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A note on nonlinear connections on the cotangent bundle

ABSTRACT.

In this paper the problem of compatibility between a nonlinear connection and some other geometric structures on the cotangent bundle of a
manifold is studied. We prove that the notions of semi-Hamiltonian vector field on cotangent bundle and the metric nonlinear connection on
tangent bundle are dual structures, via Legendre transformation.

1. INTRODUCTION

The total space of the cotangent bundle 7 M can be studied using the same methods as in the case of tangent bun-
dle. However, in the case of cotangent bundle there exists some special geometric objects: Liouville-Hamilton vector
field, Liouville 1-form, canonical symplectic structure. It is well known that the cotangent bundle T M of a differentiable
manifold M plays a very important role in symplectic geometry and its applications, since this carries a canonical
symplectic structure induced by the Liouville form. The Hamiltonian formalism seems to be, in many ways, math-
ematically more straightforward that the Lagrangian formalism, because on the tangent bundle we do not have a
naturally symplectic structure. On the contrary, the tangent bundle has a naturally defined integrable tangent struc-
ture and semispray (second order differential equation vector field) which induces a nonlinear connection. In the
case of the cotangent bundle we do not have a canonical tangent structure or something similar to a semispray, but
there exist some dual objects, as adapted almost tangent structure 7 and J-regular vector fields.

In the present paper we study the problem of compatibility between a nonlinear connection and some other
geometric structures on the cotangent bundle of a manifold. In the first section the problem of metrizability of a
nonlinear connection, dynamical covariant derivative on the tangent bundle [1} 3| 5| 9, [17] and the preliminaries
results on the cotangent bundle [7| 12} [16, [18] are presented. The second section deals with the notion of non-
linear connection on T*M. Vari-ous aspects of this topic were investigated by many authors (see for instance
[2, 7,10, 11} 12} [13] [14) [15] [16] [18]). We present the notion of adapted almost tangent structure J and J-regular
vector field on T*M (an equivalent definition is given in [16]) and a nonlinear connection N induced by them is
naturally obtained. We define the torsion of a nonlinear connection on 7™M using the Frolicher-Nijenjuis bracket
and find its expression in local coordinates. This torsion vanishes for nonlinear connection A induced by a 7-regular
vector field. An almost complex structure is introduced and the integrability conditions in terms of torsion and
curvature of the connection is given.

In the section three, using a regular Hamiltonian on 7% M and Legendre transformation, we transfer many results
between cotangent and tangent spaces (see also [7, [12]). We find, in the other way (see [10} [12]), the expression of
a canonical symmetric nonlinear connection induced by a regular Hamiltonian. We prove that a metric nonlinear
connection on the tangent bundle and a semi-Hamiltonian vector field of the cotangent bundle are dual structures,
via Legendre transformation. Thus, a semispray on 7'M is transformed into a semi-Hamiltonian vector field on 7 M
if the nonlinear connection induced by semispray is metric. Converse is true only with an additionally condition. I
have to remark that a more general case involving Lie algebroids is given in [8] and the problem of metrizability for
nonlinear connection on the cotangent bundle could be studied.

1.1. Geometric structures on TM and T* M. Let M be a differentiable, n-dimensi-onal manifold and (T'M, 7, M) its
tangent bundle. If (z*) are the local coordinates on the domain U of a map on M, then the local coordinates on " (U)
are denoted (2%, y"), (i, j = 1,n). The vertical vector field C' = y* O?ﬂ' on T'M is called the Liouville vector field. A vector
field S € X(T'M) which satisfies JS = C is called a semispray on T'M, where J = 8‘21- ® dx" is the natural tangent
structure.

A nonlinear connection N is a horizontal distribution H, 7'M which is supplementary to the vertical distribution,
thatis 7,7M = V,TM & H,TM. The dynamical covariant derivative [3] that corresponds to a semispray S and a
nonlinear connection N is defined on vertical subbundle by V : (VT M) — I'(VT M) through

0
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and the following properties are satisfied

V(X +Y)=VX+VY, VX,YeT(VIM),
V(fX)=S(f)X + fVX, VX eT(VTM), Vfe F(TM).

For a pseudo-Riemannian metric g the dynamical covariant derivative is given by
Vg(X,Y) = S5(g(X,Y)) - g(VX,Y) - g(X,VY),

which in local coordinates leads to

o 0 & &
Vg <ayi7 ayﬂ) = 5(9ij) — gikNj — gr; N;'-

Let S be a semispray, N a nonlinear connection and V the associated dynamical covariant derivative, then the non-
linear connection is called metric or compatible with the metric tensor g if Vg = 0, that is

(1.1) S(g(X,Y)) = g(VX,Y) +g(X,VY), VX,Y e (VTM).

In local coordinates the previous relation is

(1.2) S(gi;) — ginNF — gryNF = 0.
The vector fields
6 0 0
Szt Ozt E Oy’

determines a local basis of the horizontal distribution on T'M. The vector fields {%, a%i}' i = 1,n determine the
Berwald basis on T'M with

R B RV A R BV )
dxi’ dad | Tt oyk’ Sz’ Oyl | oy oyk

U Sl dxt’

and its dual basis is given by (dz’,dy’) where 6y’ = dy* + Njda’. We know [4, 6] that if S = ¢’ 2+ 5 6?;77 is a
semispray then the automorphism

N =—-LgJ,
is a nonlinear connection on T'M with the coefficients given by

108
20yl

(1.3) Nj(z,y) =
For every regular Lagrangian on T'M there exist the Kern nonlinear connection with the coefficients given by (1.3),

where
. o OL 0L
i g 2 k
5= <6:cj amkayjy ) ’

which is a metric nonlinear connection (see [3]).
If (T*M, T, M) is the cotangent bundle then the local coordinates on 7= (U) are denoted (z*, p;), (i,j = 1,n). The

0
natural basis on T M is given by (

92 a@) . We have the following geometric objects

(1.4) c* :pig, 0 = pidr’, w=df=dp; Adx’,

where (dz’, dp;) is the dual natural basis. The following properties hold:
1° C* is a vertical vector field, globally defined on T* M, called the Liouville-Hamilton vector field.
2° The 1-form 6 is globally defined on 7" M and is called the Liouville 1-form.
3° w is a symplectic structure, called canonical.

The Poisson bracket {-, -} on T*M, is defined by

of 99  0dg Of

Vf,g € F(T*M).

In the following by a d-tensor field we mean a tensor field on 7 M whose components, under a change of coordinates
on T* M, behave like the components of a tensor field on M.
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2. NONLINEAR CONNECTION ON THE COTANGENT BUNDLE

On the cotangent bundle T* M there exists the integrable vertical distribution V,,7*M, u € T*M generated locally

by the basis (%), i = 1,n. A nonlinear connection  is a horizontal distribution H,T*M which is supplementary

to the vertical distribution, that is T,,7*M = V,,T*M @& H,T*M. If N is a nonlinear connection then on the every

domain of the local chart 77! (U), the adapted basis of the horizontal distribution H7* M has the form
] 0 0
@ 5ai 0w Mgy,

where N;;(z, p) are the coefficients of the nonlinear connection . The dual adapted basis is

(22) (5pi = dpi — ./V;]d.%‘]
The system of vector fields ( s aipj) defines the local Berwald basis on 7% M. We consider the nonlinear connection
N and denote
1
(2.3) Tij = 5N = Nji)-

Definition 2.1. The nonlinear connection A" on 7* M is called symmetric if
whX,hY)=0, X, Y eX(T"M),
where h is the horizontal projector induced by nonlinear connection.

Locally, we obtain that the nonlinear connection is symmetric if and only if 7;; = 0, thatis N;; = Nj;. The following
equations hold

6 0 0 6 0 ON; 0
24 - —| = Riij 7, L — | =— )
@4) [&U“ &rﬂ] " Ok {&vl 8pj] dp; Op,
NG 0N
25 Rijp = —2 — —=.
(2.5) kT oxd
The curvature of the nonlinear connection A" on T*M is given by = —N,;, where h is the horizontal projector
induced by A" and N, = 1[h, h] is the Nijenhuis tensor associated to &. In local coordinates we obtain
1 0 ; ;
= —— sy — K J
Q 2R2]k8pk ® dx* AN dx’,

where R, is given by (2.5) and is called the curvature d-tensor of the nonlinear connection .
The curvature of a nonlinear connection is an obstruction to the integrability of the horizontal distribution. Using
(2.4), it results that the horizontal distribution is integrable if and only if the curvature vanishes.

Definition 2.2. An almost tangent structure on the total space T* M is a morphism 7 : X (T*M) — X(T*M) of rank
n such that 72 = 0. The almost tangent structure is called adapted if

ImJ =KerJ =VT*M.

Locally, an adapted almost tangent structure has the form
;0
(2.6) J =tijdz' @ —,
J apj
where ¢;;(z, p) is a d-tensor field of rank n.
Proposition 2.1. The adapted almost tangent structure J is integrable if and only if
ot otk

2.7 =
@7 Opx, Op;

where t; ;7% = §F.
Proof. We consider the Nijenhuis tensor associated to the adapted almost tangent structure J
N7 (X,Y)=[TX,JY] - J[ITXY] - TIX,TY]+ T?[X,Y], VXY € X(T"M)

and locally, we obtain
No (9 9N _(, Os_, Olis\ 0
T\ozi"0zi )~ \"*op,  Fopi ) ops’

0 0 0 0
Ns (aap) =Ns (apap) =0

R
ik = tjk .
ope 7" opy,

Thus J is integrable if and only if
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We multiply this equation with ¢*” and using the fact that

o o, O Bty OO
Opr " opr” Opk " opr’
we obtain tiktﬁ@ = tirtis E But t -ktm% = t -Stikat—kr
Opk TE opy, TE O 7 oy
it results
Definition 2.3. The adapted almost tangent structure .7 is called symmetric if
(2.8) w(IJX,Y)=w(JY, X).

Locally, this relation is equivalent with the symmetry of the tensor ¢;;(x, p).

If g is a pseudo-Riemannian metric on the vertical subbundle VT*M, then there exists a unique adapted almost

tangent structure J on T* M such that
(29) g(jX,jY):—UJ(jX,Y), X,Y € X(T*M)7
and we say that 7 is induced by the metric g.
Locally, if we consider
g(x,p) = g dp; @ dp;,
then (2.9) implies that "/ = g/.

A symmetric adapted almost tangent structure on 7* M induces a pseudo-Riemannian metric on the vertical subbun-

dle, by @9).

Definition 2.4. The torsion of a nonlinear connection A" on T*M is defined by 7 = [7, h], where h is the horizontal

projector and [J, ] is the Frolicher-Nijenhuis bracket
[jvh}(Xa Y) = [an hY] + [th jY] + j[Xa Y} - j[Xv hY]_

Locally, we consider

= -Tip=— Q@dx* ANda’,
23k§k®x/\x

and by straightforward computation, it results

ONji vy ONik | Otj  Otiy

Ops 75 Op, ozt bxd’

Let us consider the F(T*M)—linear application F : X (T*M) — X(T*M) defined by
(2.11) FhrX)=JX, FUX)=-hX, XeX(T"M).

We obtain

(2.10) Tijk = tis

F2(hX) = F(J(hX)) = —hX, F*(JX)=F(-hX)=-7JX,

0 0 0 S
_, 9 _ 45 9%
F (5561) big p;’ F (81),-) t Sxd’

These equations lead to the following results:

Proposition 2.2. The map F has the properties:
i) F is an almost complex structure, F? = —1Id.
i1) The local expression of F is given by

S
Pty ® da! — 7 — @ dp;.

Y opi oa
Proposition 2.3. The almost complex structure F' is integrable if and only if
ot; ot;
2.12 ik =0, Rijs=tip—2" —tjp—0r.
( ) T_jk‘ WL ik 8pk; ik 8]9]9

Proof. Let us consider the Nijenhuis tensor of the almost complex structure N . We set
0 9 s O 0
Np <(5xi’ (5333> = Nijw + Nz‘j(k)ﬁipka

6 0 Gk O G 9
Ne (2, L) N0k NGO 2
F(éx“@pj) v 5a:k+ i) 9py,’

o 0 o 6 0
N L _Z ) s jkN v v
" <5p1-’ 3%‘) e F(ézs’ 5ac’<?)’
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These components are given by

ot; ot;
k sk
N7 = Tijst™, Nyjs) = tikﬁj}j —tjk apl: — Rijs,

Nlj(k) = N,ES)TtsjtkT7 N,Iij = NE(Srz)trkt‘]s7

hence N vanishes, if and only if hold. O
Remark 2.1. A nonlinear connection on 7*M is a morphism N : X(T*M) — X (T* M) which satisfies

(2.13) IN=J, NIJT=-J.

From [16] we have:

Definition 2.5. Let J be the adapted almost tangent structure on T*M. A vector field X € X (T*M) is called J-
regular if it satisfies the equation

(2.14) JX,JY|=-JY, VY eX(T"M).
Locally, a vector field on T* M given in local coordinates by
; 0 0
is J-regular if and only if
- agj
. tY =
(2.15) ap:’

where t;;t/% = §F.

Remark 2.2. If the equation J[X, JY]| = —JY is satisfied, for any Y € X (T*M), with the condition rank[%] =n,
then J is an integrable structure.
Indeed, we have
ot o 9gd oM
Opr  Opdpi  OpiOpx  Op;’
and using it results that J is integrable. From [16] we set:

Theorem 2.1. Let J be an adapted tangent structure and X a J -regular vector field on T* M. Then
(2.16) N=-LxJT,
is a nonlinear connection on T* M.

In local coordinates the coefficients of the above nonlinear connection are given by

1 ox; ok
2.17 ij — = tiij—t 1 —th .
Proposition 2.4. The torsion of the nonlinear connection N' = —L x J vanishes.

Proof. From the expression of the horizontal projector h = 1 (Id — N') we obtain

T =194 = 5 (17.1d) + 7. ~1X.7)) = 5[7.17. X]],
and using the Jacobi identity, it results 7 = 0. O
A vector field X on T* M is called a Hamiltonian vector field if it is J-regular and
(2.18) Lxw = 0.
In local coordinates, for X = &° 82 ; + Xia%iv then the condition 1} is equivalent with [16]
087 _ 3fi, b % :_3@’ ) 3ij _ 3Xj.
Op;  Op; Op; ox’ oxd Ozt

Definition 2.6. A vector field X € X(T*M) is a semi-Hamiltonian vector field if it is J-regular and satisfies the
relation

(2.19) a)

iv(Lxw) =0, Yvel(VT*M).
where i, is the interior product.

By direct computation, it results that in the case of semi-Hamiltonian vector field, only the conditions (2.19) a) and
b) are satisfied.
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3. HAMILTONIAN FORMALISM

A Hamilton space [12] is a pair (M, H) where M is a differentiable, n—dimensional manifolds and H is a function
on T* M with the properties:
1°H : (z,p) € T*M — H(z,p) € Ris differentiable on T* M and continuous on the null section of the projection
T:T*"M — M.
2° The Hessian of H with respect to p; is nondegenerate
(3.1) g7 = 827[{, rank Hgij(x,p)H =n, onT*M = T*M\{0}.
OpiOp;

—~—

3° d-tensor field g% (x, p) has constant signature on 7*M.
Every Hamiltonian H on T*M induces a pseudo-Riemannian metric g;; with g;;¢’F = §F and ¢’* given by l) on
VT* M. It induces a unique adapted almost tangent structure, denoted

8])]‘ ’

such that is satisfied. Moreover Jp is symmetric and integrable, because is fulfilled. A J-regular vector
field induced by the regular Hamiltonian H is given by

_OH 0 )

~op o oy
The relation between the symplectic structure w and the Poisson bracket {-, -} can be given using the notion of Hamil-
tonian system. A Hamiltonian system is a triple (T*M, w, H) formed by the cotangent bundle T*M, the canonical
symplectic structure w and a differentiable Hamiltonian, which satisfies the properties:

1° There exists a unique Hamiltonian vector field Xy € X' (T M) such that

T = gijda’ @

(3.2) Xu

ix aW = —dH 5
(ixyw is the interior product) given by
_ o9 oH 9
© Op; 0t Ozt Op;
2° The integral curves of the Hamiltonian vector field X are given by Hamilton’s equations
dx? _OH  dp; B OH
dt  Op;’ dt Ozt

Xo

(3.3)

or, equivalently
dz’
dt
The Theorem 2.1 leads to the following result:

i dpi _
—{H,l’}, dt _{H7pz}

Corollary 3.1. The symmetric nonlinear connection
(34) N = —~Lx,Tn,
has the coefficients given by

1 O’H O°H
(3.5) Nij = 5 ({gijaH} - (gik OprOTI + 9jk 8pk3xi>> ’

and is called the canonical nonlinear connection of the Hamilton space (M, H).

This connection has been introduced by R. Miron [10], using the Legendre transformation defined by H and the
canonical nonlinear connection of the Lagrange space, dual to (M, H).

3.1. The duality between Lagrangian and Hamiltonian formalism. For convenience, we will denote by (z%,y") the
coordinates in a local chart on TM and by (¢*, p;) the coordinates in a local chart on 7* M . Let us consider the regular
Hamiltonian H (g, p) on T* M which induces a local diffeomorphism ® : T*M — T M given by

i i i gi _OH
(3.6) v=ds v =8 =5
and ®~! has the following components

where

(3.8) L(z,y) = ¢y — H(g,p),
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is the Legendre transformation. From the condition for @~ to be the inverse of ® we obtain [16]

9G; _ 9Gi _ og*
(3.9) By o = gij, 907 ° Q= 9k
where ) 5
5 0¢ 0°H ik k
i _ — gl — Sh
Opi  OpiOp;’ 99 -
We have 5 5
d, — (qtk -1\ Y
g 0 ok 4\ 0
,1i 0 o1 o 0 ot o9

® - = A~ * - = = —0Okh = 7 >
* oyt Ik Opk ort ¢ Jhh 0q* Opy,
where @, is the tangent application of ®.
Theorem 3.2. Let X bea J-regular vector fieldon T* M and ® : T* M — T M the diffeomorphism induced by the Hamiltonian

H. Then the vector field ®, X is a semispray on T'M whose induced nonlinear connection N is the image by ® of the connection
N induced by X on T* M.

Proof. We consider X = &'-2; + p; B%i a J-regular vector field on 7* M and from (3.10) it results

9q
(0 [0k )\ 0 ko -1y 0
:(p*X: ¢ - n @ e i v @ —_ y
° ¢ (3$’+(8qzo o (g™ )83/’“
and using we obtain
_ i 9 k0
5=y Oxt +5 oyk’
where i i
;0¢ ¢
Fod =¢—— 4 pi=>.
A

We denote by ® the application induced by @ at the level of tensor fields, and using (3.10) we have

~ 0 . b )
7T = (g;;®7 ') @, O dgd) = — @dzt =

which leads to N N N
N=—-Ls]=—LxPT =—-2(LxT) =DN.

that is the nonlinear connection N on T'M is the image of nonlinear connection A on T* M by application ®. O

The previous theorem shows that the decomposition VI™*M @& HT* M induced by the nonlinear connection N on
T*M is mapped by @, into the decomposition VI'M @& HT M induced by N. It implies (see also [7,[16])

Corollary 3.2. The following equations hold

58 I B
) k
is s s 6<Z -1
(313) R,’jkg = Rjk o (b, Rjkaiys = ka od y
j o¢? _ 9¢i
J —_-5 . 1 _
(3.14) N/ o® = 7 Nijod " = 5ai”

Proof. We have

and on the other hand
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and it results (3.12). Next, because ® ! is a diffeomorphism, we obtain

] 0 0
-1/ 7 -1/ > _ pke-1( 2
|:(I)* (51'%)’(1)* ((Sil?] ):| sz(b* (ayk)v

J J § 9 9]
(1)71 : (I)fl i — _ | = Ry;
|: * ((SLUZ)’ * ((SI'J ):| |:5q“5qﬂ] R]kapk7
and using (3.10) we obtain (3.13). O

The next result shows the relation between the metric nonlinear connection on TM and the semi-Hamiltonian
vector field on 7™M, via Legendre transformation.

Theorem 3.3. Let us consider a semispray S on TM and ®~' : TM — T*M the diffeomorphism induced by a reqular
Hamiltonian H. ThenY = ®1S is a semi-Hamiltonian vector field on T* M if and only if the nonlinear connection N = —Lg.J
induced by semispray on T M is metric and

0Gi 6¢;

Sxi  dxt’

(3.15)

Proof. We consider a semispray S = y

-0
+ 5*— on TM and from (3.10) it results

oxt oy’

_ 0 o og o
Ple =g —Elgpi—— 4+ S'gip | —.

. 3 3q2+( 59@3[11 + gk) O

This, together with the conditions (2.19) b) and (3.10), is equivalent with

(0¢G O Rk dg; dg;
’“7< s <k+7gn+§laif+sl gk)zo,

oxk  Oxt  Oyk oy
and using we obtain
G O
(316) 5uk ~ o = Slow) = 2Nigui

and it results (interchanging i with k)
S(gix) — Nigii — Nigu. = 0,
(which means that N on T'M is a metric nonlinear connection), and

0G Ok _ nn 0%k _ p\n OGi

dxk Ozt Loyl Ryt
where, g;; = 9¢;/0y?, which leads to
0Gi _ Gk
dzk dxt
Converselly, if is satisfied and NV is a metric nonlinear connection, then we obtain which ends the proof. O
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