
CARPATHIAN J. MATH.
25 (2009), No. 1, 61 - 72

Online version available at http://carpathian.ubm.ro
Print Edition: ISSN 1584 - 2851 Online Edition: ISSN 1843 - 4401

Oscillation theorems for non-linear difference equation of the second order

E. M. ELABBASY and SH. R. ELZEINY

ABSTRACT.
We obtain some oscillation criteria for the solutions of the non-linear difference equation of the form

∆ (rnψ (xn) f (∆xn)) + qnϕ (g (xn+1) , rn+1ψ (xn+1) f (∆xn+1)) = 0, n = 0, 1, 2, ...,

where u ϕ (u, v)> 0 for all u 6= 0, x g (x) > 0 and xf (x) > 0 for all x 6= 0, ψ (x) > 0 for all x ∈ R, {rn}∞n=0 is sequence of positive real numbers
and {qn}∞n=0 is sequence of real values. The relevance of our theorems becomes clear due to a carefully selected examples.

1. INTRODUCTION

This paper concerned with oscillation of the solution to the second order nonlinear difference equation of the form

(E) ∆ (rnψ (xn) f (∆xn)) + qnϕ (g (xn+1) , rn+1ψ (xn+1) f (∆xn+1)) = 0,

n = 0, 1, ..., where ∆ denotes the forward difference operator ∆xn = xn+1−xn for any sequence {xn}of real numbers,

the function ϕ is defined and continuous on R × R with uϕ (u, v) > 0 and
∂ϕ (u, v)

∂v
≤ 0 for all u 6= 0 and v ∈ R and

ϕ (λu, λv) = λϕ (u, v), where λ ∈ (0,∞), the function g : R → R satisfies xg (x) > 0 for all x 6= 0 and g (u) − g (v) =

g1 (u, v) (u− v)
δ for u, v 6= 0, δ > 0 is the ratio of odd positive integers, g1 (u, v) ≥ 0 and g (u) ≥ g (v) iff u ≥ v, ψ and

f are continuous functions on R with ψ (x) > 0 for all x ∈ R and xf (x) > 0 for all x 6= 0, {rn}∞n=0 is a sequence of
positive real numbers and {qn}∞n=0 is a sequence of real valued.

A solution of (E) is a nontrivial real a sequence {xn} satisfying Equation (E) for n ≥ 0. A solution {xn} of (E) is
said to be oscillatory if it is neither eventually positive nor eventually negative, otherwise it is nonoscillatory.
Equation(E) is said to be oscillatory if all its solutions are oscillatory.

A prototype of equation (E) is the equation

(E1) ∆ (rnψ (xn) (∆xn)
γ
) + qnϕ (g (xn+1) , rn+1ψ (xn+1) (∆xn+1)

γ
) = 0,

n = 0, 1, 2, ..., where γ > 0 is the ratio of odd positive integers.
In recent years, the asymptotic behavior of second order non linear difference equations has been the subject of

investigations by many authors, see e. g. [1-2, 4-7, 10-27].
A lot of work has been done on the following particular cases of (E)

(E2) ∆ (rn (∆xn)
γ
) + qnx

γ
n+1 = 0, n = 0, 1, ...,

where γ > 0 is the ratio of odd positive integers,

(E3) ∆ (rn∆xn) + qng(xn+1) = 0, n = 0, 1, ...,

and

(E4) ∆ (rnψ (xn) ∆xn) + qng(xn+1) = 0, n = 0, 1, ... .

For the equation(E2) , E. Thandapani and K. Ravi [22, Lemma 2], proved that, if there exist positive integers N0 and
N, N ≥ N0 such that

(1.1)
∞∑

i=N0

qi ≥ 0 and
∞∑
i=N

qi > 0 ∀N ≥ N0,

(1.2)
∞∑
n=0

(
1

rn

) 1
γ

=∞,

and {xn} is a non-oscillatory solution of equation (E2) such that xn > 0 for all n ≥ N, then there exists an integer
N1 ≥ N such that ∆xn > 0 for all n ≥ N1.

The oscillatory behavior of the equation(E3) and particular cases of it were studied by many authors (e. g. see [13,
15, 16, 19, 25, 26]).

El-Sheikh et al. [6], studied the oscillatory and nonoscillatory solutions of the equation (E4) .

Received: 11.09.2008; In revised form: 16.02.2009; Accepted: 30.03.2009
2000 Mathematics Subject Classification. 39A11.
Key words and phrases. Second order, nonlinear, difference equations, oscillation.

61



62 E. M. Elabbasy and Sh. R. Elzeiny

We remark that qualitative properties of the differential equation (E)

(1.3)
[
r (t)ψ (x (t)) f(

·
x(t))

]·
+ q (t)ϕ(g (x (t)) , r (t)ψ (x (t)) f(

·
x (t))) = 0,

when r (t) = ψ (x) = 1 and f (x) = g (x) = x have been considered by many authors. We mention in particular to
Bihari [3] and Kartsatos [9].

In this paper, we intend to use the Riccati transformation technique for obtaining several new oscillation criteria
for (E) , which can be considered as the discrete analogues of the results in [3, 9].

2. MAIN RESULTS

In this section, we will use the Riccati technique to establish sufficient conditions for the oscillation of (E) .

Theorem 2.1. Assume that there exists a constant C1 ∈ R+ such that

(2.4) Φ (m) =

m∫
0

dv

ϕ (1, v)
≥ −C1 for every m ∈ R,

and

(2.5) lim sup
n→∞

n−1∑
i=n0

qi =∞.

Then every solution of equation (E) oscillates.

Proof. Suppose to the contrary that {xn} is a nonoscillatory solution of (E) . Without loss of generality, we may
assume that {xn} is an eventually positive solution of (E) such that xn > 0, n ≥ n0.
Define the sequence {wn} by

wn =
rnψ (xn) f (∆xn)

g (xn)
, n ≥ n0.

Then, for all n ≥ n0, we have

∆wn =
∆ (rnψ (xn) f (∆xn))

g (xn+1)
− rnψ (xn) f (∆xn)

∆ (g (xn))

g (xn) g (xn+1)
.

This and (E) imply

∆wn = −ϕ (1, wn+1) qn − rnψ (xn) f (∆xn)
g1 (xn+1, xn) (∆xn)

δ

g (xn) g (xn+1)
.

Hence, for all n ≥ n0, we obtain
∆wn ≤ −ϕ (1, wn+1) qn,

or
ϕ (1, wn+1) qn ≤ −∆wn, n ≥ n0.

Dividing this inequality by ϕ (1, wn+1) > 0, we obtain

(2.6) qn ≤ −
∆wn

ϕ (1, wn+1)
, n ≥ n0.

Summing (2.6) from n0 to n− 1, we have

(2.7)
n−1∑
m=n0

qm ≤ −
n−1∑
l=n0

∆wl
F (wl+1)

, where F (wn) = ϕ (1, wn) .

Define δ (t) = wl + (t− l) ∆wl, t ∈ [l, l + 1]. Then, we have one of the following two cases:

Case (1). If ∆wl ≥ 0, then wl ≤ δ (t) ≤ wl+1. Thus in view of the definition of the function ϕ, we get

(2.8)
∆wl
F (wl)

≤ δ′ (t)

F (δ (t))
≤ ∆wl
F (wl+1)

.

Case (2). If ∆wl ≤ 0, then wl+1 ≤ δ (t) ≤ wl. So we can directly obtain (2.8). Now, by (2.7) and (2.8) we get

n−1∑
m=n0

qm ≤ −
n∫

n0

d (δ (t))

F (δ (t))
= −

δ(n)∫
δ(n0)

du

ϕ (1, u)
(2.9)

≤ −[Φ (δ (n))− Φ (δ (n0))] ≤ C1 + Φ (δ (n0)) = C1 + Φ (wn0
) .

Taking the limit superior on both sides for (2.9), we obtain

lim sup
n→∞

n−1∑
i=n0

qi <∞,
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which contradicts (2.5). Hence, the proof is completed. �

Theorem 2.2. Assume that f (x) ≥ bx for all x ∈ R and for some constant b > 0. Furthermore, assume that

(2.10) lim inf
|w|→∞

ϕ (1, w) = C > 0,

(2.11) the function
(
ψ

g

)
is nonincreasing for all x 6= 0,

(2.12)

±ε∫
0

(
ψ(u)

g(u)

)
du <∞ for all ε > 0,

(2.13) lim sup
n→∞

n−1∑
m=n0

1

rm
<∞,

and

(2.14) lim sup
n→∞

n−1∑
m=n0

(
1

rm

(
m−1∑
i=n0

qi

))
=∞.

Then every solution of equation (E) oscillates.

Proof. Suppose to the contrary that {xn} is a nonoscillatory solution of (E) . Without loss of generality, we may
assume that {xn} is an eventually positive solution of (E) such that xn > 0, n ≥ n0. Define the sequence {wn} as in
the proof of the previous theorem.

Following the same procedure, we get

(2.15) qn ≤ −
∆wn

ϕ (1, wn+1)
, n ≥ n0.

Now, we have one of the following two cases
Case (1). If ∆wn ≥ 0, then wn+1 ≥ wn ≥ wn0

.
Thus in view of the definition of the function ϕ, we get

(2.16) − ∆wn
F (wn+1)

≤ − ∆wn
F (wn0

)
, n ≥ n0.

Case (2). If ∆wl ≤ 0, then wn+1 ≤ wn ≤ wn0 .
So, by the definition of the function ϕ and the condition (2.10) we can directly obtain (2.16). Now, by (2.15) and (2.16),
we get

n−1∑
l=n0

ql ≤ −
1

F (wn0
)

n−1∑
l=n0

∆wl.

Then, for all n ≥ n0, we have
n−1∑
l=n0

ql ≤ −
1

C0
(wn − wn0

) , where F (wn0
) = C0 > 0.

Hence, for all n ≥ n0, we obtain

wn
C0
≤ wn0

C0
−

n−1∑
l=n0

ql = C2 −
n−1∑
l=n0

ql, where C2 =
wn0

C0
.

Then,

C−10

rnψ (xn) f (∆xn)

g (xn)
− C2 ≤ −

n−1∑
l=n0

ql.

Hence, for all n ≥ n0, we obtain

b

C0

(
ψ (xn)

g (xn)

)
∆xn −

C2

rn
≤ C−10

(
ψ (xn)

g (xn)

)
f(∆xn)− C2

rn
≤ − 1

rn

n−1∑
l=n0

ql.

Summing the above inequality from n0 to n− 1, we have

(2.17) C3

n−1∑
l=n0

(
ψ (xl)

g (xl)

)
∆xl − C2

n−1∑
l=n0

1

rl
≤−

n−1∑
l=n0

(
1

rl

l−1∑
m=n0

qm

)
, where C3 =

b

C0
.

Define δ (t) = xl + (t− l) ∆xl, t ∈ [l, l + 1]. Then we have one of the following two cases:
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Case (1). If ∆xl ≥ 0, then xl ≤ δ (t) ≤ xl+1. Thus in view of the assumption (2.8) we get

(2.18)
(
ψ (xl)

g (xl)

)
∆xl ≥

ψ (δ (t))

g (δ (t))
δ′ (t) ≥

(
ψ (xl+1)

g (xl+1)

)
∆xl.

Case (2). If ∆xl ≤ 0, then xl+1 ≤ δ (t) ≤ xl. So we can directly obtain (2.18). Now, by (2.17) and (2.18) we get

C3

n∫
n0

(
ψ

g

)
(δ (t)) d (δ (t)) ≤ C2

n−1∑
l=n0

1

rl
−

n−1∑
l=no

(
1

rl

l−1∑
m=n0

qm

)
.

Then, for all n ≥ n0, we obtain

C3

δ(n)∫
δ(n0)

ψ (u)

g (u)
du ≤ C2

n−1∑
l=n0

1

rl
−

n−1∑
l=no

(
1

rl

l−1∑
m=n0

qm

)
,

which implies that
δ(n)∫

δ(n0)

ψ (u)

g (u)
du→ −∞ as n→∞.

Now, if δ (n) ≥ δ (n0) for large n, then

δ(n)∫
δ(n0)

ψ (u)

g (u)
du ≥ 0, which a contradiction.

Hence, for large n, δ (n) ≤ δ (n0) , so

−
δ(n0)∫
δ(n)

ψ (u)

g (u)
du ≥ −

δ(n0)∫
0

ψ (u)

g (u)
du > −∞,

which is again a contradiction. This completes the proof of Theorem 2.2. �

In the following, we state and prove some lemmas which will be needed later on.

Lemma 2.1. Assume that there exist positive integers N0 and N, N ≥ N0 such that

(2.19)
∞∑

i=N0

qi ≥ 0 and
∞∑
i=N

qi > 0 , ∀ N ≥ N0.

Then there exist an integer N1 ≥ N such that
n∑

i=N1

qi ≥ 0, ∀ n > N1.

The proof of the above lemma can be found in [7, lemma 2.1].

Lemma 2.2. In addition to the conditions (2.8) and (2.19) assume that

F (u)− F (v) = F1 (u, v) (u− v) , for u, v 6= 0, F1 (u, v) ≤ K2 < 0 and(2.20)

F (u) ≥ F (v) iff u ≤ v, where F (w) = ϕ (1, w) .

Also, assume that

(2.21)

±ε∫
0

(
ψ (u)

g (u)

) 1
γ

du <∞ for all ε > 0,

and

(2.22)
∞∑
n=0

(
1

rn

) 1
γ

=∞.

If {xn} is a non-oscillatory solution of equation (E1) such that xn > 0 for all n ≥ N , then there exists an integer N1 ≥ N such
that ∆xn > 0 for all n ≥ N1.

Proof. If not, assume first that 4xn < 0 for all large n, say n ≥ N1 ≥ N. Without loss of generality, we may assume
that (2.19) holds for n ≥ N1 and qN1 ≥ 0. Define

(2.23) Qn =

n∑
l=N1

ql for n ≥ N1 and QN1−1 = 0.
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We have then,
n∑

l=N1

qlF (wl+1) =

n∑
l=N1

F (wl+1) ∆Ql−1 =

n∑
l=N1

[∆ (F (wl)Ql−1)−Ql−1∆F (wl)]

= F (wn+1)Qn − F (wN1)QN1−1 −
n∑

l=N1

Ql−1∆F (wl)

= F (wn+1)Qn −
n∑

l=N1

((F (wl+1)− F (wl))Ql−1)

= F (wn+1)Qn −
n∑

l=N1

(F1 (wl+1, wl) ∆wlQl−1)

≥ −
n∑

l=N1

(F1 (wl+1, wl) ∆wlQl−1) , where wl=
rlψ (xl) (∆xl)

γ

g (xl)
.

From equation (E1), we get
n∑

l=N1

∆ (rl ψ (xl) (∆xl)
γ
)

g (xl+1)
−

n∑
l=N1

(F1 (wl+1, wl) ∆wlQl−1) ≤ 0.

Hence,
n∑

l=N1

∆wl −
n∑

l=N1

(F1 (wl+1, wl) ∆wlQl−1) ≤ 0.

Thus,

wn+1 − wN1 −
n∑

l=N1

(F1 (wl+1, wl) ∆wlQl−1) ≤ 0.

Then,

(2.24) wn+1 −
n∑

l=N1

(F1 (wl+1, wl) ∆wlQl−1) ≤ 0.

We define

(2.25) hn+1 = wn+1 −
n∑

l=N1

F1 (wl+1, wl) ∆wlQl−1.

Then,
∆hn+1 = ∆wn+1 − F1 (wn+2, wn+1) ∆wn+1Qn + F1 (wN1+1, wN1) ∆wN1QN1−1.

Thus,

(2.26) ∆hn+1 = ∆wn+1 (1− F1 (wn+2, wn+1)Qn) .

Assume that, ∆hn+1 ≤ 0 for all n ≥ N1. Since, (1− F1 (wn+2, wn+1)Qn) > 0 for all n ≥ N1,

(2.27) ∆wn+1 ≤ 0, n ≥ N1.

Summing (2.27) from N1 to n− 1, we obtain

wn+1 ≤ wN1+1 < 0, n ≥ N1.

Then, for all n ≥ N1, we have(
ψ (xn+1)

g (xn+1)

) 1
γ

∆xn+1 ≤ −δ1
(

1

rn+1

) 1
γ

, where δ1 = −(wN1+1)
1
γ
> 0.

Summing the above inequality from N1 to n− 1, we have

(2.28)
n−1∑
l=N1

(
ψ (xl+1)

g (xl+1)

) 1
γ

∆xl+1 ≤ −δ1
n−1∑
l=N1

(
1

rl+1

) 1
γ

≤ −δ1
n∑

l=N1+1

(
1

rl

) 1
γ

.

Define δ (t) = xl+1 + (t− l) ∆xl+1, t ∈ [l + 1, l + 2] . Since ∆xl+1 < 0, xl+2 ≤ δ (t) ≤ xl+1. Thus in view of the
assumption (2.11), we get

ψ (xl+2)

g (xl+2)
≥ ψ (δ (t))

g (δ (t))
≥ ψ (xl+1)

g (xl+1)
.
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Then

(2.29)
ψ (xl+2)

g (xl+2)
∆xl+1 ≤

ψ (δ (t))

g (δ (t))
δ (t) ≤ ψ (xl+1)

g (xl+1)
∆xl+1.

Now, by (2.28) and (2.29), we get

n∫
n0

(
ψ (δ (t))

g (δ (t))

) 1
γ

d (δ (t)) ≤ −δ1
n∑

l=N1+1

(
1

rl

) 1
γ

.

Which implies that
δ(n)∫

δ(n0)

(
ψ (u)

g (u)

) 1
γ

du→ −∞ as n→∞.

Since for all large n, ∆xn < 0, δ (n) < δ (n0) for all large n, so

−
δ(n0)∫
δ(n)

(
ψ (u)

g (u)

) 1
γ

du ≥ −
δ(n0)∫
0

(
ψ (u)

g (u)

) 1
γ

du > −∞,

which a contradiction.
Assume that ∆hn+1 ≥ 0 for all n ≥ N1. Since, (1− F1 (wn+2, wn+1)Qn) > 0 for all n ≥ N1,

∆wn+1 ≥ 0, n ≥ N1.

Hence,

−ϕ (1, wn+2) qn+1 − rn+1ψ (xn+1) (∆xn+1)
γ ∆g (xn+1)

g (xn+1) g (xn+1)
≥ 0.

Then,

−ϕ (1, wn+2) qn+1 ≥ 0 for all n ≥ N1.

Since ϕ (1, wn+2) > 0,

qn+1 ≤ 0 for all n ≥ N1.

Summing the above inequality from N1 to n− 1, we have
n−1∑
l=N1

ql+1 ≤ 0.

Thus,
n∑

l=N1+1

ql ≤ 0 , which contradicts (2.19).

Next, assume that ∆xn is oscillatory for n ≥ N2 ≥ N1 ≥ N0. Then there exists a subsequence {nk}∞k=1 with
lim
k→∞

nk =∞ and such that ∆xnk = 0, k = 1, 2, 3, ...,

Letting

wn =
rnψ (xn) (∆xn)

γ

g (xn)
, n ≥ N2.

Then, for all n ≥ N2, we obtain

∆wn =
∆ (rnψ (xn) (∆xn)

γ
)

g (xn+1)
− rnψ (xn) (∆xn)

γ
∆g (xn)

g (xn) g (xn+1)
.

This and (E1) imply

∆wn ≤ −ϕ (1, wn+1) qn, n ≥ N2.

Dividing this inequality by ϕ (1, wn+1) > 0, we obtain

(2.30) qn ≤ −
∆wn

ϕ (1, wn+1)
, n ≥ N2.

Summing (2.30) from n1 to nk − 1, we have

(2.31)
nk−1∑
l=n1

ql ≤ −
nk−1∑
l=n1

∆wl
ϕ (1, wl+1)

.
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By (2.8) and (2.31), we get

nk−1∑
l=n1

ql ≤ −
nk∫
n1

d (δ (t))

F (δ (t))
≤ −

δ(nk)∫
δ(n1)

du

ϕ (1, u)
= −

wnk∫
wn1

du

ϕ (1, u)

≤ −
0∫

0

du

ϕ (1, u)
≤ 0,

which contradicts (2.19). Hence ∆xn > 0 for all n ≥ N1. �

Theorem 2.3. Suppose that (2.11), (2.19), (2.20), (2.21) and (2.22) hold. Furthermore, assume that, there exists λ ≥ 1 such
that

(2.32) lim sup
m−→∞

1

mλ

m−1∑
n=n0

(m− n)λqn =∞.

Then every solution of Eq. (E1) oscillates.

Proof. Suppose to the contrary that {xn} is a non oscillatory solution of (E1). Without loss of generality, we may
assume that {xn} is an eventually positive solution of (E1), such that xn > 0 for all large n. In view of Lemma 2.2, we
see that, there is some n1 ≥ n0 such that

xn > 0, ∆xn > 0, n ≥ n1.
Define the sequence {wn} by

wn =
rnψ(xn)(∆xn)γ

g(xn)
, n ≥ n1.

Then wn > 0 and
∆wn ≤ −ϕ(1, wn+1)qn.

Dividing this inequality by ϕ(1, wn+1) > 0, we obtain

qn ≤ −
∆wn

ϕ(1, wn+1)
, n ≥ n1.

As in the proof of Theorem 2.2, we can obtain the following inequality

(2.33) C0

m−1∑
n=n1

(m− n)λqn ≤ −
m−1∑
n=n1

(m− n)λ∆wn.

But

−
m−1∑
n=n1

(m− n)λ∆wn = (m− n1)λwn1
−

m−1∑
n=n1

wn+1

[
(m− n)λ − (m− n− 1)λ

]
.

By means of the well-known inequality [8]

xβ − yβ ≥ βyβ−1(x− y) for all x ≥ y > 0 and β ≥ 1,

we have

−
m−1∑
n=n1

(m− n)λ∆wn ≤ (m− n1)λwn
1
−

m−1∑
n=n1

λwn+1(m− n− 1)λ−1(2.34)

≤ (m− n1)λwn
1
.

Then, by (2.33) and (2.34), we get

C0

m−1∑
n=n1

(m− n)λqn ≤ (m− n1)λwn
1
,

which implies that

C0
1

mλ

m−1∑
n=n1

(m− n)λqn ≤
(
m− n1
m

)λ
wn

1
.

Hence,

lim sup
m−→∞

1

mλ

m−1∑
n=n1

(m− n)λqn <∞,

which is contrary to (2.32). The proof is complete. �
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3. EXAMPLES

In this section, we give some examples which illustrate our main results.

Example 3.1. Consider the difference equation

(3.35) ∆
(
n (1+|xn|) (∆xn)

3
)

+16 (2n+ 1) e16nx3n+1e
−n(1+|xn|)(∆xn)3

x3
n+1 =0, n ≥ 1.

Here, rn = n, qn = 16 (2n+ 1) e16n, ψ (x) = 1 + |x|, f (x) = x3, g (x) = x3 and ϕ (u, v) = ue−
v
u . All conditions of

Theorem 2.1 are satisfied, and hence, all solutions of equation (3.35) are oscillatory. In fact, xn = (−1)
n is such a

solution of equation (3.35).

Example 3.2. Consider the difference equation

(3.36) ∆
(
n2(∆xn)

)
+ 2(2n2 + 2n+ 1)x

1
3
n+1 = 0, n ≥ 1.

Here, rn = n2, qn = 2(2n2 + 2n + 1), ψ (x) = 1, f (x) = x, g (x) = x
1
3 and ϕ (u, v) = u and [ inf

|w|→∞
ϕ (1, w) = 1]. All

conditions of Theorem 2.2 are satisfied, and hence, all solutions of equation (3.36) are oscillatory. In fact, xn = (−1)
n

is such a solution of equation (3.36).
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