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Introduction

The concept of ‘proper’ and ‘admissible’ topology in function space
were first introduced by Arens and Dugundji in [1]. These terminologies
subsequently changed to ‘splitting’ and ‘conjoining’ respectively. In [4] we
introduced the notion of strongly δ-continuous function and the concepts of
δ-splitting and δ-conjoining topology . Here we introduce strong δ-splitting
toplogy and strong δ-conjoining topology and obtain some of its proper-
ties. We also introduce the notion of ‘strong δ∗’ by slightly changing the
definition of ‘strong δ’ and try to find its behaviour in relation to the no-
tion of ‘strong δ’. We also construct some examples of strongly δ-splitting
topology and try to find the behaviour of N −R topology [3] on the set of
δ-continuous functions and also on the set of strong δ-continuous functions.
Lastly, we have defined the δ-upper limit of a net and have investigated the
relations between different types of convergence through it.

§1. Prerequisites, Definitions & Theorems

Definition 1.1 [5] : Let X be a topological space . A set S in X is
said to be regular open ( respectively regular closed ) if Int.(cl.S) = S (
respectively Cl.(int.S) = S ). A point x ∈ S is said to be a δ-cluster point
of S if S ∩ U 6= ∅ , for every regular open set U containing x. The set of
all δ-cluster points of S is called the δ-closure of S and is denoted by [S]δ.
If [S]δ = S, then S is said to be δ-closed . The complement of a δ-closed
set is called a δ-open set .
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For every topological space (X, τ), the collection of all δ-open sets forms
a topology for X, which is weaker than τ . This topology τ∗ has a base
consisting of all regular open sets in (X, τ).

Definition 1.2 [5] : A function f : X → Y is called a δ-continuous
function iff for every regular open set V of Y , f−1(V ) is δ-open in X.
This can be alternatively defined as follows : a function f : X → Y is
δ-continuous at a point x ∈ X iff for every regular open nbd. V of f(x) in
Y , ∃ a δ-open nbd. U of x such that f(U) ⊆ V .

Definition 1.3 [4]: A function f : X → Y is strongly δ-continuous at
a point x ∈ X iff for any open nbd. V of f(x) in Y , ∃ a δ-open nbd. U

of x in X such that f(U) ⊆ V ; instead of taking an arbitrary nbd. of f(x)
we could take a sub-basic open set containing f(x) as well.

The set of all strongly δ-continuous functions would be denoted by
SD(X, Y ), whereas D(X, Y ) would denote the set of all δ-continuous func-
tions from X to Y .

Obviously every strongly δ-continuous function is always continuous
and the converse does also hold if X is regular.

Definition 1.4 [2] :A set A ⊂ (X, τ) is said to be N -closed in X or
simply N -closed, if for any cover of A by τ -open sets , there exists a finite
sub-collection the interiors of the closures of which cover A; interiors and
closures are of course w.r.t τ . A space (X, τ) is said to be nearly compact
iff X is N -closed in X.

Definition 1.5 [3] : The N − R topology on D(X, Y ) ( or SD(X, Y )
) is generated by the sets of the form

{T (C, U) : C is N -closed in Xand U regular open in Y },

where T (C, U) = {f ∈ D(X, Y ) : f(C) ⊆ U}.
Definition 1.6 [5] : A net {xλ : λ ∈ Λ} in (X, τ) is said to δ-converge

to a point x ∈ X iff every regular open nbd. of x contains the net eventually

; we write xλ
δ

−→ x.
Theorem 1.7 [5]. A function f : X → Y is δ-continuous iff {f(xλ)}λ∈Λ

δ-converges to f(x) for each x ∈ X and for each net {xλ}λ∈Λ δ-converging
to x.

Theorem 1.8 [4]. A net {fµ : µ ∈ M} in D(X, Y ) is said to be
δ-continuously convergent to f ∈ D(X, Y ) , if for any net {xλ : λ ∈ Λ}

in X such that xλ
δ

−→ x , the net fµ(xλ)
δ

−→ f(x).
Notation 1.9 : By Cδ we denote the class of all pairs ({fλ : λ ∈ Λ}, f)

where {fλ : λ ∈ Λ} is a net in D(X, Y ) which δ-continuously converges to
f ∈ D(X, Y ). If τ is a topology on D(X, Y ) then by (C(τ))δ, we denote
the class of all pairs ({fλ : λ ∈ Λ}, f), where {fλ : λ ∈ Λ} is a net in
D(X, Y ) which δ-converges to f in the τ -topology.
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Definition 1.10 [4] ; Given three spaces X, Y, Z a function α(x, y) = z

can be regarded as a map from X × Y to Z or as a family of maps Y → Z

with X a parametric space .
For notation let α : X ×Y → Z be δ-continuous at y ∈ Y for each fixed

x ∈ X, the formula [α̃(x)](y) = α(x, y) · · · (1) defines α̃(x) : Y → Z which
is δ-continuous i.e., α̃(x) ∈ D(Y, Z) . So α̃ : X → D(Y, Z) is generated
from the original mapping α : X × Y → Z as given .

Conversely given an α̃ : X → D(Y, Z), the formula (1) defines an α :
X × Y → Z which is δ-continuous at y ∈ Y for each fixed x ∈ X . Two
maps α : X × Y → Z and α̃ : x → D(Y, Z) related by the formula (1) are
called associates.

Definition 1.11 : A topology τ on D(Y, Z) is called δ-splitting iff
for every space X the δ-continuity of a map α : X × Y → Z implies the
δ-continuity of the map α̃ : X → D(Y, Z).

Definition 1.12 : A topology τ on D(Y, Z) is called δ-conjoining iff
for every space X the δ-continuity of a map α̃ : X → D(Y, Z) implies the
δ-continuity of the map α : X × Y → Z.

Theorem 1.13. A topology τ on D(Y, Z) is δ-conjoining iff the evalu-
ation map P : D(Y, Z)×Y → Z defined by P (f, y) = f(y) is δ-continuous.

Proof : It suffices to observe that α = P ◦(α̃×1) , where 1 is the identity
function in Y . Moreover the evaluation function i.e. is the associate of the
identity mapping on D(Y, Z).

Theorem 1.14 [4]: A topology τ on D(Y, Z) is δ-splitting iff Cδ ⊆
(C(τ))δ

Theorem 1.15 [4] : A topology τ on D(Y, Z) is δ-conjoining iff
(C(τ))δ ⊆ Cδ.

§2. Strong δ-notions

We have already defined strong δ-continuity of a function in 1.3.
Definition 2.1 : A net {fµ : µ ∈ M} in SD(X, Y ) is said to be

strongly δ-continuously convergent to f ∈ SD(X, Y ) , iff for any net {xλ :
λ ∈ Λ} in X which δ-converges to x ∈ X , we have the net {fµ(xλ) :
(λ, µ) ∈ Λ × M} converging to f(x) in Y .

Theorem 2.2 [4].A function f : X → Y is strongly δ-continuous at a

point x ∈ X iff for every net {xλ : λ ∈ Λ} in X for which xλ
δ

−→ x, we
have f(xλ) → f(x) in Y .

Notation 2.3 : By C∗
δ we denote the class of all pairs ({fλ : λ ∈ Λ}, f)

where {fλ : λ ∈ Λ} is a net in SD(Y, Z) which strongly δ-continuously con-
verges to f ∈ SD(Y, Z). If τ is a topology on SD(Y, Z) then by (C∗(τ))δ,
we denote the class of all pairs ({fλ : λ ∈ Λ}, f), where {fλ : λ ∈ Λ} is a
net in SD(Y, Z) which converges to f ∈ SD(Y, Z) in the τ -topology.
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Definition 2.4 : A topology τ on SD(Y, Z) is called strongly δ-splitting
iff for every space X the strong δ-continuity of a map α : X×Y → Z implies
the strong δ-continuity of the map α̃ : X → SD(Y, Z).

Definition 2.5 : A topology τ on SD(Y, Z) is called strongly δ-
conjoining iff for every space X the strong δ-continuity of a map α̃ : X →
SD(Y, Z) implies the strong δ-continuity of the map α : X × Y → Z.

Theorem 2.6. A topology τ on SD(Y, Z) is strongly δ-conjoining iff
the evaluation map P : SD(Y, Z) × Y → Z defined by P (f, y) = f(y) is
strongly δ-continuous. The proof is straight forward in view of theorem
1.13 and with the fact that the composition of two strongly δ-continuous
function is strongly δ-continuous.

Lemma 2.7 [4] : If X and Y are topological spaces & A, B are N-closed
sets in X and Y respectuvely . If W is a δ-open set containing A × B in
the product space X × Y , then there are δ-open sets U & V respectively
such that A ⊂ U , B ⊂ V , U × V ⊂ W .

Notation 2.8 : Let A be a family of spaces . A topology τ on SD(Y, Z)
is called strongly δA-splitting ( respectively strongly δA-conjoining) iff for
an element X of A , the strong δ-continuity of a map α : X × Y → Z

(respectively a map β̃ : X → SD(Y, Z)) implies the strong δ-continuity of
the map α̃ : X → SD(Y, Z) (respectively β : X × Y → Z)

Note 2.9 : If A is the family of all spaces the notions of strongly δA-
splitting and strongly δA-conjoining coincides with the notions of strongly
δ-splitting and strongly δ-conjoining,

Theorem 2.10. A topology τ on SD(Y, Z) is strongly δ-splitting iff
C∗

δ ⊆ (C∗(τ))δ.
Proof : Let τ be a strongly δ-splitting topology on SD(Y, Z) and let

({fλ : λ ∈ Λ}, f) ∈ C∗
δ . We prove that {fλ : λ ∈ Λ} converges to f in the

τ topology. Λ is a directed set and let us add a point ∞ to Λ such that
∞ 6 ∈Λ; to ascertain the natural order relations between ∞ and members
of Λ, let us take ∞ ≥ λ ∀λ ∈ Λ. We then topologize X = Λ ∪ {∞}
defining any singleton {λ} ,λ ∈ Λ to be open and nbds. of ∞ the sets
{λ ∈ X : λ ≥ λ0 for some λ0 ∈ Λ}. Let α : X × Y → Z be a map
for which α(λ, y) = fλ(y), λ 6= ∞ and α(∞, y) = f(y) for every y ∈ Y .
The map α is strongly δ-continuous. Obviously α̃(λ) = fλ and α̃(∞) = f .
Since the topology τ is strongly δ-splitting , the map α̃ : X → SD(Y, Z) is
strongly δ-continuous.

By strong δ-continuity of α̃, we have that for every open nbd. U of f

in SD(Y, Z), there exists a δ-open nbd. V of ∞ in X such that α̃(V ) ⊆ U .
By definition of the topology of X ∃ an element λ0 ∈ Λ such that

λ ∈ V ∀λ ∈ Λ with λ ≥ λ0. Hence fλ ∈ U ∀λ ∈ Λ with λ ≥ λ0 i.e., the
net {fλ : λ ∈ Λ} converges to f in the τ topology. Thus C∗

δ ⊆ (C∗(τ))δ.
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Conversely let τ be a topology on SD(Y, Z) such that C∗
δ ⊆ (C∗(τ))δ .

We have to prove that τ is strongly δ-splitting. Let X be an aritrary space
and let α : X × Y → Z be a strongly δ-continuous map. Consider the map
α̃ : X → SD(Y, Z) (SD(Y, Z) is endowed with the τ topology ). We have
to prove that α̃ is strongly δ-continuous. Let {xλ : λ ∈ Λ} be a net in X

which δ-converges to x. We prove that the net α̃(xλ) converges to α̃(x).
Let {yµ : µ ∈ M} be a net in Y which δ-converges to y in Y . Since

the map α is strongly δ-continuous and the net {(xλ, yµ) : (λ, µ) ∈ Λ ×
M} of X×Y δ-converges to (x, y) in X×Y , we have α(xλ, yµ) −→ α(x, y).
This means that αxλ

(yµ) −→ αx(y). Thus the net {α̃(xλ) : λ ∈ Λ}
converges to α̃(x). Thus the map α̃ is strongly δ-continuous and hence τ is
strongly δ-splitting.

Theorem 2.11. A topology τ on SD(Y, Z) is strongly δ-conjoining if
and only if (C∗(τ))δ ⊆ C∗

δ

Proof : Let τ be a strongly δ-conjoining topology . Let X be the space
as in the theorem of 2.10. Let ({fλ : λ ∈ Λ}, f) ∈ (C∗(τ))δ. Clearly the
map α : X → SD(Y, Z) is strongly δ-continuous where α(λ) = fλ and
α(∞) = f . Then the map α̃ : X × Y → Z is strongly δ-continuous. We
have to prove that ({fλ : λ ∈ Λ}, f) ∈ C∗

δ . Then it is sufficient to prove
that if {yµ : µ ∈ M} is a net in Y which δ-converge to y in Y , then the
net {fλ(yµ) : (λ, µ) ∈ Λ×M} converges to f(y). But the net {λ : λ ∈ Λ}
in X δ-converges to ∞ in X. Hence the net {(λ, yµ) : (λ, µ) ∈ Λ × M}
in X × Y δ-converges to (∞, y) in X × Y . Since the map α̃ is strongly
δ-continuous , the net {α̃(λ, yµ) ≡ α(λ)(yµ) ≡ fλ(yµ), (λ, µ) ∈ Λ × M}
converges to α̃(∞, y) ≡ f(y).

Conversely , let τ be a topology on SD(Y, Z) such that (C∗(τ))δ ⊆ C∗
δ .

We prove that the topology τ is strongly δ-conjoining . Let X be an
arbitrary space and let α : X → SD(Y, Z) (SD(Y, Z) be endowed with
the τ topology ) be a strongly δ-continuous map . We prove that the map
α̃ : X × Y → Z is strongly δ-continuous . Let {(xλ, yµ) : (λ, µ) ∈ Λ × M}
be a net in X × Y which δ-converge to (x, y). We prove that the net
{α̃(xλ, yµ) : (λ, µ) ∈ Λ × M} in Z converges to α̃(x, y).

Since the net {xλ : λ ∈ Λ} δ-converges to x in X and the map α is
strongly δ-continuous , the net {α(xλ) : λ ∈ Λ} converges to α(x). Thus
by assumption the net {α(xλ) : λ ∈ Λ} strongly δ-continuously converges
to α(x). Now since the net {yµ : µ ∈ M} δ-converges to y , the net
{α(xλ)(yµ) ≡ α̃(xλ, yµ) : (λ, µ) ∈ Λ × M} converges to α(x)(y) = α̃(x, y).
Hence the topology τ is strongly δ-conjoining.

Theorem 2.12. A topology τ on SD(Y, Z) is simultaneously strongly
δ-splitting and strongly δ-conjoining iff C∗

δ = (C∗(τ))δ. The proof of this
theorem follows from theorems 2.10 & 2.11.
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Theorem 2.13. A topology τ on SD(Y, Z) is strongly δ-splitting iff
is strongly δA-splitting , where A is the family of all spaces having exactly
one non-isolated point.

Proof : It is enough to prove that if τ is strongly δA-splitting , where
A is the family of all spaces having exactly one non-isolated point, then the
topology τ is strongly δ-splitting.

Let ({fλ : λ ∈ Λ}, f) ∈ C∗
δ . We have to prove that ({fλ : λ ∈ Λ}

converges to f in the τ topology.
Let X = Λ∪{∞}, where ∞ is a symbol such that ∞ ≥ λ for every λ ∈ Λ.

Then we topologize X = Λ ∪ {∞} by defining any singleton {λ}, λ ∈ Λ to
be open and nbds. of ∞ the sets {λ ∈ X : λ ≥ λ0 for some λ0 ∈ Λ}.
Clearly the element ∞ is the unique non-isolated point of the space X and
thus X ∈ A.

We consider the map α : X×Y → Z by setting α(λ, y) = fλ(y)& α(∞, y) =
f(y). Obviously the map α is strongly δ-continuous . Now we prove that
{fλ : λ ∈ Λ} converges to f in the τ topology.

Let U ∈ τ be an open nbd. of f . Now the topology τ is strongly δA-
splitting . Hence the map α̃ : X → SD(Y, Z) is strongly δ-continuous .
Also α̃(∞) = f & α̃(λ) = fλ, λ 6= ∞. Thus ∃ a δ-open nbd. V of ∞ such
that α̃(V ) ⊆ U .

Since the set V is an δ-open nbd. of ∞ in X ∃ an element λ0 ∈ Λ such
that λ ∈ V, ∀λ ≥ λ0.Hence α̃(λ) = fλ ∈ U ∀ λ ∈ Λ with λ ≥ λ0. Thus the
net α̃(λ) = {fλ : λ ∈ Λ} converges to f in the τ toplogy and hence τ is
strongly δ-splitting.

Theorem 2.14. A topology τ on SD(Y, Z) is strongly δ-conjoining
iff is strongly δA-conjoining , where A is the family of all spaces having
exactly one non-isolated point.

The proof is similar to theorem 2.13.

§3. Strong δ∗ notions on function space

Definition 3.1 : A topology τ on SD(Y, Z) is called strongly δ∗-
splitting iff for every space X,the strong δ-continuity of a map α : X×Y →
Z implies the δ-continuity of the map α̃ : X → SD(Y, Z).

Definition 3.2 : A topology τ on SD(Y, Z) is called strongly δ∗-
conjoining iff for every space X,the δ-continuity of a map α̃ : X → SD(Y, Z)
implies the strong δ-continuity of the map α : X × Y → Z.

Theorem 3.3.The following propositions are true :
(1) Let τ be a strongly δ-splitting topology on SD(Y, Z). Then the topology
τ is strongly δ∗-splitting.
(2) Let τ be a strongly δ-conjoining topology on SD(Y, Z). Then the topol-
ogy τ is strongly δ∗-conjoining.
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The proof of the theorem is clear.
Theorem 3.4. A toplogy τ on SD(Y, Z) is strongly δ∗-conjoining iff

the evaluation map P : SD(Y, Z) → Z defined by P (f, y) = f(y) is strongly
δ-continuous.

Proof : Clearly , the identity map α̃ ≡ 1 : SD(Y, Z) → SD(Y, Z),
where SD(Y, Z) is endowed with τ topology is δ-continuous , since τ is
strongly δ∗-conjoining the map α ≡ P : SD(Y, Z) × Z is strongly δ-
continuous.

Conversely , let X be aa space ,α̃ : X → SD(Y, Z) be a δ-continuous
map and 1 : Y → Y be the identity map . Cleaarly the map α̃×1 : X×Y →
SD(Y, Z) × Y is also δ-continuous in the product space. Also it is given
that the evaluation map P : SD(Y, Z) × Y → Z is strongly δ-continuous .
Then the composition map P ◦(α̃×1) : X×Y → Z is strongly δ-continuous
and α = P ◦ (α̃ × 1). Thus the topology τ is strongly δ∗-conjoining.

§4. Examples of strongly δ-splitting topology

Example 4.1: The trivial topology on SD(Y, Z) is clearly strongly
δ-splitting.

Example 4.2 : The pointwise topology τp on SD(Y, Z) is strongly
δ-splitting.

Indeed, let X be any arbitrary space and let α : X × Y → Z be a
strongly δ-continuous map. We have to show that α̃ : X → SD(Y, Z) is
strongly δ-continuous. Let x ∈ X and let α̃(x) ∈ T ({y}, U), where y ∈ Y

and U be an open set of Z. Then we have α̃(x)(y) = α(x, y) ∈ U . Since α

is strongly δ-continuous so ∃ δ-open nbds. W1 & W2 of x & y respectively
such that α(W1 × W2) ⊆ U . Which implies that α̃(W1) ∈ T ({y}, U) and
thus the map α̃ is strongly δ-continuous.

Lemma 4.3 : Let α : X × Y → Z be a strongly δ-continuous map, O

be an open set of Z, K be a compact subset of Y and x ∈ X be such that
{x} × K ⊆ α−1(O). Then ∃ a δ-open nbd. Vx of x such that Vx × K ⊆
α−1(O).

Proof : Let y ∈ K. Then (x, y) ∈ α−1(O) which implies α(x, y) ∈ O.
Since α is strongly δ-continuous so ∃ a δ-open nbd. V

y
x of x and an open

nbd. Vy of y such that V
y
x × Int.cl.(Vy) ⊆ α−1(O). Also we have K ⊆

∪{Vy : y ∈ K}. Since K is compact so ∃ open sets Vy1
, ...., Vyk

such that
K ⊆ Vy1

∪ .... ∪ Vyk
.

Let Vx = V
y1

x ∩ V
y2

x ∩ .... ∩ V
yk
x & V ′

y = Vy1
∪ ....,∪Vyk

. Then Vx is
a δ-open nbd. of x ( since intersection of finite number of δ-open set is
δ-open). We prove that Vx × K ⊆ α−1(O).

let (x1, y1) ∈ Vx × K ⊆ Vx × Int.cl.(V ′
y). Then x1 ∈ V

yi
x for all i =

1, 2, ..., k and y1 ∈ Vyj
for some j = 1, 2, ..., k. Thus (x1, y1) ∈ V

yp
x ×Vyp for
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1 ≤ p ≤ k. Which is a subset of α−1(O). Hence Vx × K ⊆ α−1(O).
Example 4.4 : The compact open topology τc on SD(Y, Z) is strongly

δ-splitting.
Let X be an arbitrary topological space and let α : X×Y → Z be a strongly
δ-continuous map. We have to show that α̃ : X → SD(Y, Z) is strongly
δ-continuous. Let x ∈ X and let α̃(x) ∈ T (K, U) where K is a compact
subset of Y and U be an open set in Z. We prove that ∃ δ-open set W

containing x in X such that α̃(W ) ⊆ T (K, U). We have {x}×K ⊆ α−1(U).
By the above lemma 4.3 ∃ δ-open nbd. W of x such that W ×K ⊆ α−1(U).
Thus α(W × K) ⊆ U and hence α̃(W ) ⊆ T (K, U).Hence α̃ is strongly δ-
continuous.

Example 4.5 : A topology τ on SD(Y, Z) is generated by the sets of
the form {P (C, U) : C is a N-closed subset of Y & U be an open set in Z}
where P (C, U) = {f ∈ SD(Y, Z) : f(C) ⊆ U}. This topology τ on
SD(Y, Z) is strongly δ-splitting.To this end we first show that for a strongly
δ-continuous map α : X × Y → Z , if U be an open set in Z and C be a
N-closed subset of Y and x ∈ X be such that {x} × C ⊆ α−1(U), then ∃ a
δ-open nbd. Vx of x such that Vx × C ⊆ α−1(U).

Indeed for every y ∈ C, we have (x, y) ∈ α−1(U) and therefore α(x, y) ∈
U . Since α is strongly δ-continuous ∃ δ-open nbds. V

y
x & Vy of x & y

respectively such that V
y
x ×Vy ⊆ α−1(U). Also we have C ⊆ ∪{Vy : y ∈ C}.

Since C is N-closed , ∃ δ-open sets Vy1
, ..., Vyn such that C ⊆ Vy1

∪, ...,∪Vyn .
Let Vx = V

y1

x ∩ .... ∩ V
yn
x & V ′

y = Vy1
∪ .... ∪ Vyn . We prove that

Vx × C ⊆ α−1(U). Let (x1, y1) ∈ Vx × C ⊆ Vx × V ′
y . Then x1 ∈

V
yi
x for all i = 1, ..., n. & y1 ∈ Vyj

for some j = 1, ..., n. Thus (x1, y1) ∈
V

yp
x × Vyp for some p , 1 ≤ p ≤ n. Which is a subset of α−1(U). Thus

Vx × C ⊆ α−1(U).
Now we prove that τ is strongly δ-splitting. Let X be any arbitrary

space and let α : X ×Y → Z be a strongly δ-continuous map . We have to
show that the map α̃ : X → SD(Y, Z) is strongly δ-continuous . Let x ∈ X

and let α̃(x) ∈ P (C, U), where C is N-closed set in Y and U an open set in
Z. We have {x} × C ⊆ α−1(U). Then what we have just proved above ,∃
a δ-open nbd. W of x such that W × C ⊆ α−1(U). Thus α(W × C) ⊆ U

and so α̃(W ) ⊆ P (C, U). Thus the map α̃ is strongly δ-continuous.
Remarks 4.6 : All examples that we have discussed above remain

valid for the case of strongly δ∗-notions.

§5. Splittingness & conjoiningness of N-R-Topology

One natural question may come up, is there exists any topology on
SD(Y, Z) which is strongly δ-splitting as well as strongly δ-conjoining.

Theorem 5.1.The N-R topology on SD(Y, Z) is strongly δ-splitting.
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Proof : The N-R topology τ on SD(Y, Z) is generated by the sets of
the form T (C, U) = {f ∈ SD(Y, Z) : f(C) ⊆ U}, where C is a N-closed
subset in Y and U be regular open in Z. Since regular open sets are δ-open
so in the subbasic open set of the N-R topology we can take U to be a
δ-open subset of Z.

For this we first prove that for a strongly δ-continuous map α : X×Y →
Z , if U be an δ-open set in Z and C be a N-closed subset of Y and x ∈ X

be such that {x} × C ⊆ α−1(U), then ∃ a δ-open nbd. Vx of x such that
Vx × C ⊆ α−1(U).

Now for every y ∈ C, we have (x, y) ∈ α−1(U) and hence α(x, y) ∈
U . Since α is strongly δ-continuous ∃ δ-open nbds. V

y
x & Vy of x & y

respectively such that V
y
x × Vy ⊆ α−1(U), since δ-open sets are open sets.

Also we have C ⊆ ∪{Vy : y ∈ C}. Since C is N-closed , ∃ δ-open sets
Vy1

, ..., Vyn such that C ⊆ Vy1
∪, ...,∪Vyn .

Let Vx = V
y1

x ∩ .... ∩ V
yn
x & V ′

y = Vy1
∪ .... ∪ Vyn . We prove that

Vx × C ⊆ α−1(U). Let (x1, y1) ∈ Vx × C ⊆ Vx × V ′
y . Then x1 ∈

V
yi
x for all i = 1, ..., n. & y1 ∈ Vyj

for some j = 1, ..., n. Thus (x1, y1) ∈
V

yp
x × Vyp for some p , 1 ≤ p ≤ n, which is a subset of α−1(U). Thus

Vx × C ⊆ α−1(U).
Next we show that the N-R topology is strongly δ-splitting. Let X be

any arbitrary space and let α : X×Y → Z be a strongly δ-continuous map .
We have to show that the map α̃ : X → SD(Y, Z) is strongly δ-continuous
. Let x ∈ X and let α̃(x) ∈ T (C, U), where C is N-closed set in Y and U a
δ-open set in Z. We have {x} × C ⊆ α−1(U). Then by above ,∃ a δ-open
nbd. W of x such that W × C ⊆ α−1(U). Thus α(W × C) ⊆ U and so
α̃(W ) ⊆ T (C, U). Thus the map α̃ is strongly δ-continuous.

Theorem 5.2.On the set SD(Y, Z) there exists the greatest strongly
δ-splitting topology.

Proof : Let {Tα} be the set of all strongly δ-splitting topologies on
the set SD(Y, Z). Let τ be the topology having the members of ∪αTα as
subbasis . We prove that τ is the greatest strongly δ-splitting topology .
Then it is enough to prove that τ is strongly δ-splitting topology. Let X

be any arbitrary space and let α : X × Y → Z be a strongly δ-continuous
map. We have to show that the map α̃ : X → SD(Y, Z) is strongly δ-
continuous. (SD(Y, Z) is endowed with the τ topology). Since any subbasic
open set U ∈ τ belongs to some strongly δ-splitting topology Tα, we must
have α̃−1(U) is δ-open in X and hence α̃ : X → SD(Y, Z) is strongly
δ-continuous.

Theorem 5.3. a) A topology larger than a strongly δ-conjoining topol-
ogy is also strongly δ-conjoining.

b) A topology smaller than a strongly δ-splitting topology is also strongly
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δ-splitting.
Proof : Let τ be a strongly δ-conjoining topology and τ ⊂ σ. Since the

identity map 1 : SDσ(Y, Z) → SDτ (Y, Z) is strongly δ-continuous and the
strongly δ-conjoining property of τ gives that the map P : SDτ (Y, Z)×Y →
Z is strongly δ-continuous. So we get SDσ(Y, Z) × Y → Z is also strongly
δ-continuous. Thus σ is strongly δ-conjoining.The proof of (b) is similar.

Theorem 5.4. Any strongly δ-conjoining topology is larger than any
strongly δ-splitting topology.

Proof : Let τ be a strongly δ-conjoining and σ be a strongly δ-splitting
topology on SD(Y, Z). Then for any arbitrary space X , the strong δ-
cotinuity of the map α̃ : X → SDτ (Y, Z) implies α : X × Y → Z is
strongly δ-continuous ( as τ is strongly δ-conjoining ) which implies α̃ :
X → SDσ(Y, Z) is strongly δ-continuous ( as σ is strongly δ-splitting).
Thus we find that 1 : SDτ (Y, Z) → SDσ(Y, Z) is strongly δ-continuous.
Which shows that σ ⊂ τ .

Theorem 5.5. On the set SD(Y, Z) , the N-R topology is the smallest
strongly δ-conjoining topology if Y is locally nearly compact T2 & Z is
semiregular.

Proof : First we show that the N-R topology is strongly δ-conjoining.
Any sub-basic open set of the N-R topology on SD(Y, Z) is

T (C, U) = {f ∈ SD(Y, Z) : f(C) ⊆ U}

where C is a N-closed set in Y & U regular open in Z.
Let X be an arbitrary topological space and it is given that the map

α̃ : X → SD(Y, Z) is strongly δ-continuous . We have to show that α :
X × Y → Z is strongly δ-continuous.

Let V be an sub-basic open set in Z. Let y ∈ Y and P ′ be a regular
open nbd. of y in Y . Since Y is locally nearly compact T2 so ∃ an open
set M containing y such that M̄ ⊂ P ′ with M̄ N-closed. Then T (M̄, V )
is a sub-basic open set in N-R topology on SD(Y, Z). Since α̃ is strongly
δ-continuous so there exists a regular open set W in X such that α̃(W ) ⊂
T (M̄, V ). Then for any x ∈ W , α̃(x) ∈ T (M̄, V ) ⇒ α̃(x)(y) ∈ V ( as y ∈
M̄) ⇒ α(x, y) ∈ V . Thus α(W × M̄) ⊂ V . So for any sub-basic open set
V of Z , ∃ a regular open nbd. W ×M̄ of (x, y) in the product space X×Y

such that α(W × M̄) ⊂ V . Hence α is strongly δ-continuous.
Now we show that it is the smallest among all the strongly δ-conjoining

topology that can be given on SD(Y, Z).
Let σ be a topology on SD(Y, Z) which is strongly δ-conjoining. We show
that T (C, U) is σ-open in order to show that the N-R topology is the
smallest one . Now in view of theorem 2.6 the map P : SD(Y, Z)×Y → Z

defined by P (f, y) = f(y) is strongly δ-continuous. Then the set V ′ =
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(SD(Y, Z)× Y ) ∩ P−1(U) is δ-open in SD(Y, Z)× Y . If f ∈ T (C, U) then
f(C) ⊂ U i.e., {f} ×C ⊂ P−1(U) i.e., {f} ×C ⊂ V ′. Now {f} is N-closed
in SD(Y, Z) & C is so in Y so by lemma 2.7, ∃ δ-open sets N of f in
σ-topology such that N × C ⊂ P−1(U). So for each f ∈ N , f(C) ⊂ U ⇒
N ⊂ T (C, U) and so f ∈ N ⊂ T (C, U). Thus T (C, U) is σ-open. As a
partial converse of Theorem 5.5 we can now state and prove the following
theorem.

Theorem 5.6. Let X be a non-regular T2 topological space in which for
every δ-open set U and a point p ∈ U , ∃ a strongly δ-continuous function
f : X → [0, 1] such that f(p) = {1}& f(X \ U) = {0}; if SD(X, [0, 1])
be endowed with N-R topology ℑ then X must be locally nearly compact if
P : SD(X, [0, 1]) × X → [0, 1] is strongly δ-continuous.

Proof : Let F : X → [0, 1] be defined by F (x) = 0 ∀x ∈ X. Then
obviously F ∈ SD(X, [0, 1]). Let W0 be a nbd. of 0 in [0, 1] which does
not contain 1. By the strong δ-continuity of F , ∃ a ℑ nbd. U of F and
a nbd. V of x in X such that y ∈ Int.(cl.V ) & g ∈ Int.(cl.U) imply
g(y) ∈ W0 · · · (1). We show that V̄ is N-closed.

Suppose U is a δ-open covering of V̄ ; since V̄ is the closure of an open
set it is regularly closed and hence δ-closed; thus X \ V̄ is δ-open and
U ∪ {X \ V̄ } is a δ-open cover of X.

Since U is a ℑ-nbd. of F ,∃ A1, A2, ..., An N-closed in X & U1, U2, ..., Un

regular open in [0, 1] such that F ∈ T (A1, U1) ∩ .... ∩ T (An, Un) ⊂ U .
Let G = Int.V̄ \(A1∪ ....∪An). Obviously A1∪ ....∪An is N-closed in X

and hence δ-closed and let if possible p ∈ G then ∃ a strongly δ-continuous
function r : X → [0, 1] such that r(p) = {1} & r(X \ G) = {0}. Now
r ∈ SD(X, [0, 1]) ; also A1 ∪ .... ∪ An ⊂ X \ G and thus r(A1) = · · · =
r(An) = {0}. Since F (A1) = · · · = F (An) = {0} , 0 ∈ U ; for i = 1, ..., n

and as such r ∈ T (A1, U1)∩ ....∩T (An, Un) ⊂ U . But r(p) = {1} & 1 6 ∈W0,
where as r ∈ U ⊂ Int.(cl.U) & p ∈ Int.(cl.V ) should imply r(p) ∈ W0 (
from (1) ).

Thus we arrive at a contradiction ; this contradiction shows that G = ∅.
For i = 1, ..., n, now Int.V̄ ⊆ A1 ∪ ... ∪ An. But A1 ∪ ... ∪ An is a closed
set and thus V̄ ⊆ A1 ∪ ... ∪ An. Now U ∪ {X \ V̄ } is a δ-open cover of
A1 ∪ ...∪An; since each Ai is N-closed , Ai ⊆ Wi1 ∪ ....∪Wimi

where each
Wimi

is chosen from U ∪ {X \ V̄ }.
Thus V̄ has a finite subcovering from U ( in fact X \ V̄ adjoined to U

need not occur among the members of the finite subcovering ). Thus V̄ is
N-closed.

Note 5.7 : X with the properties stated in the theorem does exist ;
infact [0, 1] with the countable complement extension topology [6] satisfies
this condition.
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Conclusion 5.8 : Now we are in a position to give answear to our
question that we bring at begining of this article. In viewing the above
results we can conclude that the N-R topology on SD(Y, Z) is the smallest
strongly δ-conjoining and the largest strongly δ-splitting topology provided
Y a locally nearly compact T2 space and Z a semiregular space.

§6. δ-upper limit of a net

Definition 6.1 : With P (X)– the power set of a topological space X

and A′ = {Aλ : λ ∈ Λ} ⊂ P (X), where Λ is a directed set , we define
the δ-upper limit for A′ as the set of all points x ∈ X such that for every
λ0 ∈ Λ and every δ-open nbd. U of x in X ∃ an element λ ∈ Λ for which
λ ≥ λ0 & Aλ ∩ U 6= ∅. We denote the δ-upper limit for A′ by δ − lim

Λ
(Aλ).

Theorem 6.2[4]. A net {fλ : λ ∈ Λ} on D(X, Y ) δ–continuously
converges to f ∈ D(X, Y ) iff δ − lim

Λ
(f−1

λ (K)) ⊆ f−1(K), for every δ-

closed subset K of Y .
Definition 6.3 : Let O(Y ) be the family of all δ-open sets of the space

Y and let A ⊆ O(Y ).
We define C∗

δ (A) on the set D(X, Y ) as follows : a pair ({fλ : λ ∈
Λ}, f) ∈ C∗

δ (A), where {fλ : λ ∈ Λ} is a net in D(X, Y ) & f ∈ D(X, Y ) if

f−1(U) ⊆ X \ δ − lim
Λ

(X \ f−1
λ (U))

or equivalently
δ − lim

Λ
f−1

λ (K)) ⊆ f−1(K)

where K = Y \ U , for every U ∈ A. Obviously if A = O(Y ) , then
C∗

δ (A) = Cδ

Lemma 6.4 : Let K(Y ) be the family of all δ-closed subset of the space
Y and let {fλ : λ ∈ Λ} be a net in D(X, Y ). Then the following are true.

(1)δ − lim
Λ

(∪{f−1
λ (Ki) : i = 1, ..., n}) = ∪{δ − lim

Λ
f−1

λ (Ki) : i =

1, ..., n}, where Ki ∈ K(Y ) for all i = 1, ..., n.
(2)δ − lim

Λ
(∩{f−1

λ (Ki) : i ∈ I}) ⊆ ∩{δ − lim
Λ

f−1
λ (Ki) : i ∈ I}, where

Ki ∈ K(Y ) for every i ∈ I.
Proof. (1) It is easy to see that

∪{δ − lim
Λ

f−1
λ (Ki) : i = 1, ..., n} ⊆ δ − lim

Λ
(∪{f−1

λ (Ki) : i = 1, ..., n})

We prove the reverse inclusion .
Let x ∈ δ − lim

Λ
(∪{f−1

λ (Ki) : i = 1, ..., n}). Then for every λ0 ∈ Λ and

for every δ-open nbd. Ux of x ∃λ ∈ Λ, λ ≥ λ0 such that

Ux∩(∪{f−1
λ (Ki) : i = 1, ..., n}) 6= ∅ ⇒ ∪{Ux∩f−1

λ (Ki) : i = 1, ..., n} 6= ∅
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Let x 6 ∈ ∪ {δ − lim
Λ

(f−1
λ (Ki)) : i = 1, ..., n}. Then x 6 ∈δ − lim

Λ
(f−1

λ (Ki))

for every i = 1, ..., n. This means that for every i = 1, ..., n ∃λi
0 ∈ Λ and

a δ-open nbd. U i
x of x such that U i

x ∩ f−1
λ (Ki) = ∅ for every λ ∈ Λ with

λ ≥ λi
0. Let λ0 ∈ Λ be such that λ0 ≥ λi

0 for every i = 1, ..., n, and let
Ux = ∩n

i=1U
i
x. Then for every λ ∈ Λ, λ ≥ λ0, we have

∪{Ux ∩ f−1
λ (Ki) , i = 1, ..., n} = ∅.

which is a contradiction and thus x ∈ {δ − lim
Λ

(f−1
λ (Ki)) : i = 1, ..., n}.

(2) The proof is immediate.
Theorem 6.5.The following propositions are true :
(1) Cδ ⊆ C∗

δ (A)
(2) Let A ⊆ A′ ⊆ O(Y ). Then C∗

δ (A′) ⊆ C∗
δ (A).

(3) Let Ai ⊂ O(Y ) , i ∈ I. Then ∩{C∗
δ (Ai) : i ∈ I} = C∗

δ (∪{Ai : i ∈
I}).

(4) Let A,A′ ⊆ O(Y ). Let every element of A′ is the intersection of
finitely many elements of A. Then C∗

δ (A) ⊆ C∗
δ (A′)

Proof.The proof of (1),(2)& (3) are clear from the definition .To prove
(4), let ({fλ , λ ∈ Λ}, f) ∈ C∗

δ (A) and let U ∈ A′. We have to prove that
δ − lim

Λ
f−1

λ (K)) ⊆ f−1(K), where K = Y \ U

i.e., f−1(U) ⊆ X \ δ − lim
Λ

(X \ f−1
λ (U))

Now every element of A′ is the intersection of finitely many elements of A
, so ∃U1, ..., Un ∈ A such that U = ∩{Ui : i = 1, ..., n} and f−1(Ui) ⊆
X \ δ − lim

Λ
(X \ f−1

λ (Ui)), for every i = 1, ..., n. Hence we have f−1(U) =

f−1(∩{Ui : i = 1, ..., n}) = ∩{f−1(Ui) : i = 1, ...., n} ⊆ ∩{X \ δ −
lim
Λ

(X \ f−1
λ (Ui)) : i = 1, ..., n} = X \ ∪{δ − lim

Λ
(X \ f−1

λ (Ui)) : i =

1, ..., n} = X \ δ − lim
Λ

(∪{X \ f−1
λ (Ui) : i = 1, ..., n}) (by lamma 6.4) =

X \ δ − lim
Λ

(X \ ∩{f−1
λ (Ui) : i = 1, ..., n}) = X \ δ − lim

Λ
(X \ f−1

λ (∩{Ui :

i = 1, ..., n})) = X \ δ − lim
Λ

(X \ f−1
λ (U))

Theorem 6.6. Let A,A′ ⊆ O(Y ) and let every elements of A′ is the
union of elements of A. Then C∗

δ (A) ⊆ C∗
δ (A′).

Proof.Let ({fλ , λ ∈ Λ}, f) ∈ C∗
δ (A) and let V ∈ A′. We have to prove

that
f−1(V ) ⊆ X \ δ − lim

Λ
(X \ f−1

λ (V ))

Now from the given condition ∃ Vi ∈ A, i ∈ I such that V = ∪{Vi : i =
1, ..., n} and f−1(Vi) ⊆ X \ δ − lim

Λ
(X \ f−1

λ (Vi)) for every i ∈ I. Hence we
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have

f−1(V ) = f−1(∪{Vi : i ∈ I})

= ∪{f−1(Vi) : i ∈ I} (1)

⊆ ∪{X \ δ − lim
Λ

(X \ f−1
λ (Vi)) : i ∈ I} (2)

= X \ ∩{δ − lim
Λ

(X \ f−1
λ (Vi)) : i ∈ I} (3)

⊆ X \ δ − lim
Λ

(∩{X \ f−1
λ (Vi) : i ∈ I}) (by lamma 6.4) (4)

= X \ δ − lim
Λ

(X \ ∪{f−1
λ (Vi) : i ∈ I}) (5)

= X \ δ − lim
Λ

(X \ f−1
λ (∪{Vi : i ∈ I})) (6)

= X \ δ − lim
Λ

(X \ f−1
λ (V )) (7)

Theorem 6.7 : Let A ⊆ O(Y ) and let A′ be the family of all δ-open
sets for which every element is the union of elements Ai ; i ∈ I such that
every Ai , i ∈ I is the intersection of finitely many elements of A. Then
C∗

δ (A) ⊆ C∗
δ (A′)

Proof : Let ({fλ , λ ∈ Λ}, f) ∈ C∗
δ (A) and let V ∈ A′. We have to

prove that
f−1(V ) ⊆ X \ δ − lim

Λ
(X \ f−1

λ (V )).

By assumption ∃V i
1 , ...., V i

m(i) ∈ A , i ∈ I such that Ai = ∩{V i
k :

k = 1, ..., m(i)} , V = ∪{∩{V i
k : k = 1, ..., m(i)} : i ∈ I}, f−1(V i

k ) ⊆
X \ δ − lim

Λ
(X \ f−1

λ (V i
k )) for every i ∈ I & k = 1, ..., m(i). Hence we have

f−1(V ) = f−1(∪{∩{V i
k : k = 1, ..., m(i)} : i ∈ I})

= ∪{f−1(∩{V i
k : k = 1, ..., m(i)}) : i ∈ I}

= ∪{∩{f−1(V i
k ) : k = 1, ..., m(i)} : i ∈ I}

⊆ ∪{∩{X \ δ − lim
Λ

(X \ f−1
λ (V i

k )) : k = 1, ..., m(i)} : i ∈ I}

= ∪{X \ ∪{δ − lim
Λ

(X \ f−1
λ (V i

k )) : k = 1, ..., m(i)} : i ∈ I}

= ∪{X \ δ − lim
Λ

(∪{X \ f−1
λ (V i

k ) : k = 1, ..., m(i)}) : i ∈ I}

= ∪{X \ δ − lim
Λ

(X \ ∩{f−1
λ (V i

k ) : k = 1, ..., m(i)}) : i ∈ I}

= ∪{X \ δ − lim
Λ

(X \ f−1
λ {∩(V i

k ) : k = 1, ..., m(i)}) : i ∈ I}

= X \ ∩{δ − lim
Λ

(X \ f−1
λ (∩{V i

k : k = 1, ..., m(i)})) : i ∈ I}

⊆ X \ δ − lim
Λ
{∩(X \ {f−1

λ (∩{V i
k : k = 1, ..., m(i)})) : i ∈ I}
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= X \ δ − lim
Λ

(X \ ∪{f−1
λ (∩{V i

k : k = 1, ..., m(i)})} : i ∈ I)

= X \ δ − lim
Λ

(X \ f−1
λ {∪(∩{V i

k : k = 1, ..., m(i)}) : i ∈ I})

= X \ δ − lim
Λ

(X \ f−1
λ (V )).
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