
CARPATHIAN J. MATH.
21 (2005), No. 1 - 2, 83 - 87

On convex feasibility problems

LAURA MĂRUŞTER and ŞTEFAN MĂRUŞTER

ABSTRACT. In this paper we consider a projection method for convex feasibility problem that is
known to converge only weakly. Exploiting a property concerning the intersection of a family of
convex closed sets, we present a condition that makes them strongly convergent, without additional
assumptions.

1. INTRODUCTION

The convex feasibility problem consists in finding a point in the intersection
of a convex sets. Initially, this problem arose in the constrain optimization prob-
lems for trying to guess an initial ”feasible” point, that is a point which satisfies
the constrains. Often, these constrains are defined by linear inequalities and so
the feasible set is the intersection of a number of halfspaces. Later, it was proved
that the convex feasibility problem have great utility and board applicability in
many areas, spreading on modern mathematical and physical science to econom-
ics and even medical practices, like: statistics (linear prediction theory), image
reconstruction with applications in computerized tomography, radiation therapy
treatment planning, electron microscopy, signal processing, and the like. A com-
plete and exhaustive study on algorithms for solving convex feasibility problem,
including comments about their applications and an excellent bibliography, was
given by H.H. Bausche and J.M. Borwein [3].

The projection algorithms it seems to be the common way for solving this prob-
lem The idea is to use the projection of the current iterate onto certain set from
the intersection family (the strategy of selecting this set leads to a particular al-
gorithm) and so to yielding a sequence of points that is supposed to converge to
a solution. This idea was used (it seems for the first time) in [1, 11] for solving a
system of linear inequalities (the authors named their method as ”relaxation algo-
rithm”). Generalizations for convex sets in real n-dimensional spaces were given
in [8, 10]. Bergman [5] considered the classical projection method for the case of
m intersecting closed convex sets (Mi) in a real Hilbert space. He showed that,
given an arbitrary starting point x0, the sequence generated by the projection al-
gorithm converges weakly to a point in M =

⋂m
i=1 Mi. In [9] certain regularity

conditions on the sets were described that guaranteed strong convergence of the
iterations. In recent papers, other conditions for strong convergence have been
given, for example in [3, 2, 6, 4].

In this paper we present a simple condition that insure the strong convergence
of the sequence generated by the projection algorithm.
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2. PRELIMINARIES

Let H be a real Hilbert space with scalar product 〈·|·〉, norm ‖ · ‖, and distance
d. Let T : D ⊂ H → H be a nonlinear mapping, and let F (T ) denotes the set of
fixed points of T in D. In the following we will assume that F (T ) �= ∅. According
to [12], the mapping T is said to be quasi-nonexpansive if ‖Tx − x∗‖ ≤ ‖x − x∗‖,
∀x ∈ D, x∗ ∈ F (T ).

Remark 2.1. The notion of quasi-nonexpansivity has been introduced by Tricomi
[13] for real-valued fuctions and subsequently studied in [13, 7] for mapping in
Hilbert or Banach spaces.

Let d(x, E) denotes the distance between a point x ∈ H and a set E ⊂ H, that
is d(x, E) = infy∈E ‖x − y‖.

We shall use the following general theorem concerning the convergence of the
simple iterates for quasi-nonexpansive mappings.

Theorem 2.1. Suppose that T : D ⊂ H → H is a quasi-nonexpansive mapping and that
F (T ) is nonempty and closed. Let x0 ∈ D such that xk = T k

x0
∈ D, k = 1, 2, · · · . Then

the sequence {xk} converges to a fixed point of T if and only if there exists a subsequence
{xkj} of {xk} such that d(xkj , F (T )) → 0 as j → ∞.

Here, as usual, T k denotes the k iterate of T .

Remark 2.2. Theorem 2.1 is a slight generalization of the first result of [12] and
its proof is similar. Essentially, Theorem 2.1 replaced the condition of continuity
of T , from the original result, by the condition of closedness of F (T ). It is easy
to see that the latter condition is weaker, and, as it will result, is essential for our
development.

3. THE MAIN RESULT

We first prove the following lemma.

Lemma 3.1. Let Mi ⊂ H(i = 1, · · · , m) be a family of convex sets such that Int
⋂

Mi

is nonempty and bounded and let {xk} be a sequence of H such that d(xk, Mi) → 0 as
k → ∞ for each i. Then d(xk,

⋂
Mi) → 0, as k → ∞.

Proof. We assume that o ∈ Int
⋂

Mi. Then there exists a closed ball D(o, r) =
{x ∈ H : ‖x‖ ≤ r} ⊂ ⋂

Mi. Let ε be a given real number, 0 < ε < 1, and let C be a
constant such that ‖x‖ ≤ C − 1 for all x ∈ ⋂

Mi, which is possible, because
⋂

Mi

is bounded.
Since d(xk, Mi) → 0 as k → ∞, for each index i, there exists a sequence

{y(i)
k }k∈N ⊂ Mi such that ‖y(i)

k − xk‖ → 0 as k → ∞. Let

(3.1) zk =
(

1 − C

ε

)
(y(i)

k − xk), k = 0, 1, · · · .

There exists a number ki(ε) such that if k ≥ ki(ε) then ‖y(i)
k ‖ ≤ r∣∣∣1 − C

ε

∣∣∣
and so

‖zk‖ ≤ r, that is zk ∈ ⋂
Mi.
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On the other hand, from equation 3.1 we obtain(
1 − ε

C

)
xk =

ε

C
zk +

(
1 − ε

C

)
y
(i)
k ,

and for k ≥ ki(ε) we have
(

1 − ε

C

)
xk ∈ Mi, because y

(i)
k , zk ∈ Mi and Mi are

convex.

Now, let k0(ε) = maxi ki(ε). Then, for k ≥ k0(ε) it follows that
(

1 − ε

C

)
xk ∈⋂

Mi and

d(xk,
⋂

Mi) ≤ ‖xk −
(
1 − ε

C

)
xk‖ =

ε

C − ε

∥∥∥ (
1 − ε

C

)
xk

∥∥∥ < ε,

which end the proof. �

Apparently, the condition that Int
⋂

Mi is nonempty and bounded is very
strong. The following example shows that this condition cannot be replaced by
the weaker condition

⋂
Mi �= ∅, which seems to be more natural.

Example. Suppose that H is the real three-dimensional space, that the set Mi is a
cone (A) and the set M2 is a tangent plane (ABCD). The situation is depicted in
Figure 1.

Fig.1. Example

The plane (ABCD) is tangent to the cone along the generatrix (AB) and hence
M1

⋂
M2 = (AB). Now, let us consider a sequence {xk} in the plane (ABCD)

such that d(xk, (AB)) = δ = const. and ‖xk‖ → ∞ as k → ∞. It is clear that
d(xk, M2) → 0 as k → ∞ and d(xk, M1 = 0 for all k; but d(xk, M1

⋂
M2) = δ > 0.

Therefore, the conclusion of Lemma 3.1 is not true.
In the following, we shall suppose that Mi(i = 1, · · · , m) are closed and con-

vex sets of H. Let P (x, i) be the projection of an x ∈ H onto Mi and let ix be the
smallest index such that ‖x− P (x, ix)‖ = maxi ‖x− P (x, i)‖. We define the map-
ping T : H → H by Tx = P (x, ix). It is easy to see that x ∈ ⋂

Mi if and only if
Tx = x; hence if and only if x is a fixed point of T . In other words, F (T ) =

⋂
Mi.

Let λ ∈ (0, 2) and let Tλ = I − λ(I − T ), where I is the identity mapping of H
into H. Obviously, F (Tλ) = F (T ).

Theorem 3.2. Let Mi(i = 1, . . . , m) be a family of closed and convex sets of H such
that Int

⋂
Mi is nonempty and bounded. Then the sequence xk given by Xk = T k

λ x0

converges (strongly) to a point of
⋂

Mi for all x0 ∈ H.
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Proof. Since F (Tλ) =
⋂

Mi is a closed set, it suffices to show that Tλ is quasi-
nonexpansive on H and that d(xk,

⋂
Mi) → 0 as k → 0. Then Theorem 3.2 follows

from Theorem 2.1.
Let x ∈ H and y ∈ ⋂

MI . Since P (x, ix) is the projection of x onto Mix and
y ∈ Mix , we have

〈Tx − y, x − Tx〉 = 〈P (x, ix) − y, x − P (x, ix)〉 ≥ 0,

and

(3.2)
‖Tλx − y‖2 = ‖x − y‖2 − 2λ〈x − y, x − Tx〉 + λ2‖x − Tx‖2

= ‖x − y‖2 − λ(2 − λ)‖x − Tx‖2 − 2λ〈Tx − y, x − Tx〉
≤ ‖x − y‖2 − λ(2 − λ)‖x − Tx‖2.

Therefore, we have

(3.3) ‖Tλx − y‖ ≤ ‖x − y‖, ∀x ∈ H, y ∈
⋂

Mi,

and Tλ is quasi-nonexpansive on H.
Now, since xk+1 = Tλxk, from (3.3) it follows that the sequence {‖xk − y‖} is

monotone decreasing and bounded, therefore ‖xk − y‖ → δy as k → ∞, for each
y ∈ ⋂

Mi. From Equation 2 we obtain

‖xk − Txk‖2 ≤ 1
λ(2 − λ)

(‖xk − y‖2 − ‖xk+1 − y‖2
)

and hence ‖xk − Txk‖ → 0 as k → ∞. But ‖x − P (x, i)‖ ≤ ‖x − Tx‖ for each
i. Therefore d(xk, Mi) = ‖xk − P (xk, i)‖ → 0 as k → ∞ and Theorem 3.2 is
proved. �
Remark 3.3. It is easy to see that the mapping T : H → H defined above (Tx =
P (x, ix) is not continuous. Indeed, let m = 2 and let x be a point of H such that
d(x, M1) = d(x, M2). Now, let {xk} be a sequence such that xk → x as k → ∞
and d(xk, M1) < d(xk, M2) for all k. Then limTxk = limP (xk, M2) = P (x, M2);
but Tx = P (x, M1), that is T is not continuous at x.

Theorem 3.2 extends to real Hilbert spaces a result of Eremin [8], which is
in turn a generalization of the Motzkin-Agmon-Schoenberg relaxation algorithm
for inequalities. Note that the conditions of Eremin’s theorem, for the finite di-
mensional case are somewhat weaker; more precisely, it is required only that⋂

Mi �= ∅, while our theorem requires that Int
⋂

Mi �= ∅ are bounded.
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NEDERLAND

E-mail address: l.maruster@bdk.rug.nl

WEST UNIVERSITY OF TIMIŞOARA
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