Oscillation theorems for non-linear difference equation of the second order

E. M. Elabbasy and Sh. R. Elzeiny

ABSTRACT.

We obtain some oscillation criteria for the solutions of the non-linear difference equation of the form

$$
\Delta\left(r_{n} \psi\left(x_{n}\right) f\left(\Delta x_{n}\right)\right)+q_{n} \varphi\left(g\left(x_{n+1}\right), r_{n+1} \psi\left(x_{n+1}\right) f\left(\Delta x_{n+1}\right)\right)=0, n=0,1,2, \ldots,
$$

where $u \varphi(u, v)>0$ for all $u \neq 0, x g(x)>0$ and $x f(x)>0$ for all $x \neq 0, \psi(x)>0$ for all $x \in R,\left\{r_{n}\right\}_{n=0}^{\infty}$ is sequence of positive real numbers and $\left\{q_{n}\right\}_{n=0}^{\infty}$ is sequence of real values. The relevance of our theorems becomes clear due to a carefully selected examples.

1. Introduction

This paper concerned with oscillation of the solution to the second order nonlinear difference equation of the form

$$
\begin{equation*}
\Delta\left(r_{n} \psi\left(x_{n}\right) f\left(\Delta x_{n}\right)\right)+q_{n} \varphi\left(g\left(x_{n+1}\right), r_{n+1} \psi\left(x_{n+1}\right) f\left(\Delta x_{n+1}\right)\right)=0 \tag{E}
\end{equation*}
$$

$n=0,1, \ldots$, where Δ denotes the forward difference operator $\Delta x_{n}=x_{n+1}-x_{n}$ for any sequence $\left\{x_{n}\right\}$ of real numbers, the function φ is defined and continuous on $R \times R$ with $u \varphi(u, v)>0$ and $\frac{\partial \varphi(u, v)}{\partial v} \leq 0$ for all $u \neq 0$ and $v \in R$ and $\varphi(\lambda u, \lambda v)=\lambda \varphi(u, v)$, where $\lambda \in(0, \infty)$, the function $g: R \rightarrow R$ satisfies $x g(x)>0$ for all $x \neq 0$ and $g(u)-g(v)=$ $g_{1}(u, v)(u-v)^{\delta}$ for $u, v \neq 0, \delta>0$ is the ratio of odd positive integers, $g_{1}(u, v) \geq 0$ and $g(u) \geq g(v)$ iff $u \geq v, \psi$ and f are continuous functions on R with $\psi(x)>0$ for all $x \in R$ and $x f(x)>0$ for all $x \neq 0,\left\{r_{n}\right\}_{n=0}^{\infty}$ is a sequence of positive real numbers and $\left\{q_{n}\right\}_{n=0}^{\infty}$ is a sequence of real valued.

A solution of (E) is a nontrivial real a sequence $\left\{x_{n}\right\}$ satisfying Equation (E) for $n \geq 0$. A solution $\left\{x_{n}\right\}$ of (E) is said to be oscillatory if it is neither eventually positive nor eventually negative, otherwise it is nonoscillatory. Equation (E) is said to be oscillatory if all its solutions are oscillatory.

A prototype of equation (E) is the equation
$\left(E_{1}\right)$

$$
\Delta\left(r_{n} \psi\left(x_{n}\right)\left(\Delta x_{n}\right)^{\gamma}\right)+q_{n} \varphi\left(g\left(x_{n+1}\right), r_{n+1} \psi\left(x_{n+1}\right)\left(\Delta x_{n+1}\right)^{\gamma}\right)=0,
$$

$n=0,1,2, \ldots$, where $\gamma>0$ is the ratio of odd positive integers.
In recent years, the asymptotic behavior of second order non linear difference equations has been the subject of investigations by many authors, see e. g. [1-2, 4-7, 10-27].

A lot of work has been done on the following particular cases of (E)

$$
\begin{equation*}
\Delta\left(r_{n}\left(\Delta x_{n}\right)^{\gamma}\right)+q_{n} x_{n+1}^{\gamma}=0, n=0,1, \ldots, \tag{2}
\end{equation*}
$$

where $\gamma>0$ is the ratio of odd positive integers,
$\left(E_{3}\right)$

$$
\Delta\left(r_{n} \Delta x_{n}\right)+q_{n} g\left(x_{n+1}\right)=0, n=0,1, \ldots
$$

and
$\left(E_{4}\right)$

$$
\Delta\left(r_{n} \psi\left(x_{n}\right) \Delta x_{n}\right)+q_{n} g\left(x_{n+1}\right)=0, n=0,1, \ldots .
$$

For the equation $\left(E_{2}\right)$, E. Thandapani and K. Ravi [22, Lemma 2], proved that, if there exist positive integers N_{0} and $N, N \geq N_{0}$ such that

$$
\begin{gather*}
\sum_{i=N_{0}}^{\infty} q_{i} \geq 0 \text { and } \sum_{i=N}^{\infty} q_{i}>0 \forall N \geq N_{0}, \tag{1.1}\\
\sum_{n=0}^{\infty}\left(\frac{1}{r_{n}}\right)^{\frac{1}{\gamma}}=\infty
\end{gather*}
$$

and $\left\{x_{n}\right\}$ is a non-oscillatory solution of equation $\left(E_{2}\right)$ such that $x_{n}>0$ for all $n \geq N$, then there exists an integer $N_{1} \geq N$ such that $\Delta x_{n}>0$ for all $n \geq N_{1}$.

The oscillatory behavior of the equation $\left(E_{3}\right)$ and particular cases of it were studied by many authors (e. g. see [13, $15,16,19,25,26]$).

El-Sheikh et al. [6], studied the oscillatory and nonoscillatory solutions of the equation $\left(E_{4}\right)$.

[^0]We remark that qualitative properties of the differential equation (E)

$$
\begin{equation*}
[r(t) \psi(x(t)) f(\dot{x}(t))]+q(t) \varphi(g(x(t)), r(t) \psi(x(t)) f(\dot{x}(t)))=0 \tag{1.3}
\end{equation*}
$$

when $r(t)=\psi(x)=1$ and $f(x)=g(x)=x$ have been considered by many authors. We mention in particular to Bihari [3] and Kartsatos [9].

In this paper, we intend to use the Riccati transformation technique for obtaining several new oscillation criteria for (E), which can be considered as the discrete analogues of the results in [3, 9].

2. Main Results

In this section, we will use the Riccati technique to establish sufficient conditions for the oscillation of (E).
Theorem 2.1. Assume that there exists a constant $C_{1} \in R_{+}$such that

$$
\begin{equation*}
\Phi(m)=\int_{0}^{m} \frac{d v}{\varphi(1, v)} \geq-C_{1} \text { for every } m \in R \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sum_{i=n_{0}}^{n-1} q_{i}=\infty \tag{2.5}
\end{equation*}
$$

Then every solution of equation (E) oscillates.
Proof. Suppose to the contrary that $\left\{x_{n}\right\}$ is a nonoscillatory solution of (E). Without loss of generality, we may assume that $\left\{x_{n}\right\}$ is an eventually positive solution of (E) such that $x_{n}>0, n \geq n_{0}$.
Define the sequence $\left\{w_{n}\right\}$ by

$$
w_{n}=\frac{r_{n} \psi\left(x_{n}\right) f\left(\Delta x_{n}\right)}{g\left(x_{n}\right)}, n \geq n_{0}
$$

Then, for all $n \geq n_{0}$, we have

$$
\Delta w_{n}=\frac{\Delta\left(r_{n} \psi\left(x_{n}\right) f\left(\Delta x_{n}\right)\right)}{g\left(x_{n+1}\right)}-r_{n} \psi\left(x_{n}\right) f\left(\Delta x_{n}\right) \frac{\Delta\left(g\left(x_{n}\right)\right)}{g\left(x_{n}\right) g\left(x_{n+1}\right)}
$$

This and (E) imply

$$
\Delta w_{n}=-\varphi\left(1, w_{n+1}\right) q_{n}-r_{n} \psi\left(x_{n}\right) f\left(\Delta x_{n}\right) \frac{g_{1}\left(x_{n+1}, x_{n}\right)\left(\Delta x_{n}\right)^{\delta}}{g\left(x_{n}\right) g\left(x_{n+1}\right)}
$$

Hence, for all $n \geq n_{0}$, we obtain

$$
\Delta w_{n} \leq-\varphi\left(1, w_{n+1}\right) q_{n}
$$

or

$$
\varphi\left(1, w_{n+1}\right) q_{n} \leq-\Delta w_{n}, n \geq n_{0}
$$

Dividing this inequality by $\varphi\left(1, w_{n+1}\right)>0$, we obtain

$$
\begin{equation*}
q_{n} \leq-\frac{\Delta w_{n}}{\varphi\left(1, w_{n+1}\right)}, n \geq n_{0} \tag{2.6}
\end{equation*}
$$

Summing 2.6 from n_{0} to $n-1$, we have

$$
\begin{equation*}
\sum_{m=n_{0}}^{n-1} q_{m} \leq-\sum_{l=n_{0}}^{n-1} \frac{\Delta w_{l}}{F\left(w_{l+1}\right)}, \text { where } F\left(w_{n}\right)=\varphi\left(1, w_{n}\right) \tag{2.7}
\end{equation*}
$$

Define $\delta(t)=w_{l}+(t-l) \Delta w_{l}, t \in[l, l+1]$. Then, we have one of the following two cases:
Case (1). If $\Delta w_{l} \geq 0$, then $w_{l} \leq \delta(t) \leq w_{l+1}$. Thus in view of the definition of the function φ, we get

$$
\begin{equation*}
\frac{\Delta w_{l}}{F\left(w_{l}\right)} \leq \frac{\delta^{\prime}(t)}{F(\delta(t))} \leq \frac{\Delta w_{l}}{F\left(w_{l+1}\right)} \tag{2.8}
\end{equation*}
$$

Case (2). If $\Delta w_{l} \leq 0$, then $w_{l+1} \leq \delta(t) \leq w_{l}$. So we can directly obtain 2.8. Now, by (2.7) and 2.8) we get

$$
\begin{align*}
\sum_{m=n_{0}}^{n-1} q_{m} & \leq-\int_{n_{0}}^{n} \frac{d(\delta(t))}{F(\delta(t))}=-\int_{\delta\left(n_{0}\right)}^{\delta(n)} \frac{d u}{\varphi(1, u)} \tag{2.9}\\
& \leq-\left[\Phi(\delta(n))-\Phi\left(\delta\left(n_{0}\right)\right)\right] \leq C_{1}+\Phi\left(\delta\left(n_{0}\right)\right)=C_{1}+\Phi\left(w_{n_{0}}\right)
\end{align*}
$$

Taking the limit superior on both sides for $\sqrt{2.9}$, we obtain

$$
\limsup _{n \rightarrow \infty} \sum_{i=n_{0}}^{n-1} q_{i}<\infty
$$

which contradicts 2.5. Hence, the proof is completed.
Theorem 2.2. Assume that $f(x) \geq b x$ for all $x \in R$ and for some constant $b>0$. Furthermore, assume that

$$
\begin{equation*}
\liminf _{|w| \rightarrow \infty} \varphi(1, w)=C>0 \tag{2.10}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{ \pm \varepsilon}\left(\frac{\psi(u)}{g(u)}\right) d u<\infty \text { for all } \varepsilon>0 \tag{2.12}
\end{equation*}
$$

$$
\begin{equation*}
\text { the function }\left(\frac{\psi}{g}\right) \text { is nonincreasing for all } x \neq 0 \tag{2.11}
\end{equation*}
$$

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sum_{m=n_{0}}^{n-1} \frac{1}{r_{m}}<\infty \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sum_{m=n_{0}}^{n-1}\left(\frac{1}{r_{m}}\left(\sum_{i=n_{0}}^{m-1} q_{i}\right)\right)=\infty . \tag{2.14}
\end{equation*}
$$

Then every solution of equation (E) oscillates.
Proof. Suppose to the contrary that $\left\{x_{n}\right\}$ is a nonoscillatory solution of (E). Without loss of generality, we may assume that $\left\{x_{n}\right\}$ is an eventually positive solution of (E) such that $x_{n}>0, n \geq n_{0}$. Define the sequence $\left\{w_{n}\right\}$ as in the proof of the previous theorem.

Following the same procedure, we get

$$
\begin{equation*}
q_{n} \leq-\frac{\Delta w_{n}}{\varphi\left(1, w_{n+1}\right)}, n \geq n_{0} \tag{2.15}
\end{equation*}
$$

Now, we have one of the following two cases
Case (1). If $\Delta w_{n} \geq 0$, then $w_{n+1} \geq w_{n} \geq w_{n_{0}}$.
Thus in view of the definition of the function φ, we get

$$
\begin{equation*}
-\frac{\Delta w_{n}}{F\left(w_{n+1}\right)} \leq-\frac{\Delta w_{n}}{F\left(w_{n_{0}}\right)}, n \geq n_{0} \tag{2.16}
\end{equation*}
$$

Case (2). If $\Delta w_{l} \leq 0$, then $w_{n+1} \leq w_{n} \leq w_{n_{0}}$.
So, by the definition of the function φ and the condition (2.10) we can directly obtain (2.16). Now, by (2.15) and (2.16), we get

$$
\sum_{l=n_{0}}^{n-1} q_{l} \leq-\frac{1}{F\left(w_{n_{0}}\right)} \sum_{l=n_{0}}^{n-1} \Delta w_{l}
$$

Then, for all $n \geq n_{0}$, we have

$$
\sum_{l=n_{0}}^{n-1} q_{l} \leq-\frac{1}{C_{0}}\left(w_{n}-w_{n_{0}}\right), \quad \text { where } F\left(w_{n_{0}}\right)=C_{0}>0
$$

Hence, for all $n \geq n_{0}$, we obtain

$$
\frac{w_{n}}{C_{0}} \leq \frac{w_{n_{0}}}{C_{0}}-\sum_{l=n_{0}}^{n-1} q_{l}=C_{2}-\sum_{l=n_{0}}^{n-1} q_{l}, \quad \text { where } \quad C_{2}=\frac{w_{n_{0}}}{C_{0}}
$$

Then,

$$
C_{0}^{-1} \frac{r_{n} \psi\left(x_{n}\right) f\left(\Delta x_{n}\right)}{g\left(x_{n}\right)}-C_{2} \leq-\sum_{l=n_{0}}^{n-1} q_{l} .
$$

Hence, for all $n \geq n_{0}$, we obtain

$$
\frac{b}{C_{0}}\left(\frac{\psi\left(x_{n}\right)}{g\left(x_{n}\right)}\right) \Delta x_{n}-\frac{C_{2}}{r_{n}} \leq C_{0}^{-1}\left(\frac{\psi\left(x_{n}\right)}{g\left(x_{n}\right)}\right) f\left(\Delta x_{n}\right)-\frac{C_{2}}{r_{n}} \leq-\frac{1}{r_{n}} \sum_{l=n_{0}}^{n-1} q_{l}
$$

Summing the above inequality from n_{0} to $n-1$, we have

$$
\begin{equation*}
C_{3} \sum_{l=n_{0}}^{n-1}\left(\frac{\psi\left(x_{l}\right)}{g\left(x_{l}\right)}\right) \Delta x_{l}-C_{2} \sum_{l=n_{0}}^{n-1} \frac{1}{r_{l}} \leq-\sum_{l=n_{0}}^{n-1}\left(\frac{1}{r_{l}} \sum_{m=n_{0}}^{l-1} q_{m}\right), \text { where } C_{3}=\frac{b}{C_{0}} . \tag{2.17}
\end{equation*}
$$

Define $\delta(t)=x_{l}+(t-l) \Delta x_{l}, t \in[l, l+1]$. Then we have one of the following two cases:

Case (1). If $\Delta x_{l} \geq 0$, then $x_{l} \leq \delta(t) \leq x_{l+1}$. Thus in view of the assumption (2.8) we get

$$
\begin{equation*}
\left(\frac{\psi\left(x_{l}\right)}{g\left(x_{l}\right)}\right) \Delta x_{l} \geq \frac{\psi(\delta(t))}{g(\delta(t))} \delta^{\prime}(t) \geq\left(\frac{\psi\left(x_{l+1}\right)}{g\left(x_{l+1}\right)}\right) \Delta x_{l} \tag{2.18}
\end{equation*}
$$

Case (2). If $\Delta x_{l} \leq 0$, then $x_{l+1} \leq \delta(t) \leq x_{l}$. So we can directly obtain 2.18. Now, by 2.17 and (2.18) we get

$$
C_{3} \int_{n_{0}}^{n}\left(\frac{\psi}{g}\right)(\delta(t)) d(\delta(t)) \leq C_{2} \sum_{l=n_{0}}^{n-1} \frac{1}{r_{l}}-\sum_{l=n_{o}}^{n-1}\left(\frac{1}{r_{l}} \sum_{m=n_{0}}^{l-1} q_{m}\right) .
$$

Then, for all $n \geq n_{0}$, we obtain

$$
C_{3} \int_{\delta\left(n_{0}\right)}^{\delta(n)} \frac{\psi(u)}{g(u)} d u \leq C_{2} \sum_{l=n_{0}}^{n-1} \frac{1}{r_{l}}-\sum_{l=n_{o}}^{n-1}\left(\frac{1}{r_{l}} \sum_{m=n_{0}}^{l-1} q_{m}\right)
$$

which implies that

$$
\int_{\delta\left(n_{0}\right)}^{\delta(n)} \frac{\psi(u)}{g(u)} d u \rightarrow-\infty \text { as } n \rightarrow \infty
$$

Now, if $\delta(n) \geq \delta\left(n_{0}\right)$ for large n, then $\int_{\delta\left(n_{0}\right)}^{\delta(n)} \frac{\psi(u)}{g(u)} d u \geq 0$, which a contradiction.
Hence, for large $n, \delta(n) \leq \delta\left(n_{0}\right)$, so

$$
-\int_{\delta(n)}^{\delta\left(n_{0}\right)} \frac{\psi(u)}{g(u)} d u \geq-\int_{0}^{\delta\left(n_{0}\right)} \frac{\psi(u)}{g(u)} d u>-\infty
$$

which is again a contradiction. This completes the proof of Theorem 2.2.
In the following, we state and prove some lemmas which will be needed later on.
Lemma 2.1. Assume that there exist positive integers N_{0} and $N, N \geq N_{0}$ such that

$$
\begin{equation*}
\sum_{i=N_{0}}^{\infty} q_{i} \geq 0 \text { and } \sum_{i=N}^{\infty} q_{i}>0, \forall N \geq N_{0} \tag{2.19}
\end{equation*}
$$

Then there exist an integer $N_{1} \geq N$ such that

$$
\sum_{i=N_{1}}^{n} q_{i} \geq 0, \quad \forall n>N_{1}
$$

The proof of the above lemma can be found in [7, lemma 2.1].
Lemma 2.2. In addition to the conditions (2.8) and 2.19 assume that

$$
\begin{align*}
F(u)-F(v) & =F_{1}(u, v)(u-v), \text { for } u, v \neq 0, F_{1}(u, v) \leq K_{2}<0 \text { and } \tag{2.20}\\
F(u) & \geq F(v) \text { iff } u \leq v, \text { where } F(w)=\varphi(1, w)
\end{align*}
$$

Also, assume that

$$
\begin{equation*}
\int_{0}^{ \pm \varepsilon}\left(\frac{\psi(u)}{g(u)}\right)^{\frac{1}{\gamma}} d u<\infty \text { for all } \varepsilon>0 \tag{2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left(\frac{1}{r_{n}}\right)^{\frac{1}{\gamma}}=\infty \tag{2.22}
\end{equation*}
$$

If $\left\{x_{n}\right\}$ is a non-oscillatory solution of equation $\left(E_{1}\right)$ such that $x_{n}>0$ for all $n \geq N$, then there exists an integer $N_{1} \geq N$ such that $\Delta x_{n}>0$ for all $n \geq N_{1}$.

Proof. If not, assume first that $\triangle x_{n}<0$ for all large n, say $n \geq N_{1} \geq N$. Without loss of generality, we may assume that 2.19 holds for $n \geq N_{1}$ and $q_{N_{1}} \geq 0$. Define

$$
\begin{equation*}
Q_{n}=\sum_{l=N_{1}}^{n} q_{l} \text { for } n \geq N_{1} \text { and } Q_{N_{1}-1}=0 \tag{2.23}
\end{equation*}
$$

We have then,

$$
\begin{aligned}
\sum_{l=N_{1}}^{n} q_{l} F\left(w_{l+1}\right) & =\sum_{l=N_{1}}^{n} F\left(w_{l+1}\right) \Delta Q_{l-1}=\sum_{l=N_{1}}^{n}\left[\Delta\left(F\left(w_{l}\right) Q_{l-1}\right)-Q_{l-1} \Delta F\left(w_{l}\right)\right] \\
& =F\left(w_{n+1}\right) Q_{n}-F\left(w_{N_{1}}\right) Q_{N_{1}-1}-\sum_{l=N_{1}}^{n} Q_{l-1} \Delta F\left(w_{l}\right) \\
& =F\left(w_{n+1}\right) Q_{n}-\sum_{l=N_{1}}^{n}\left(\left(F\left(w_{l+1}\right)-F\left(w_{l}\right)\right) Q_{l-1}\right) \\
& =F\left(w_{n+1}\right) Q_{n}-\sum_{l=N_{1}}^{n}\left(F_{1}\left(w_{l+1}, w_{l}\right) \Delta w_{l} Q_{l-1}\right) \\
& \geq-\sum_{l=N_{1}}^{n}\left(F_{1}\left(w_{l+1}, w_{l}\right) \Delta w_{l} Q_{l-1}\right), \text { where } w_{l}=\frac{r_{l} \psi\left(x_{l}\right)\left(\Delta x_{l}\right)^{\gamma}}{g\left(x_{l}\right)}
\end{aligned}
$$

From equation $\left(E_{1}\right)$, we get

$$
\sum_{l=N_{1}}^{n} \frac{\Delta\left(r_{l} \psi\left(x_{l}\right)\left(\Delta x_{l}\right)^{\gamma}\right)}{g\left(x_{l+1}\right)}-\sum_{l=N_{1}}^{n}\left(F_{1}\left(w_{l+1}, w_{l}\right) \Delta w_{l} Q_{l-1}\right) \leq 0
$$

Hence,

$$
\sum_{l=N_{1}}^{n} \Delta w_{l}-\sum_{l=N_{1}}^{n}\left(F_{1}\left(w_{l+1}, w_{l}\right) \Delta w_{l} Q_{l-1}\right) \leq 0
$$

Thus,

$$
w_{n+1}-w_{N_{1}}-\sum_{l=N_{1}}^{n}\left(F_{1}\left(w_{l+1}, w_{l}\right) \Delta w_{l} Q_{l-1}\right) \leq 0
$$

Then,

$$
\begin{equation*}
w_{n+1}-\sum_{l=N_{1}}^{n}\left(F_{1}\left(w_{l+1}, w_{l}\right) \Delta w_{l} Q_{l-1}\right) \leq 0 \tag{2.24}
\end{equation*}
$$

We define

$$
\begin{equation*}
h_{n+1}=w_{n+1}-\sum_{l=N_{1}}^{n} F_{1}\left(w_{l+1}, w_{l}\right) \Delta w_{l} Q_{l-1} . \tag{2.25}
\end{equation*}
$$

Then,

$$
\Delta h_{n+1}=\Delta w_{n+1}-F_{1}\left(w_{n+2}, w_{n+1}\right) \Delta w_{n+1} Q_{n}+F_{1}\left(w_{N_{1}+1}, w_{N_{1}}\right) \Delta w_{N_{1}} Q_{N_{1}-1}
$$

Thus,

$$
\begin{equation*}
\Delta h_{n+1}=\Delta w_{n+1}\left(1-F_{1}\left(w_{n+2}, w_{n+1}\right) Q_{n}\right) \tag{2.26}
\end{equation*}
$$

Assume that, $\Delta h_{n+1} \leq 0$ for all $n \geq N_{1}$. Since, $\left(1-F_{1}\left(w_{n+2}, w_{n+1}\right) Q_{n}\right)>0$ for all $n \geq N_{1}$,

$$
\begin{equation*}
\Delta w_{n+1} \leq 0, n \geq N_{1} \tag{2.27}
\end{equation*}
$$

Summing 2.27) from N_{1} to $n-1$, we obtain

$$
w_{n+1} \leq w_{N_{1}+1}<0, n \geq N_{1}
$$

Then, for all $n \geq N_{1}$, we have

$$
\left(\frac{\psi\left(x_{n+1}\right)}{g\left(x_{n+1}\right)}\right)^{\frac{1}{\gamma}} \Delta x_{n+1} \leq-\delta_{1}\left(\frac{1}{r_{n+1}}\right)^{\frac{1}{\gamma}}, \text { where } \delta_{1}=-\left(w_{N_{1}+1}\right)^{\frac{1}{\gamma}}>0
$$

Summing the above inequality from N_{1} to $n-1$, we have

$$
\begin{equation*}
\sum_{l=N_{1}}^{n-1}\left(\frac{\psi\left(x_{l+1}\right)}{g\left(x_{l+1}\right)}\right)^{\frac{1}{\gamma}} \Delta x_{l+1} \leq-\delta_{1} \sum_{l=N_{1}}^{n-1}\left(\frac{1}{r_{l+1}}\right)^{\frac{1}{\gamma}} \leq-\delta_{1} \sum_{l=N_{1}+1}^{n}\left(\frac{1}{r_{l}}\right)^{\frac{1}{\gamma}} \tag{2.28}
\end{equation*}
$$

Define $\delta(t)=x_{l+1}+(t-l) \Delta x_{l+1}, t \in[l+1, l+2]$. Since $\Delta x_{l+1}<0, x_{l+2} \leq \delta(t) \leq x_{l+1}$. Thus in view of the assumption 2.11, we get

$$
\frac{\psi\left(x_{l+2}\right)}{g\left(x_{l+2}\right)} \geq \frac{\psi(\delta(t))}{g(\delta(t))} \geq \frac{\psi\left(x_{l+1}\right)}{g\left(x_{l+1}\right)}
$$

Then

$$
\begin{equation*}
\frac{\psi\left(x_{l+2}\right)}{g\left(x_{l+2}\right)} \Delta x_{l+1} \leq \frac{\psi(\delta(t))}{g(\delta(t))} \delta(t) \leq \frac{\psi\left(x_{l+1}\right)}{g\left(x_{l+1}\right)} \Delta x_{l+1} . \tag{2.29}
\end{equation*}
$$

Now, by (2.28) and (2.29), we get

$$
\int_{n_{0}}^{n}\left(\frac{\psi(\delta(t))}{g(\delta(t))}\right)^{\frac{1}{\gamma}} d(\delta(t)) \leq-\delta_{1} \sum_{l=N_{1}+1}^{n}\left(\frac{1}{r_{l}}\right)^{\frac{1}{\gamma}} .
$$

Which implies that

$$
\int_{\delta\left(n_{0}\right)}^{\delta(n)}\left(\frac{\psi(u)}{g(u)}\right)^{\frac{1}{\gamma}} d u \rightarrow-\infty \text { as } n \rightarrow \infty .
$$

Since for all large $n, \Delta x_{n}<0, \delta(n)<\delta\left(n_{0}\right)$ for all large n, so

$$
-\int_{\delta(n)}^{\delta\left(n_{0}\right)}\left(\frac{\psi(u)}{g(u)}\right)^{\frac{1}{\gamma}} d u \geq-\int_{0}^{\delta\left(n_{0}\right)}\left(\frac{\psi(u)}{g(u)}\right)^{\frac{1}{\gamma}} d u>-\infty,
$$

which a contradiction.
Assume that $\Delta h_{n+1} \geq 0$ for all $n \geq N_{1}$. Since, $\left(1-F_{1}\left(w_{n+2}, w_{n+1}\right) Q_{n}\right)>0$ for all $n \geq N_{1}$,

$$
\Delta w_{n+1} \geq 0, n \geq N_{1} .
$$

Hence,

$$
-\varphi\left(1, w_{n+2}\right) q_{n+1}-r_{n+1} \psi\left(x_{n+1}\right)\left(\Delta x_{n+1}\right)^{\gamma} \frac{\Delta g\left(x_{n+1}\right)}{g\left(x_{n+1}\right) g\left(x_{n+1}\right)} \geq 0 .
$$

Then,

$$
-\varphi\left(1, w_{n+2}\right) q_{n+1} \geq 0 \text { for all } n \geq N_{1} .
$$

Since $\varphi\left(1, w_{n+2}\right)>0$,

$$
q_{n+1} \leq 0 \text { for all } n \geq N_{1} .
$$

Summing the above inequality from N_{1} to $n-1$, we have $\sum_{l=N_{1}}^{n-1} q_{l+1} \leq 0$.
Thus, $\sum_{l=N_{1}+1}^{n} q_{l} \leq 0$, which contradicts 2.19.
Next, assume that Δx_{n} is oscillatory for $n \geq N_{2} \geq N_{1} \geq N_{0}$. Then there exists a subsequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ with $\lim _{k \rightarrow \infty} n_{k}=\infty$ and such that $\Delta x_{n_{k}}=0, k=1,2,3, \ldots$,
Letting

$$
w_{n}=\frac{r_{n} \psi\left(x_{n}\right)\left(\Delta x_{n}\right)^{\gamma}}{g\left(x_{n}\right)}, n \geq N_{2} .
$$

Then, for all $n \geq N_{2}$, we obtain

$$
\Delta w_{n}=\frac{\Delta\left(r_{n} \psi\left(x_{n}\right)\left(\Delta x_{n}\right)^{\gamma}\right)}{g\left(x_{n+1}\right)}-\frac{r_{n} \psi\left(x_{n}\right)\left(\Delta x_{n}\right)^{\gamma} \Delta g\left(x_{n}\right)}{g\left(x_{n}\right) g\left(x_{n+1}\right)} .
$$

This and (E_{1}) imply

$$
\Delta w_{n} \leq-\varphi\left(1, w_{n+1}\right) q_{n}, n \geq N_{2} .
$$

Dividing this inequality by $\varphi\left(1, w_{n+1}\right)>0$, we obtain

$$
\begin{equation*}
q_{n} \leq-\frac{\Delta w_{n}}{\varphi\left(1, w_{n+1}\right)}, n \geq N_{2} . \tag{2.30}
\end{equation*}
$$

Summing (2.30) from n_{1} to $n_{k}-1$, we have

$$
\begin{equation*}
\sum_{l=n_{1}}^{n_{k}-1} q_{l} \leq-\sum_{l=n_{1}}^{n_{k}-1} \frac{\Delta w_{l}}{\varphi\left(1, w_{l+1}\right)} . \tag{2.31}
\end{equation*}
$$

By (2.8) and (2.31), we get

$$
\begin{aligned}
\sum_{l=n_{1}}^{n_{k}-1} q_{l} & \leq-\int_{n_{1}}^{n_{k}} \frac{d(\delta(t))}{F(\delta(t))} \leq-\int_{\delta\left(n_{1}\right)}^{\delta\left(n_{k}\right)} \frac{d u}{\varphi(1, u)}=-\int_{w_{n_{1}}}^{w_{n_{k}}} \frac{d u}{\varphi(1, u)} \\
& \leq-\int_{0}^{0} \frac{d u}{\varphi(1, u)} \leq 0
\end{aligned}
$$

which contradicts 2.19. Hence $\Delta x_{n}>0$ for all $n \geq N_{1}$.
Theorem 2.3. Suppose that $2.11,2.2,2.2 .20,2.21$ and 2.22 hold. Furthermore, assume that, there exists $\lambda \geq 1$ such that

$$
\begin{equation*}
\limsup _{m \longrightarrow \infty} \frac{1}{m^{\lambda}} \sum_{n=n_{0}}^{m-1}(m-n)^{\lambda} q_{n}=\infty . \tag{2.32}
\end{equation*}
$$

Then every solution of Eq. $\left(E_{1}\right)$ oscillates.
Proof. Suppose to the contrary that $\left\{x_{n}\right\}$ is a non oscillatory solution of $\left(E_{1}\right)$. Without loss of generality, we may assume that $\left\{x_{n}\right\}$ is an eventually positive solution of $\left(E_{1}\right)$, such that $x_{n}>0$ for all large n. In view of Lemma 2.2, we see that, there is some $n_{1} \geq n_{0}$ such that

$$
x_{n}>0, \Delta x_{n}>0, n \geq n_{1} .
$$

Define the sequence $\left\{w_{n}\right\}$ by

$$
w_{n}=\frac{r_{n} \psi\left(x_{n}\right)\left(\Delta x_{n}\right)^{\gamma}}{g\left(x_{n}\right)}, n \geq n_{1}
$$

Then $w_{n}>0$ and

$$
\Delta w_{n} \leq-\varphi\left(1, w_{n+1}\right) q_{n}
$$

Dividing this inequality by $\varphi\left(1, w_{n+1}\right)>0$, we obtain

$$
q_{n} \leq-\frac{\Delta w_{n}}{\varphi\left(1, w_{n+1}\right)}, n \geq n_{1}
$$

As in the proof of Theorem 2.2, we can obtain the following inequality

$$
\begin{equation*}
C_{0} \sum_{n=n_{1}}^{m-1}(m-n)^{\lambda} q_{n} \leq-\sum_{n=n_{1}}^{m-1}(m-n)^{\lambda} \Delta w_{n} \tag{2.33}
\end{equation*}
$$

But

$$
-\sum_{n=n_{1}}^{m-1}(m-n)^{\lambda} \Delta w_{n}=\left(m-n_{1}\right)^{\lambda} w_{n_{1}}-\sum_{n=n_{1}}^{m-1} w_{n+1}\left[(m-n)^{\lambda}-(m-n-1)^{\lambda}\right] .
$$

By means of the well-known inequality [8]

$$
x^{\beta}-y^{\beta} \geq \beta y^{\beta-1}(x-y) \text { for all } x \geq y>0 \text { and } \beta \geq 1,
$$

we have

$$
\begin{align*}
-\sum_{n=n_{1}}^{m-1}(m-n)^{\lambda} \Delta w_{n} & \leq\left(m-n_{1}\right)^{\lambda} w_{n_{1}}-\sum_{n=n_{1}}^{m-1} \lambda w_{n+1}(m-n-1)^{\lambda-1} \tag{2.34}\\
& \leq\left(m-n_{1}\right)^{\lambda} w_{n_{1}} .
\end{align*}
$$

Then, by (2.33) and (2.34), we get

$$
C_{0} \sum_{n=n_{1}}^{m-1}(m-n)^{\lambda} q_{n} \leq\left(m-n_{1}\right)^{\lambda} w_{n_{1}}
$$

which implies that

$$
C_{0} \frac{1}{m^{\lambda}} \sum_{n=n_{1}}^{m-1}(m-n)^{\lambda} q_{n} \leq\left(\frac{m-n_{1}}{m}\right)^{\lambda} w_{n_{1}} .
$$

Hence,

$$
\limsup _{m \longrightarrow \infty} \frac{1}{m^{\lambda}} \sum_{n=n_{1}}^{m-1}(m-n)^{\lambda} q_{n}<\infty
$$

which is contrary to (2.32). The proof is complete.

3. Examples

In this section, we give some examples which illustrate our main results.
Example 3.1. Consider the difference equation

$$
\begin{equation*}
\Delta\left(n\left(1+\left|x_{n}\right|\right)\left(\Delta x_{n}\right)^{3}\right)+16(2 n+1) e^{16 n} x_{n+1}^{3} e^{-\frac{n\left(1+\left|x_{n}\right|\right)\left(\Delta x_{n}\right)^{3}}{x_{n+1}^{3}}}=0, n \geq 1 \tag{3.35}
\end{equation*}
$$

Here, $r_{n}=n, q_{n}=16(2 n+1) e^{16 n}, \psi(x)=1+|x|, f(x)=x^{3}, g(x)=x^{3}$ and $\varphi(u, v)=u e^{-\frac{v}{u}}$. All conditions of Theorem 2.1 are satisfied, and hence, all solutions of equation 3.35) are oscillatory. In fact, $x_{n}=(-1)^{n}$ is such a solution of equation 3.35.

Example 3.2. Consider the difference equation

$$
\begin{equation*}
\Delta\left(n^{2}\left(\Delta x_{n}\right)\right)+2\left(2 n^{2}+2 n+1\right) x_{n+1}^{\frac{1}{3}}=0, n \geq 1 \tag{3.36}
\end{equation*}
$$

Here, $r_{n}=n^{2}, q_{n}=2\left(2 n^{2}+2 n+1\right), \psi(x)=1, f(x)=x, g(x)=x^{\frac{1}{3}}$ and $\varphi(u, v)=u$ and $\left[\inf _{|w| \rightarrow \infty} \varphi(1, w)=1\right]$. All conditions of Theorem 2.2 are satisfied, and hence, all solutions of equation 3.36) are oscillatory. In fact, $x_{n}=(-1)^{n}$ is such a solution of equation 3.36.

References

[1] Agarwal, R. P., Difference Equations and Inequalities, Marcel Dekker, New York, (1992)
[2] Agarwal, R. P. and Wong, P. J. Y., Advanced Topic in Difference Equations, Kluwer Academic, Dordrecht, (1997)
[3] Bihari, I., An oscillation theorem concerning the half linear differential equation of the second order, Magyar Tud. Akad. Mat. Kutato Int. Kozl. 8 (1963), 275-280
[4] Cheng, S. S., Hille-Wintner type comparison theorems for nonlinear difference equations, Funkcial. Ekvac. 37 (1994), 531-535
[5] Cheng, S. S. and Saker, S. H., Oscillation criteria for difference equations with damping terms, Appl. Math. and Comp. 148 (2004), 421-442
[6] El-Sheikh, M. M. A., Abd All, M. H. and Maghrabi, El., Oscillation and nonoscillation of nonlinear second order difference equations, J. Appl. Math. and Computing 21 (1-2) (2006), 203-214
[7] Erbe, L. H. and Zhang, B. G., Oscillation of second order linear difference equations, Chainese J. Math. 16 (1988), 239-252
[8] Hardy, G. H., Littlewood, J. E. and Polya, G., Inequalities, second ed., Cambridge Univ. Press, 1952
[9] Kartsatos, A. G., On oscillation of nonlinear equations of second order, J. Math. Anal. Appl. 24 (1968), 665-668
[10] Kelley, W. G. and Peterson, A. C., Difference Equations :An introduction with Applications, Academic Press, New York, (1991)
[11] Lakshmikanthan, L. and Trigiante, D., Difference Equations, Numerical Methods and Application, Academic Press, New York, (1988)
[12] Li, W. T. and Fan, X. L., Oscillation criteria for second-order nonlinear difference equations with damped term, Comp. Math. Appl. 37 (1999), 17-30
[13] Peng, M., Xu, Q., Huang, L. and Ge, W. G., Asymptotic and oscillatory behavior of solutions of certain second-order nonlinear difference equations, Comp. Math. Appl. 37 (1999), 9-18
[14] Peng, M., Ge, W. G. and Xu, Q., New criteria for the oscillation and existence of monotone solutions of second-order nonlinear difference equations, Appl. Math. Comp. 114 (2000), 103-114
[15] Szmanda, B., Oscillation theorems for nonlinear second-order difference equations, J. Math. Anal. Appl. 79 (1981), 90-95
[16] Szafranski, Z. and Szmanda, B., Oscillation theorems for some nonlinear defference equations, Appl. Math. Comp. 83 (1997), 43-52
[17] Thandapani, E., Gyori, I. and Lalli, B. S., An application of discrete inequality to second-order nonlinear oscillation, J. Math. Anal. Appl. 186 (1994), 200-208
[18] Thandapani, E. and Lalli, B. S., Oscillation criteria for a second-order damped difference equation, Appl. Math. Lett. 8 (1995), 1-6
[19] Thandapani, E. and Marian, S. L., The asymptotic behavior of solutions of nonlinear second-order difference equations, Appl. Math. Lett. 14 (2000), 611-616
[20] Thandapani, E. and Pandian, S., Asymptotic and oscillatory behavior of general nonlinear difference equations of second-order, Comp. Math. Appl. 36 (1998), 413-421
[21] Thandapani, E., Pandian, S. and Lelli, B. S., Oscillatory and nonoscillatory behavior of second-order functional difference equations, Appl. Math. Comp. 70 (1995), 53-66
[22] Thandapani, E. and Ravi, K., Oscillation of second-order half-linear difference equations, Appl. Math. Lett. 13 (2000), 43-49
[23] Thandapani, E., Ravi, K. and Graef, G. R., Oscillation theorems for quasilinear second-order difference equations, Comp. Math. Appl. 42 (2001), 687-694
[24] Wong, P. J. Y. and Agarwal, R. P., Oscillation and monotone solutions of second order quasilinear difference equations, Funkcial. Ekvac. 39 (1996), 491-517
[25] Zhang, B. G. and Chen, G. D., Oscillation of certain second order nonlinear difference equations, J. Math. Anal. Appl. 199 (1996), 841-872
[26] Zhang, Z. and Bi, P., Oscillation of second-order nonlinear difference equation with continuous variable, J. Math. Anal. Appl. 255 (2001), 349-357
[27] Zhang, G. and Cheng, S. S., A necessary and sufficient oscillation condition for the discrete Euler equation, Pan. Amer. Math. J. 9 (4) (1999), 29-34
Department of Mathematics
Faculty of Science
Mansoura University
MANSOURA 35516, EGYpt.
E-mail address: emelabbasy@mans. edu. eg
E-mail address: shrelzeiny@yahoo.com

[^0]: Received: 11.09.2008; In revised form: 16.02.2009; Accepted: 30.03.2009
 2000 Mathematics Subject Classification. 39A11.
 Key words and phrases. Second order, nonlinear, difference equations, oscillation.

