CARPATHIAN J. MATH. **22** (2006), No. 1 - 2, 147 - 151

On a conjecture for weighted interpolation using Chebyshev polynomials of the third and fourth kinds

SIMON J. SMITH

ABSTRACT. A conjecture for the projection norm (or Lebesgue constant) of a weighted interpolation method based on the zeros of Chebyshev polynomials of the third and fourth kinds is resolved. This conjecture was made in a paper by J. C. Mason and G. H. Elliott in 1995. The proof of the conjecture is achieved by relating the projection norm to that of a weighted interpolation method based on zeros of Chebyshev polynomials of the second kind.

1. INTRODUCTION

Suppose x_0, x_1, \ldots, x_n are distinct points (nodes) in [-1, 1], let $w \in C[-1, 1]$ be a weight function satisfying $w(x) \ge 0$, $w(x_i) \ne 0$, and denote the set of all polynomials of degree no greater than n by P_n . Define an interpolating projection L_n of C[-1, 1] on wP_n by

(1.1)
$$(L_n f)(x) = w(x) \sum_{i=0}^n \ell_i(x) \frac{f(x_i)}{w(x_i)}$$

where $\ell_i(x)$ is the fundamental Lagrange polynomial

(1.2)
$$\ell_i(x) = \prod_{\substack{k=0\\k\neq i}}^n \frac{x-x_k}{x_i-x_k}.$$

(Note that if $w(x) \equiv 1$, then L_n is Lagrange interpolation.) If $\|\cdot\|_{\infty}$ denotes the uniform norm $\|f\|_{\infty} = \sup_{-1 \le x \le 1} |f(x)|$, the projection norm (or Lebesgue constant)

$$||L_n|| = \sup_{||f||_{\infty} \le 1} ||L_n f||_{\infty}$$

satisfies

(1.3)
$$||L_n|| = \sup_{x \in [-1,1]} \sum_{i=0}^n |\ell_i(x)| \frac{w(x)}{w(x_i)}.$$

Received: 13.02.2006; In revised form: 24.05.2006; Accepted: 01.11.2006

²⁰⁰⁰ Mathematics Subject Classification: 41A05, 41A10.

Key words and phrases: interpolation, Lagrange interpolation, weighted interpolation, projection norm, Lebesgue constant, Chebyshev polynomial.

Simon J. Smith

The Chebyshev polynomials of the first, second, third and fourth kinds, of degree n + 1, are defined by

$$T_{n+1}(x) = \cos(n+1)\theta,$$

$$U_{n+1}(x) = [\sin(n+2)\theta]/\sin\theta,$$

$$V_{n+1}(x) = [\cos(n+3/2)\theta]/\cos(\theta/2),$$

$$W_{n+1}(x) = [\sin(n+3/2)\theta]/\sin(\theta/2),$$

respectively, where $x = \cos \theta$ and $0 \le \theta \le \pi$. (See [6], for example, for an account of these polynomials and their properties.) The zeros of the Chebyshev polynomials are:

(1.4)	zeros of $T_{n+1}(x)$:	$x_i = \cos[(i+1/2)\pi/(n+1)]$	$(i=0,1,\ldots,n),$
(1.5)	zeros of $U_{n+1}(x)$:	$x_i = \cos[(i+1)\pi/(n+2)]$	$(i=0,1,\ldots,n),$
(1.6)	zeros of $V_{n+1}(x)$:	$x_i = \cos[(i+1/2)\pi/(n+3/2)]$	$(i=0,1,\ldots,n),$
(1.7)	zeros of $W_{n+1}(x)$:	$x_i = \cos[(i+1)\pi/(n+3/2)]$	$(i=0,1,\ldots,n).$

Now define interpolating projections $L_n^{(1)}$, $L_n^{(2)}$, $L_n^{(3)}$, $L_n^{(4)}$ by (1.1) and (1.2) with weights w(x) = 1, $(1-x^2)^{1/2}$, $(1+x)^{1/2}$ and $(1-x)^{1/2}$, respectively, and respective nodes (1.4), (1.5), (1.6) and (1.7).

The projection norm $\|L_n^{(1)}\|$ for (unweighted) Lagrange interpolation on the Chebyshev nodes of the first kind has been studied extensively. For instance, by results of Luttmann and Rivlin [4] and Ehlich and Zeller [2] in the 1960s, $\|L_n^{(1)}\|$ has the asymptotic expansion as $n \to \infty$,

(1.8)
$$||L_n^{(1)}|| = \frac{2}{\pi} \log n + \frac{2}{\pi} \left(\log \frac{8}{\pi} + \gamma \right) + o(1),$$

where $\gamma = 0.577...$ denotes Euler's constant. Discussion of this and other results, including refinements of (1.8), are given in Brutman's survey paper [1, Section 2.2].

In the paper [5], J. C. Mason and G. H. Elliott studied $||L_n^{(i)}||$ for i = 2, 3, 4. For example, they showed that

$$\|L_n^{(2)}\| = \sup_{0 \le \theta \le \pi/2} F_n(\theta),$$

where

(1.9)
$$F_n(\theta) = \frac{|\sin(n+2)\theta|}{n+2} \sum_{i=0}^n \frac{\sin\theta_{i,n}}{|\cos\theta - \cos\theta_{i,n}|}$$

and $\theta_{i,n} = (i+1)\pi/(n+2)$. On the basis of numerical computations, the authors made the following conjecture.

Conjecture 1.1. The supremum of $F_n(\theta)$ occurs at $\pi/2$ if n is odd and at a value that is asymptotic to $\pi(n+1)/[2(n+2)]$ as $n \to \infty$ if n is even.

Mason and Elliott also showed that $F_n(\pi/2)$ (for odd *n*) and $F_n(\pi(n+1)/[2(n+2)])$ (for even *n*) both have the asymptotic expansion

(1.10)
$$\frac{2}{\pi} \log n + \frac{2}{\pi} \left(\log \frac{4}{\pi} + \gamma \right) + o(1).$$

148

Therefore, assuming Conjecture 1.1 is correct, it follows that

(1.11)
$$||L_n^{(2)}|| = \frac{2}{\pi} \log n + \frac{2}{\pi} \left(\log \frac{4}{\pi} + \gamma \right) + o(1).$$

Smith [7] later verified (1.11), although the proof did not depend on Conjecture 1.1 (which remains open). The result (1.11) means that not only is $||L_n^{(2)}||$ essentially smaller than $||L_n^{(1)}||$, but that $L_n^{(2)}$, which is based on a simple node system, has (to within o(1) terms) the same norm as the Lagrange method of minimal norm over all possible choices of nodes. See Brutman [1, Section 3] for a discussion of the optimal choice of nodes for Lagrange interpolation, and Kilgore [3] for some interesting results concerning the projection norms for weighted interpolation with Jacobi weights, and their relation to the minimal norm for Lagrange interpolation.

For the projections $L_n^{(3)}$ and $L_n^{(4)}$, it follows from (1.3) that $||L_n^{(3)}|| = ||L_n^{(4)}||$. Based again on numerical results, Mason and Elliott [5, p. 50] made the following conjecture.

Conjecture 1.2. The norm of the interpolating projection $L_n^{(4)}$ satisfies

 $||L_n^{(4)}|| = ||L_n^{(1)}|| + o(1).$

This conjecture will be proved in the following section, where some observations on the relationship between $\|L_n^{(4)}\|$ and $\|L_n^{(2)}\|$ are also made.

2. Proof of Conjecture 1.2

By (1.3) and (1.7) with $w(x) = (1 - x)^{1/2}$,

$$||L_n^{(4)}|| = \sup_{0 \le \phi \le \pi} G_n(\phi),$$

where

$$G_n(\phi) = \frac{|\sin(n+3/2)\phi|}{n+3/2} \sum_{i=0}^n \frac{\sin\phi_{i,n}}{|\cos\phi - \cos\phi_{i,n}|}$$

and $\phi_{i,n} = (i+1)\pi/(n+3/2)$. Put m = 2n+1 and $\phi = 2\theta$. Thus

(2.12)
$$||L_n^{(4)}|| = \sup_{0 \le \theta \le \pi/2} H_m(\theta),$$

where

(2.13)
$$H_m(\theta) = \frac{2|\sin(m+2)\theta|}{m+2} \sum_{i=0}^{(m-1)/2} \frac{\sin 2\theta_{i,m}}{|\cos 2\theta - \cos 2\theta_{i,m}|}$$

and $\theta_{i,m} = (i+1)\pi/(m+2)$. The key idea is to compare $H_m(\theta)$ with the function $F_m(\theta)$, defined by (1.9), that was studied in [5] and [7].

Simon J. Smith

For simplicity, write θ_i for $\theta_{i,m}$. Now, $H_m(0) = F_m(0) = 0$ and if $0 \le j \le (m-1)/2$, then $H_m(\theta_j) = F_m(\theta_j) = 1$. Suppose, then, that $\theta \in (0, \pi/2]$ and $\theta_j < \theta < \theta_{j+1}$ for some $j \in \{-1, 0, \dots, (m-1)/2\}$. Thus

$$F_m(\theta) = \frac{|\sin(m+2)\theta|}{m+2} \left[\sum_{i=0}^{j} \frac{\sin\theta_i}{\cos\theta_i - \cos\theta} + \sum_{i=j+1}^{m-j-1} \frac{\sin\theta_i}{\cos\theta - \cos\theta_i} + \sum_{i=m-j}^{m} \frac{\sin\theta_i}{\cos\theta - \cos\theta_i} \right],$$

where the first and last sums vanish if j = -1 and the middle sum vanishes if j = (m-1)/2. By combining terms using $\theta_{m-i} = \pi - \theta_i$, it follows that

$$F_m(\theta) = \frac{2|\sin(m+2)\theta|}{m+2} \left[\sum_{i=0}^j \frac{\sin 2\theta_i}{\cos 2\theta_i - \cos 2\theta} + 2\sum_{i=j+1}^{(m-1)/2} \frac{\sin \theta_i \cos \theta}{\cos 2\theta - \cos 2\theta_i} \right].$$

Therefore, by (2.13),

$$F_m(\theta) - H_m(\theta) = \frac{4|\sin(m+2)\theta|}{m+2} \sum_{i=j+1}^{(m-1)/2} \frac{\sin\theta_i(\cos\theta - \cos\theta_i)}{\cos2\theta - \cos2\theta_i}$$

Observe that all terms in the summation are positive, so $H_m(\theta) \leq F_m(\theta)$, with equality if and only if j = (m - 1)/2 (i.e. when the sum contains no terms).

Now, from the above results,

(2.14)
$$F_m(\pi/2) = H_m(\pi/2) \le \sup_{0 \le \theta \le \pi/2} H_m(\theta) \le \sup_{0 \le \theta \le \pi/2} F_m(\theta) = \|L_m^{(2)}\|$$

Thus, by the expansion (1.10) for $F_n(\pi/2)$ if *n* is odd and (1.11), it follows that

$$\sup_{0 \le \theta \le \pi/2} H_m(\theta) = \frac{2}{\pi} \log m + \frac{2}{\pi} \left(\log \frac{4}{\pi} + \gamma \right) + o(1).$$

Since m = 2n + 1 we conclude from (1.8) and (2.12) that

$$\begin{aligned} \|L_n^{(4)}\| &= \frac{2}{\pi} \log n + \frac{2}{\pi} \left(\log \frac{8}{\pi} + \gamma \right) + o(1) \\ &= \|L_n^{(1)}\| + o(1), \end{aligned}$$

which verifies Conjecture 1.2.

(2.15)

To conclude, we remark that (2.15) can be interpreted as

(2.16)
$$||L_n^{(4)}|| = ||L_{2n+1}^{(2)}|| + o(1)$$

However, if Conjecture 1.1 is true, then equality holds throughout (2.14), and so the o(1) term in (2.16) vanishes. Thus we make the following conjecture.

Conjecture 2.3. The norms of the interpolating projections $L_n^{(2)}$ and $L_n^{(4)}$ are related by

$$||L_n^{(4)}|| = ||L_{2n+1}^{(2)}||.$$

150

References

- [1] Brutman, L., *Lebesgue functions for polynomial interpolation a survey*, Ann. Numer. Math. **4** (1997), 111-127
- [2] Ehlich, H. and Zeller, K., Auswertung der Normen von Interpolationsoperatoren, Math. Ann. 164 (1966), 105-112
- [3] Kilgore, T., Some remarks on weighted interpolation, in *Approximation Theory* (N. K. Govil *et al.*, Eds), Marcel Dekker, New York, 1998, pp. 343-351
- [4] Luttmann, F. W. and Rivlin, T. J., Some numerical experiments in the theory of polynomial interpolation, IBM J. Res. Develop. 9 (1965), 187-191
- [5] Mason, J. C. and Elliott, G. H., Constrained near-minimax approximation by weighted expansion and interpolation using Chebyshev polynomials of the second, third, and fourth kinds, Numer. Algorithms 9 (1995), 39-54
- [6] Mason, J. C. and Handscomb, D. C., Chebyshev Polynomials, Chapman & Hall/CRC, Boca Raton, 2003
- [7] Smith, S. J., On the projection norm for a weighted interpolation using Chebyshev polynomials of the second kind, Math. Pannon. 16 (2005), 95-103

LA TROBE UNIVERSITY DEPARTMENT OF MATHEMATICS AND STATISTICS P.O. BOX 199, BENDIGO, VICTORIA 3552, AUSTRALIA *E-mail address*: s.smith@latrobe.edu.au