a topology on SD(Y, Z) which is strongly d-conjoining. We show
that T(C,U) is o-open in order to show that the N-R topology is the
smallest one . Now in view of theorem 2.6 the map P : SD(Y,Z) xY — Z
defined by P(f,y) = f(y) is strongly d-continuous. Then the set V' =
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(SD(Y,Z) x Y)N P~ (U) is 6-open in SD(Y,Z) x Y. If f € T(C,U) then
f(C)cUie, {f} xCc P YU)ie., {f} xC V' Now {f} is N-closed
in SD(Y,Z) & C is so in Y so by lemma 2.7, 3 d-open sets N of f in
o-topology such that N x C C P~Y(U). So for each f € N, f(C)C U =
N CcT(C,U)and so f € N C T(C,U). Thus T(C,U) is o-open. As a
partial converse of Theorem 5.5 we can now state and prove the following
theorem.

Theorem 5.6. Let X be a non-reqular Ts topological space in which for
every d-open set U and a point p € U , 3 a strongly J-continuous function
f X —[0,1] such that f(p) = {1} & f(X \ U) = {0}; if SD(X,]0,1))
be endowed with N-R topology S then X must be locally nearly compact if
P:SD(X,[0,1]) x X — [0,1] is strongly J-continuous.

Proof : Let F' : X — [0,1] be defined by F(x) = 0 Vo € X. Then
obviously F' € SD(X,|0,1]). Let Wy be a nbd. of 0 in [0,1] which does
not contain 1. By the strong d-continuity of F', 3 a & nbd. U of F' and
a nbd. V of z in X such that y € Int.(cl.V) & g € Int.(cl.U) imply
g(y) € Wy ---(1). We show that V is N-closed.

Suppose U is a §-open covering of V ; since V is the closure of an open
set it is regularly closed and hence d-closed; thus X \ V is d-open and
UU{X \V}is a é-open cover of X.

Since U is a &-nbd. of F',4 Ay, As, ..., A, N-closed in X & Uy, Us, ..., U,
regular open in [0, 1] such that F' € T(A;,U;) N ....NT (A, U,) C U.

Let G = Int.V\ (A1U....UA,). Obviously A;U....UA, is N-closed in X
and hence é-closed and let if possible p € G then 3 a strongly d-continuous
function r : X — [0,1] such that r(p) = {1} & (X \ G) = {0}. Now
r € SD(X,[0,1]) ; also Ay U....UA, C X\ G and thus r(4;) = -+ =
r(A,) = {0}. Since F(A;) =---=F(A,) ={0},0€U; fori=1,..,n
and as such r € T(A1,U1)N....NT(A,,U,) CU. But r(p) = {1} & 1 Wy,
where as r € U C Int.(cl.U) & p € Int.(cl.V) should imply r(p) € Wy (
from (1) ).

Thus we arrive at a contradiction ; this contradiction shows that G = (.
For i = 1,...,n, now Int.V C A;U...UA,. But A; U...UA, is a closed
set and thus V' C Ay U...U A,. Now U U{X \ V} is a d-open cover of
A1 U...UA,; since each A; is N-closed , A; C W;, U....U Wiy, where each
Wi, is chosen from Y U {X \ V}.

Thus V has a finite subcovering from U ( in fact X \ V adjoined to U
need not occur among the members of the finite subcovering ). Thus V is
N-closed.

Note 5.7 : X with the properties stated in the theorem does exist ;
infact [0, 1] with the countable complement extension topology [6] satisfies
this condition.
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Conclusion 5.8 : Now we are in a position to give answear to our
question that we bring at begining of this article. In viewing the above
results we can conclude that the N-R topology on SD(Y, Z) is the smallest
strongly d-conjoining and the largest strongly J-splitting topology provided
Y a locally nearly compact T3 space and Z a semiregular space.

§6. J-upper limit of a net

Definition 6.1 : With P(X)- the power set of a topological space X
and A" = {A) : A € A} C P(X), where A is a directed set , we define
the d-upper limit for A’ as the set of all points x € X such that for every
Ao € A and every d-open nbd. U of z in X 3 an element A € A for which
A >N & AyNU # (. We denote the §-upper limit for A" by § — @(A)\).

Theorem 6.2[4]. A net {fn : A € A} on D(X,Y) d-continuously
converges to f € D(X,Y) iff § —%(f)\_l(K)) C fYK), for every 6-

closed subset K of Y.

Definition 6.3 : Let O(Y') be the family of all d-open sets of the space
Y and let A C O(Y).

We define C5(A) on the set D(X,Y) as follows : a pair ({fy : A €
A}, f) € C5(A), where {fy : A€ A} isanetin D(X,Y) & f e D(X,Y) if

F7HO) € X\ 6 - Tm(X \ £ ()

or equivalently o
0 —TimfyH(K)) € f~H(K)

where K = Y \ U, for every U € A. Obviously if A = O(Y) , then
C5(A) = Cs

Lemma 6.4 : Let I(Y') be the family of all -closed subset of the space
Y and let {fy : A € A} be anet in D(X,Y’). Then the following are true.

(18 = Tm(U{/y 1 (K:) + 0= 1,.n}) = U{6 — Timfy 1 (Ky) + i =
1,..,n}, where K; € K(Y) foralli=1,..,n.

(2)6 — hgl(m{f;l(m) ciel})Cn{d— hinf;l(m) . i € I}, where
K; e K(Y) for every i € I.

Proof. (1) It is easy to see that

U{é—@f;l(Ki) : izl,...,n}gé—@(u{f/\fl(l(i) ci=1,..,n})

We prove the reverse inclusion .
Let z € § — liin(u{f)\_l(Ki) :i=1,..,n}). Then for every Ay € A and

for every d-open nbd. U, of x 3 € A, A > Ay such that
UN(U{fHE) s i=1,,n}) #0 = W{UNfHE) ci=1,.,n} £0
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Let x £ U{J —@(f)\_l(Kz)) :i=1,..,n}. Then z £0 —%(f;l(Kz))

for every i = 1,...,n. This means that for every i = 1,...,n EI)\f) € A and
a d-open nbd. UZ of x such that UL N fy *(K;) = 0 for every A € A with
A > Ap. Let A\g € A be such that A\g > A for every ¢ = 1,...,n, and let
U, =N, UL. Then for every A € A, A > )\g, we have

U{U NN EG) =1, ..,n) = 0.

which is a contradiction and thus z € {0 — @(f/\_l(f(z)) ci=1,..,n}.

(2) The proof is immediate.

Theorem 6.5.The following propositions are true :

(1) Cs € C3(A)

(2) Let AC A" C O(Y). Then C5(A") C C5(A).

(3) Let A; C O(Y),i€el. Then N{C;(A;) : iel}=C5U{A; : i€
I}).

(4) Let A, A" C O(Y). Let every element of A’ is the intersection of
finitely many elements of .A. Then Cj(A) C C5(A")

Proof.The proof of (1),(2)& (3) are clear from the definition .To prove
(4), let ({fn, A€ A}, f) € C5(A) and let U € A’. We have to prove that
§— @f;l(K)) C f7YK), where K =Y \U

e, [7HU) € X\ 6 —Tim(X\ [y (0))

Now every element of A’ is the intersection of finitely many elements of A
, 50 3U1,...,U, € Asuch that U = N{U; : i = 1,..,n} and f~1(U;) C
X\o —%(X \ /51 (Uy)), for every i = 1,...,n. Hence we have f~1(U) =
SO i =1} =N - i =10} CN{X\4 -
lim(X\ HH)) - oi=1,.,n} = X\ U{6 — lim(X\ KN - i=
1,..,n}=X\0 —@(U{X \ 1 U) :i=1,..,n}) (by lamma 6.4) =
X\6— @(X \{f 7 U) +i=1,.un})=X\6~— @(X \ fHO{U;
i=1,n})) = X\ 6 —lm(X \ f[{(U))

Theorem 6.6. Let A, A" C O(Y) and let every elements of A’ is the
union of elements of A. Then C§(A) C C5(A").

Proof.Let ({fy, A € A}, f) € C5(A) and let V € A’. We have to prove

that
V) € XA\G —Tm(X \ (V)

Now from the given condition 3 V; € A,i € I such that V = U{V; : i =
1,...,n}and f71(V;) C X\ 6§ — 1i/I\n(X \ f5 1(V;)) for every i € I. Hence we
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N

UV s ield)

U{ftvi) - iel}
U{X\ 6 — (X \ ;!

1

V) :iel} 2

(
X\N{o—Hm(X\ f1(V)) = i€ 1} 3
X\ 8~ Tm(n{X \ £
5
X\ —Tm(X\ f7H(U{V; : i€ 1)) 6

(1)
) (2)
) (3)
Vi) : i € I}) (by lamma 6.4) (4)
) (5)

(6)
X\ 6 —Tim(X\ f71(V) (7)

(
X\ G ~Tn(X \ U1V i e 1))
(
(

7

Theorem 6.7 : Let A C O(Y) and let A" be the family of all §-open
sets for which every element is the union of elements A;; i € I such that
every A; , 1 € I is the intersection of finitely many elements of A. Then

C5(A) € G5 (A)

Proof : Let ({fyn, A € A}, f) € C5(A) and let V € A’. We have to

prove that

F7HV) S XN\ O = Tim(X\ fH(V)).

By assumption 3V, ..., V?

€ A, i€ I such that A; = N{V} :

m(%)

E=1,...m@}, V—U{O{Vk k=1,..m@)} i€ I}, f7H(V)) C
X\&—hm(X\f)\( 2)) for every i € I & k =1,...,m(i). Hence we have
V) = UV s k=1, m(i)} i€ T})
= U{f‘l(m{Vk ck=1,..m@{)}):i €I}
= U{n{f'v}) s k=1,...,m@)}:i eI}
- U{ﬁ{X\d—hm(X\fA (V) = k=1,...,m(i)} :i € I}
= U{X\U{(S—hm(X\f)\ (V) « k=1,...,m(i)} :i € I}
= U{X\é—hf{n UX\ ATV k=1,...,m(i)}) i € I}
= U{X\é—hj{nX\ﬁ{f)\ (VY : k=1,..,m(i)}):i €I}
= ) - m(i)

X\ n{é —lim

(
(

UIX\ 6 - @X\fﬁ{nw :
Tim
(

X\f)\ (V- k=1,...,m()})):

X\(S—hm{ﬂ X\{f;l(ﬂ{Vki ck=1,..,m(i)})) i€}
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= X\é—@(){\u{f;l(m{v,j ck=1,..m@}}:iel)
= X\é—@(){\f;l{u(m{v,j ck=1,...m@)}) i€}
= X\é—@(X\fil(V))
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