CARPATHIAN J. MATH. **21** (2005), No. 1 - 2, 61 - 67

A note on partially ordered topological spaces and a special type of lower semicontinuous function

S. GANGULY and S. JANA

ABSTRACT. θ -closed partial order in a topological space has been studied in details. θ^* -lower semicontinuity of a function to a hyperspace has been introduced and such functions are compared to the multifunctions. Lastly the θ^* -lower semicontinuity of some special types of functions is studied.

1. INTRODUCTION

In [1] Ganguly and Bandyopadhyay introduced the concept of θ -closed partial order in a topological space. In the first section of the paper we have tried to examine this special type of order in details. In the next section the concept of θ^* -lower semicontinuous function has been introduced from a topological space X to the hyperspace of a topological space Y along with Vietoris topology and its usual order relation; such functions have been compared to their analogues in the collection of multifunctions. In the last section we use θ -closed partial order of a topological space X to consider the θ^* -lower semicontinuity of some special type of functions on X.

2. PARTIALLY ORDERED TOPOLOGICAL SPACE

Definition 2.1. [2] Let *X* be a topological space and ' \leq ' be a partial order in it. For each subset $A \subseteq X$ let,

 $\uparrow A = \{x \in X : a \le x, \text{ for some } a \in A\}$ and

 $\downarrow A = \{x \in X : x \le a, \text{ for some } a \in A\}.$

The sets $\uparrow A$ and $\downarrow A$ are called the increasing hull of A and decreasing hull of A respectively.

It is easy to verify that, for any $A, B \subseteq X$, (i) $A \subseteq \uparrow A, A \subseteq \downarrow A$; (ii) $A \subseteq B \Rightarrow \uparrow A \subseteq \uparrow B$ and $\downarrow A \subseteq \downarrow B$; (iii) $\uparrow (A \cup B) = \uparrow A \cup \uparrow B, \downarrow (A \cup B) = \downarrow A \cup \downarrow B$; (iv) $\uparrow (A \cap B) \subseteq \uparrow A \cap \uparrow B, \downarrow (A \cap B) \subseteq \downarrow A \cap \downarrow B$.

Definition 2.2. [1] A partial order ' \leq ' on a topological space *X* is a θ -closed order if its graph $\{(x, y) \in X \times X : x \leq y\}$ is a θ -closed subset of $X \times X$.

Received: 01.06.2004; In revised form: 12.04.2005

²⁰⁰⁰ Mathematics Subject Classification: 54B20, 54F05.

Key words and phrases: θ -closed partial order, increasing hull, decreasing hull, Vietoris topology, θ^* -lower semicontinuity, multifunctions.

S. Ganguly and S. Jana

Definition 2.3. A partial order ' \leq ' on a topological space *X* is an almost regular order iff for every regularly closed set $A \subseteq X$ and $x \in X$ with $a \not\leq x, \forall a \in A$, \exists neighbourhoods (nbds. in short)*V* and *W* of *A* and *x* respectively in *X* such that $\uparrow V \cap \downarrow W = \Phi$.

Theorem 2.4. The partial order ' \leq ' on a topological space X is a θ -closed order iff for every $x, y \in X$ with $x \not\leq y$, there exists nbds. U, V of x, y respectively in X such that $\uparrow (\overline{U}) \cap \downarrow (\overline{V}) = \Phi$.

Proof. Let the partial order ' \leq ' on X be θ -closed and $x, y \in X$ with $x \not\leq y$. Then (x, y) does not belong to the graph G (say) of ' \leq '. Since G is θ -closed, \exists nbds. U of x and V of y in X such that $\overline{U \times V} \cap G = \Phi$ i.e. $\overline{U} \times \overline{V} \cap G = \Phi$,which means that if $u \in \overline{U}$ and $v \in \overline{V}$ then $u \not\leq v$. We claim that $\uparrow (\overline{U}) \cap \downarrow (\overline{V}) = \Phi$. If not, $\exists z \in \uparrow (\overline{U}) \cap \downarrow (\overline{V})$. So, $\exists a \in \overline{U}, b \in \overline{V}$ such that $a \leq z$ and $z \leq b$. Then by transitivity of ' \leq ', $a \leq b$ which implies $(a, b) \in G$ – a contradiction.

Conversely, let the condition holds. Let $(x, y) \in X \times X \setminus G$. Then $x \not\leq y$. So by hypothesis, \exists nbds. U of x and V of y in X such that $\uparrow (\overline{U}) \cap \downarrow (\overline{V}) = \Phi$. We claim that $\overline{U \times V} \cap G = \Phi$. If not, $\exists (a, b) \in \overline{U \times V} \cap G \Rightarrow a \in \overline{U}, b \in \overline{V}$ and $a \leq b$. Thus $b \in \uparrow (\overline{U})$. Also $b \in \downarrow (\overline{V})$ [since $\overline{V} \subseteq \downarrow (\overline{V})$] – contradicts that $\uparrow (\overline{U}) \cap \downarrow (\overline{V}) = \Phi$. This proves that (x, y) is not a θ -contact point [6] of G.

Corollary 2.5. Let ' \leq ' be a θ -closed order in a topological space X. Then \uparrow (a) and \downarrow (a) are θ -closed for each $a \in X$.

Proof. Let $a \in X$ and $b \in X \setminus \uparrow (a)$. Then $a \not\leq b$. Since ' \leq ' is a θ -closed order, \exists nbds. U, V of a, b respectively in X such that $\uparrow (\overline{U}) \cap \downarrow (\overline{V}) = \Phi$, [by theorem 2.4]. Now $\overline{V} \cap \uparrow (a) \subseteq \uparrow (\overline{U}) \cap \downarrow (\overline{V}) = \Phi$. Consequently, b cannot be a θ -contact point of $\uparrow (a)$. So $\uparrow (a)$ is θ -closed. Similarly $\downarrow (a)$ is θ -closed.

Corollary 2.6. Every topological space X, equipped with a θ -closed order ' \leq ' is a Urysohn space.

Proof. Let $a, b \in X$ with $a \neq b$. Then either $a \not\leq b$ or $b \not\leq a$. Let us assume that $a \not\leq b$.

Since ' \leq ' is a θ -closed order, \exists nbds. U, V of a, b respectively in X such that \uparrow $(\overline{U}) \cap \downarrow (\overline{V}) = \Phi$, [by theorem 2.4]. Now, $\overline{U} \cap \overline{V} \subseteq \uparrow (\overline{U}) \cap \downarrow (\overline{V}) = \Phi \Rightarrow X$ is a Urysohn space.

Corollary 2.7. Let X be a topological space equipped with a θ -closed order ' \leq '. Let $H \subseteq X$ be an H-set [6] in X. Then both $\uparrow H$ and $\downarrow H$ are θ -closed.

Proof. Let $a \in X \setminus \uparrow H$. Then $h \not\leq a, \forall h \in H$. Since ' \leq ' is θ -closed, for each $h \in H$, \exists open nbds. U_h, V_h of h and a respectively in X such that $\uparrow (\overline{U_h}) \cap \downarrow (\overline{V_h}) = \Phi$. [by theorem 2.4]. Now, $\{U_h : h \in H\}$ is an open cover of H. Since H is an H-set in X, \exists a finite subset $H_0 \subseteq H$ such that $\bigcup_{h \in H_0} \overline{U_h} \supseteq H$. Let $V = \bigcap_{h \in H_0} V_h$. Then V is an open nbd. of a in X. Now $\overline{V} \cap \uparrow H \subseteq \downarrow \overline{V} \cap \uparrow (\bigcup_{h \in H_0} \overline{U_h}) \subseteq (\bigcap_{h \in H_0} \downarrow \overline{V_h}) \cap (\bigcup_{h \in H_0} \uparrow \overline{U_h}) = \Phi$. [since $\uparrow (\overline{U_h}) \cap \downarrow (\overline{V_h}) = \Phi, \forall h \in H_0$] Thus, a is not a

 θ -contact point of \uparrow *H*. Consequently \uparrow *H* is θ -closed. Similarly, \downarrow *H* is θ -closed.

Corollary 2.8. If ' \leq ' is a θ -closed order on a topological space X and X is H-closed, then ' \leq ' is an almost regular order.

Proof. Let *A* be a regular closed set and $x \in X$ be such that $y \not\leq x, \forall y \in A$. Then for each $y \in A$, \exists open nbds. U_y and V_y of y and x respectively in X such that, $\uparrow (\overline{U_y}) \cap \downarrow (\overline{V_y}) = \Phi$. [by theorem 2.4]. *A* being a regular closed set in an H-closed space X, it is an H-closed subspace [7] and hence an H-set. Now $\{U_y : y \in A\}$ is an open cover of A and A is an H-set. So \exists a finite subset $A_0 \subseteq A$ such that $\bigcup_{y \in A_0} \overline{U_y} \supseteq A$. Let $V = \bigcap_{y \in A_0} V_y$. Then V is an open nbd. of x in X. Now, $\downarrow (\overline{V}) \cap A \subseteq (\bigcap_{y \in A_0} \downarrow \overline{V_y}) \cap (\bigcup_{y \in A_0} \uparrow \overline{U_y}) = \Phi$. [since $\uparrow (\overline{U_y}) \cap \downarrow (\overline{V_y}) = \Phi, \forall y \in A]$ $\Rightarrow A \subseteq X \setminus \downarrow (\overline{V})$. Again $\downarrow \overline{V}$ is θ -closed [by corollary 2.7] since, \overline{V} is an H-set [7]. So $X \setminus \downarrow \overline{V}$ is an open nbd. of A. We claim that, $\uparrow (X \setminus \downarrow \overline{V}) \cap \downarrow \overline{V} = \Phi$. If not, $\exists z \in \downarrow \overline{V} \cap \uparrow (X \setminus \downarrow \overline{V})$. So $\exists w \in X \setminus \downarrow \overline{V}$ such that $w \leq z \Rightarrow w \in \downarrow \overline{V} - \mathbf{a}$ contradiction. Therefore $\uparrow (X \setminus \downarrow \overline{V}) \cap \downarrow V = \Phi$. This completes the proof.

3. FUNCTIONS INTO HYPERSPACES

In this article we shall discuss about a hyperspace [2] and the functions into a hyperspace.

Let X be a topological space and 2^X be the collection of all nonempty closed subsets of X. There have been various endeavors to topologize 2^X . The most commonly used topology is the Vietoris topology [3]. This topology is constructed as follows:

For each subset $S \subseteq X$ we denote, $S^+ = \{A \in 2^X : A \subseteq S\}$ and $S^- = \{A \in 2^X : A \cap S \neq \Phi\}$. The Vietoris topology on 2^X is one generated by the subbase $\{W^+ : W \text{ is open in } X\} \bigcup \{W^- : W \text{ is open in } X\}$. Now, the usual inclusion relation ' \subseteq ' induces a partial order on 2^X .

relation ' \subseteq ' induces a partial order on 2^X . Since $V_1^+ \cap V_2^+ \cap \cdots \cap V_n^+ = (V_1 \cap V_2 \cap \cdots \cap V_n)^+$, a basic open set of the Vietoris topology is of the form, $V_1^- \cap \cdots \cap V_n^- \cap V_0^+$, where V_i is open in X for $i = 0, 1, \ldots, n$. The space 2^X with the Vietoris topology is usually known as a 'hyperspace'.

Proposition 3.1. \uparrow $(V_1^- \cap \cdots \cap V_n^-) = V_1^- \cap \cdots \cap V_n^-$.

 $\begin{array}{l} \textit{Proof.} \ A \in \uparrow (V_1^- \cap \dots \cap V_n^-) \Rightarrow \exists \ B \in V_1^- \cap \dots \cap V_n^- \text{ such that } B \subseteq A. \\ \Rightarrow A \cap V_i \neq \Phi, \forall i = 1, \dots, n \ [\text{since } B \cap V_i \neq \Phi, \forall i = 1, \dots, n] \Rightarrow A \in V_1^- \cap \dots \cap V_n^-. \\ \text{Thus,} \uparrow (V_1^- \cap \dots \cap V_n^-) \subseteq V_1^- \cap \dots \cap V_n^-. \text{ The reverse inclusion follows from definition 2.1.} \end{array}$

Proposition 3.2. $\downarrow (V_1^- \cap \cdots \cap V_n^-) = 2^X$

Proof. Let $A \in 2^X$. Since $A \subseteq X$ and $X \in (V_1^- \cap \cdots \cap V_n^-)$ so it follows that $A \in \downarrow$ $(V_1^- \cap \cdots \cap V_n^-)$. Thus $2^X \subseteq \downarrow (V_1^- \cap \cdots \cap V_n^-)$. Reverse inclusion is obvious. \Box

Proposition 3.3. If X be a T_1 -space and $V_i \subseteq V_0$, for i = 1, ..., n then $\uparrow (V_1^- \cap \cdots \cap V_n^- \cap V_0^+) = V_1^- \cap \cdots \cap V_n^-$

S. Ganguly and S. Jana

Proof. Let, $A \in V_1^- \cap \cdots \cap V_n^-$. Let $x_i \in A \cap V_i, i = 1, ..., n$ [since $A \cap V_i \neq \Phi, i = 1, ..., n$]. Now $\{x_1, ..., x_n\} \subseteq A \cap V_0$ [since $V_i \subseteq V_0, i = 1, ..., n$] and $\{x_1, ..., x_n\}$ is closed in X, since X is T_1 . Therefore, $\{x_1, ..., x_n\} \in V_1^- \cap \cdots \cap V_n^- \cap V_0^+$). Thus $V_1^- \cap \cdots \cap V_n^- \subseteq \uparrow (V_1^- \cap \cdots \cap V_n^- \cap V_0^+)$.

 $\begin{array}{ll} \text{Conversely let } A \in \uparrow (V_1^- \cap \dots \cap V_n^- \cap V_0^+). \text{ Then } \exists \ B \in V_1^- \cap \dots \cap V_n^- \cap V_0^+ \\ \text{such that } B \subseteq A. \text{ Therefore } B \cap V_i \neq \Phi, i = 1, \dots, n. \text{ So } A \cap V_i \neq \Phi, i = 1, \dots, n. \\ \text{Consequently } A \in V_1^- \cap \dots \cap V_n^-. \text{ Therefore } \uparrow (V_1^- \cap \dots \cap V_n^- \cap V_0^+) \subseteq V_1^- \cap \dots \cap V_n^-. \\ \end{array}$

Proposition 3.4. If *X* be a T_1 -space and $V_i \subseteq V_0, i = 1, ..., n$ then $\downarrow (V_1^- \cap \cdots \cap V_n^- \cap V_0^+) = V_0^+$.

Proof. Let $A \in V_0^+$. We choose $x_i \in V_i, i = 1, ..., n$. Then $B = \{x_1, ..., x_n\} \subseteq V_0$ [since $V_i \subseteq V_0, i = 1, ..., n$] and B is closed in X [since X is T_1]. Therefore $A \cup B$ is a closed subset of X and $A \subseteq A \cup B$ and $A \cup B \in V_1^- \cap \cdots \cap V_n^- \cap V_0^+$. Consequently $A \in \downarrow (V_1^- \cap \cdots \cap V_n^- \cap V_0^+)$. Therefore $V_0^+ \subseteq \downarrow (V_1^- \cap \cdots \cap V_n^- \cap V_0^+)$. Conversely, let $A \in \downarrow (V_1^- \cap \cdots \cap V_n^- \cap V_0^+)$. So $\exists B \in V_1^- \cap \cdots \cap V_n^- \cap V_0^+$ such that $A \subseteq B$. Since $B \subseteq V_0$ so $A \subseteq V_0$. Consequently, $A \in V_0^+$. Therefore $\downarrow (V_1^- \cap \cdots \cap V_n^- \cap V_0^+) \subseteq V_0^+$. □

Definition 3.5. A topological space *X* equipped with a θ -closed partial order ' \leq ' is said to be a θ -partially ordered space(θ -PO space in short) if $\downarrow V$ is θ -open for every θ -open set *V* of *X*.

Theorem 3.6. If X is a T_3 -space then the space 2^X equipped with the Vietoris topology and the usual set-inclusion as the partial order, is a θ -PO space.

Proof. First we shall show that ' \subseteq ' is a θ -closed order in 2^X . Let $K \downarrow \subset 2^X$ be such that $K \not\subset I$. Then $\exists x \in K$ such that $x \notin I$.

Let $K, L \in 2^X$ be such that $K \not\subseteq L$. Then $\exists p \in K$ such that $p \notin L$. Since L is closed in X and X is regular, \exists two disjoint open sets U, V in X such that $p \in U$ and $L \subseteq V$. Now $U \cap V = \Phi \Rightarrow U \cap \overline{V} = \Phi$. Since X is regular, \exists an open nbd. W of p in X such that $p \in W \subseteq \overline{W} \subseteq U$. Therefore $\overline{W} \cap \overline{V} = \Phi$. Now $K \cap W \neq \Phi$ [since $p \in K \cap W$] $\Rightarrow k \in W^-$. And $L \subseteq V \Rightarrow L \in V^+$. Now $\uparrow (\overline{W^-}) \cap \downarrow (\overline{V^+}) = (\uparrow (\overline{W})^-) \cap (\downarrow (\overline{V})^+) = (\overline{W})^- \cap (\overline{V})^+ = \Phi$ [since $\overline{W} \cap \overline{V} = \Phi$]. Then by the 2.4, ' \subseteq ' is a θ -closed order in 2^X .

Now let, *G* be any θ -open set in 2^X and $F_0 \in \downarrow G$. Then $\exists K_0 \in G$ such that $F_0 \subseteq K_0$. Since *G* is θ -open in 2^X , \exists open sets V_0, V_1, \ldots, V_n in *X* such that $K_0 \in (V_1^- \cap \cdots \cap V_n^- \cap V_0^+) \subseteq (V_1^- \cap \cdots \cap V_n^- \cap V_0^+) \subseteq G$ and $V_i \subseteq V_0$, for, $i = 1, 2, \ldots, n$.

$$\Rightarrow K_0 \in \downarrow (V_1^- \cap \dots \cap V_n^- \cap V_0^+) \subseteq \downarrow (\bar{V}_1^- \cap \dots \cap \bar{V}_n^- \cap \bar{V}_0^+) \subseteq \downarrow G.$$

$$\Rightarrow K_0 \in V_0^+ \subseteq \underline{V_0^+} \subseteq \downarrow G$$

 $\Rightarrow F_0 \in V_0^+ \subseteq \overline{V_0^+} \subseteq \downarrow G$ [since $F_0 \subseteq K_0$ and $\overline{V_0^+} = \overline{V_0^+}$]. This shows that $\downarrow G$ is θ -open in 2^X . This completes the proof.

Definition 3.7. A function $f : X \to Y$, *Y* being equipped with a partial order ' \leq ', is called θ^* -lower semicontinuous with respect to ' \leq ' at $x \in X$ iff for every open nbd. *V* of f(x) in *Y*, \exists an open nbd. *U* of *x* in *X* such that $f(\overline{U}) \subseteq \uparrow V$.

f is θ^* -lower semicontinuous with respect to ' \leq ' iff it is θ^* -lower semicontinuous at each point of *X*.

Theorem 3.8. Let Y be a T_1 -space and 2^Y have the Vietoris topology. Then a function $\Phi: X \to 2^Y$ is θ^* -lower semicontinuous with respect to ' \subseteq ' iff $\Phi^{-1}(V^-)$ is θ -open in X whenever V is an open subset of Y.

Proof. Let Φ be θ^* -lower semicontinuous with respect to ' \subseteq ' and V be any open subset of Y.

Let $a \in \Phi^{-1}(V^-)$. Then $\Phi(a) \in V^-$. Since Φ is θ^* -lower semicontinuous so \exists an open nbd. U of a in X such that $\Phi(\overline{U}) \subseteq \uparrow (V^-) = V^-$ [by proposition 3.1]

 $\Rightarrow a \in U \subseteq \overline{U} \subseteq \Phi^{-1}(V^{-})$. This shows that $\Phi^{-1}(V^{-})$ is θ -open.

Conversely, let the condition holds. Let $a \in X$ and G be any open nbd. of $\Phi(a)$ in 2^Y . Then \exists open sets V_0, V_1, \ldots, V_n in Y such that $\Phi(a) \in V_1^- \cap \cdots \cap V_n^- \cap V_0^+ \subseteq G$. We define, $U = \Phi^{-1}(V_1^-) \cap \cdots \cap \Phi^{-1}(V_n^-)$.

By hypothesis U is θ -open [since finite intersection of θ -open sets is again θ -open] and $a \in U$. So \exists an open nbd. W of a in X such that $a \in W \subseteq \overline{W} \subseteq U \Rightarrow \Phi(a) \in \Phi(W) \subseteq \Phi(\overline{W}) \subseteq \Phi(U) \subseteq V_1^- \cap \cdots \cap V_n^- = \uparrow (V_1^- \cap \cdots \cap V_n^- \cap V_0^+) \subseteq \uparrow G$ [by proposition 3.3]. This shows that, Φ is θ^* -lower semicontinuous.

4. MULTIFUNCTIONS

In the previous article, we have studied about functions into a hyperspace. These functions are nothing but set-valued functions or multifunctions. In this article we shall treat them as the ordinary multifunction and compare the two different aspects.

Mukherjee ,Raychaudhuri and Sinha introduced lower- θ^* -continuous multifunctions in [4]; in the same way the concept of lower- θ^* -semicontinuous multifunction can also be introduced.

Definition 4.1. A multifunction $F : X \to Y$, where X, Y are topological spaces, is called lower- θ^* -semicontinuous function iff for each $x_0 \in X$ and each open set V in Y with $F(x_0) \cap V \neq \Phi$, there is an open nbd. U of x_0 such that $F(x) \cap V \neq \Phi$ for each $x \in \overline{U}$.

Definition 4.2. [4] A multifunction $F : X \to Y$ is called θ^* -closed if whenever $x \in X, y \in Y$ and $y \notin F(x)$, there exists open nbds. U, V of x, y in X and Y respectively such that $p \in \overline{U} \Rightarrow F(p) \cap V \neq \Phi$.

Theorem 4.3. [4] If $F : X \to Y$ be a multifunction which is θ^* -closed, then F(x) is closed in Y, for each $x \in X$.

Theorem 4.4. Let $F : X \to Y$ be a multifunction, where X, Y are topological spaces and Y is a T_1 -space. If F be lower- θ^* -semicontinuous and θ^* -closed then

$$\begin{array}{cccc} f: X & \to & 2^Y \\ x & \mapsto & F(x) \end{array}$$

is θ^* -lower semicontinuous, when 2^Y is endowed with Vietoris topology.

Proof. The function f is well-defined by theorem 4.3. Let V be any open set in Y and $a \in f^{-1}(V^{-})$. Then $f(a) \in V^{-}$ i.e. $F(a) \cap V \neq I$

 Φ . Since *F* is lower- θ^* -semicontinuous, \exists an open nbd. *U* of *a* in *X* such that $F(x) \cap V \neq \Phi, \forall x \in \overline{U}$ $\Rightarrow f(x) \in V^-, \forall x \in \overline{U}$ $\Rightarrow \overline{U} \subseteq f^{-1}(V^-).$ Therefore $a \in U \subseteq \overline{U} \subseteq f^{-1}(V^{-})$. Thus $f^{-1}(V^{-})$ is θ -open for each open set *V* in *Y*. Consequently, *f* is θ^* -lower semicontinuous [by theorem 3.8].

Theorem 4.5. Let X be a topological space and Y be a T_1 -space. Let $f: X \to 2^Y$ be a θ^* -lower semicontinuous function, where 2^Y is endowed with Vietoris topology. Then the multifunction.

$$\left. \begin{array}{ccc} F:X & \to & Y \\ x & \mapsto & f(x) \end{array} \right\}$$

is lower- θ^* *-semicontinuous.*

Proof. Let $x_0 \in X$ and V be open in Y such that $F(x_0) \cap V \neq \Phi$ i.e. $f(x_0) \in V^-$ i.e. $x_0 \in f^{-1}(V^-)$. Since f is θ^* -lower semicontinuous function, $f^{-1}(V^-)$ is θ -open in X [by theorem 3.8]. So \exists an open nbd. U of x_0 in X such that, $x_0 \in U \subset \overline{U} \subset$ $f^{-1}(V^{-})$ $\Rightarrow f(\overline{U}) \subseteq V^{-}$ i.e. $f(x) \in V^{-}, \forall x \in \overline{U}$ i.e. $F(x) \cap V \neq \Phi, \forall x \in \overline{U}$. Thus F is

lower- θ^* -semicontinuous. \square

5. Some special multifunctions

In this article, we discuss the θ^* -lower semicontinuity of a very special type of multifunction. Since the consideration of either a hyperspace or an ordinary space as the codomain of a multifunction is immaterial, as seen from the previous article, we discuss the θ^* -lower semicontinuity of the multifunction in the hyperspace-setting.

Definition 5.1. We define a pair of functions $i, d : X \to 2^X$, where X is a topological space equipped with a partial order '<' which is assumed to be a θ -closed order. as follows:-

$$i(x) = \uparrow (x)$$
 and $d(x) = \downarrow (x)$

Since '<' is a θ -closed order, \uparrow (*x*) & \downarrow (*x*) are θ -closed [by corollary 2.5]. So the functions 'i' and 'd' are well-defined.

Theorem 5.2. (i) The function $i: X \to 2^X$ is θ^* -lower semicontinuous with respect to ' \subset ' iff $\downarrow V$ is θ -open in X for every open set V of X.

(ii) The function $d: X \to 2^X$ is θ^* -lower semicontinuous with respect to ' \subseteq ' iff $\uparrow V$ is θ -open in X for every open set V of X.

Proof. (i) Let V be any open set in X. Now, $i^{-1}(V^{-}) = \{x \in X : i(x) \in V^{-}\} =$ $\{x \in X : \uparrow (x) \cap V \neq \Phi\} = \{x \in X : x \leq y, \text{ for some } y \in V\} = \downarrow V$ It now clearly follows from theorem 3.8 that, 'i' is θ^* -lower semicontinuous with

respect to ' \subseteq ' iff $\downarrow V$ is θ -open in X.

(ii) The result follows from the following fact.

Let V be any open set in X. Now, $d^{-1}(V^-) = \{x \in X : d(x) \in V^-\} = \{x \in X : \downarrow\}$ $(x) \cap V \neq \Phi$ = { $x \in X : y \leq x$, for some $y \in V$ } = $\uparrow V$. \square

Theorem 5.3. If $F : X \to Y$, Y being equipped with a θ -closed order ' \leq ' be a set-valued mapping such that F(x) is an H-set in Y and if F is lower- θ^* - semicontinuous and $\downarrow V$ is open for each open V of Y, then

$$\left.\begin{array}{ccc}f:X&\to&2^Y\\x&\mapsto&\uparrow F(x)\end{array}\right\}$$

is θ^* -lower semicontinuous.

Proof. Since F(x) is an H-set in Y and ' \leq ' is a θ -closed order, $\uparrow F(x)$ is θ -closed [by corollary 2.7]. So f is well-defined.

Let V be open in Y. Now, $f^{-1}(V^-) = \{x \in X : \uparrow F(x) \in V^-\} = \{x \in X : \uparrow F(x) \cap V \neq \Phi\} = \{x \in X : F(x) \cap \downarrow V \neq \Phi\}$. Let, $x_0 \in f^{-1}(V^-)$. Then $F(X_0) \cap \downarrow V \neq \Phi$. Since $\downarrow V$ is open [by hypothesis] and F is lower- θ^* -semicontinuous \exists an open nbd. U of x_0 in X such that $F(x) \cap \downarrow V \neq \Phi, \forall x \in \overline{U} \Rightarrow \overline{U} \subseteq f^{-1}(V^-)$ i.e. $x_0 \in U \subseteq \overline{U} \subseteq f^{-1}(V^-)$. Thus $f^{-1}(V^-)$ is θ -open in X. Consequently, f is θ^* -lower semicontinuous [by theorem 3.8].

We can get a similar result if we take $\downarrow F(x)$ instead of $\uparrow F(x)$ in the above theorem with only changing $\uparrow V$ instead of $\downarrow V$ in the hypothesis.

References

- Ganguly, S. and Bandyopadhyay, T., Partially ordered topological spaces and semigroups, Bull. Cal. Math. Soc., 88 (1996), 213-222
- McCoy, R. A., Epi-Topology on spaces of Lower Semicontinuous Functions into Partially ordered spaces and Hyperspaces, Set-valued Analysis, 1 (1993), 273-287
- [3] Michael, E., Topologies on spaces of subsets, Trans. Amer. Math. Soc., 71 (1951), 152-182
- [4] Mukherjee, M. N., Raychaudhuri, S. and Sinha, P., On upper and lower θ^* -continuous multifunctions, South-East Asian Bull. Math (to appear)
- [5] Nachbin, L., Topology and order, Van Nostrand, Princeton, (1976)
- [6] Velicko, N.V., H-closed topological spaces, Amer. Math. Transl., 78 (1968), 103-118
- [7] Vermeer, J., Closed subspaces of H-closed spaces, Pacific J. of Maths., 118, 1 (1985)

UNIVERSITY OF CALCUTTA DEPARTMENT OF PURE MATHEMATICS 35, BALLYGUNGE CIRCULAR ROAD KOLKATA - 700019, INDIA *E-mail address*: sjpm12@yahoo.co.in