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A note on nonlinear connections on the cotangent bundle

L. POPESCU

ABSTRACT.
In this paper the problem of compatibility between a nonlinear connection and some other geometric structures on the cotangent bundle of a
manifold is studied. We prove that the notions of semi-Hamiltonian vector field on cotangent bundle and the metric nonlinear connection on
tangent bundle are dual structures, via Legendre transformation.

1. INTRODUCTION

The total space of the cotangent bundle T ∗M can be studied using the same methods as in the case of tangent bun-
dle. However, in the case of cotangent bundle there exists some special geometric objects: Liouville-Hamilton vector
field, Liouville 1-form, canonical symplectic structure. It is well known that the cotangent bundle T ∗M of a differentiable
manifold M plays a very important role in symplectic geometry and its applications, since this carries a canonical
symplectic structure induced by the Liouville form. The Hamiltonian formalism seems to be, in many ways, math-
ematically more straightforward that the Lagrangian formalism, because on the tangent bundle we do not have a
naturally symplectic structure. On the contrary, the tangent bundle has a naturally defined integrable tangent struc-
ture and semispray (second order differential equation vector field) which induces a nonlinear connection. In the
case of the cotangent bundle we do not have a canonical tangent structure or something similar to a semispray, but
there exist some dual objects, as adapted almost tangent structure J and J -regular vector fields.

In the present paper we study the problem of compatibility between a nonlinear connection and some other
geometric structures on the cotangent bundle of a manifold. In the first section the problem of metrizability of a
nonlinear connection, dynamical covariant derivative on the tangent bundle [1, 3, 5, 9, 17] and the preliminaries
results on the cotangent bundle [7, 12, 16, 18] are presented. The second section deals with the notion of non-
linear connection on T ∗M . Vari-ous aspects of this topic were investigated by many authors (see for instance
[2, 7, 10, 11, 12, 13, 14, 15, 16, 18]). We present the notion of adapted almost tangent structure J and J -regular
vector field on T ∗M (an equivalent definition is given in [16]) and a nonlinear connection N induced by them is
naturally obtained. We define the torsion of a nonlinear connection on T ∗M using the Frölicher-Nijenjuis bracket
and find its expression in local coordinates. This torsion vanishes for nonlinear connectionN induced by a J -regular
vector field. An almost complex structure is introduced and the integrability conditions in terms of torsion and
curvature of the connection is given.

In the section three, using a regular Hamiltonian on T ∗M and Legendre transformation, we transfer many results
between cotangent and tangent spaces (see also [7, 12]). We find, in the other way (see [10, 12]), the expression of
a canonical symmetric nonlinear connection induced by a regular Hamiltonian. We prove that a metric nonlinear
connection on the tangent bundle and a semi-Hamiltonian vector field of the cotangent bundle are dual structures,
via Legendre transformation. Thus, a semispray on TM is transformed into a semi-Hamiltonian vector field on T ∗M
if the nonlinear connection induced by semispray is metric. Converse is true only with an additionally condition. I
have to remark that a more general case involving Lie algebroids is given in [8] and the problem of metrizability for
nonlinear connection on the cotangent bundle could be studied.

1.1. Geometric structures on TM and T ∗M . Let M be a differentiable, n-dimensi-onal manifold and (TM, π,M) its
tangent bundle. If (xi) are the local coordinates on the domain U of a map onM, then the local coordinates on π

−1

(U)

are denoted (xi, yi), (i, j = 1, n). The vertical vector field C = yi ∂
∂yi on TM is called the Liouville vector field. A vector

field S ∈ X (TM) which satisfies JS = C is called a semispray on TM, where J = ∂
∂yi ⊗ dx

i is the natural tangent
structure.
A nonlinear connection N is a horizontal distribution HuTM which is supplementary to the vertical distribution,
that is TuTM = VuTM ⊕ HuTM . The dynamical covariant derivative [3] that corresponds to a semispray S and a
nonlinear connection N is defined on vertical subbundle by∇ : Γ(V TM)→ Γ(V TM) through

∇
(
Xi ∂

∂yi

)
=
(
S(Xi) +N i

jX
j
) ∂

∂yi
.
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and the following properties are satisfied

∇(X + Y ) = ∇X +∇Y, ∀X,Y ∈ Γ(V TM),
∇(fX) = S(f)X + f∇X, ∀X ∈ Γ(V TM), ∀f ∈ F(TM).

For a pseudo-Riemannian metric g the dynamical covariant derivative is given by

∇g(X,Y ) = S(g(X,Y ))− g(∇X,Y )− g(X,∇Y ),

which in local coordinates leads to

∇g
(
∂

∂yi
,
∂

∂yj

)
= S(gij)− gikNk

j − gkjNk
i .

Let S be a semispray, N a nonlinear connection and ∇ the associated dynamical covariant derivative, then the non-
linear connection is called metric or compatible with the metric tensor g if∇g = 0, that is

(1.1) S(g(X,Y )) = g(∇X,Y ) + g(X,∇Y ), ∀X,Y ∈ Γ(V TM).

In local coordinates the previous relation is

(1.2) S(gij)− gikNk
j − gkjNk

i = 0.

The vector fields
δ

δxi
=

∂

∂xi
−N j

i

∂

∂yj
,

determines a local basis of the horizontal distribution on TM . The vector fields { δ
δxi ,

∂
∂yi }, i = 1, n determine the

Berwald basis on TM with[
δ

δxi
,
δ

δxj

]
= Rkji

∂

∂yk
, Rkij =

δNk
i

δxj
−
δNk

j

δxi
,

[
δ

δxi
,
∂

∂yj

]
=
∂Nk

i

∂yj
∂

∂yk

and its dual basis is given by (dxi, δyi) where δyi = dyi + N i
jdx

j . We know [4, 6] that if S = yi ∂
∂xi + Si ∂

∂yi is a
semispray then the automorphism

N = −LSJ,

is a nonlinear connection on TM with the coefficients given by

(1.3) N i
j(x, y) = −1

2

∂Si

∂yj
.

For every regular Lagrangian on TM there exist the Kern nonlinear connection with the coefficients given by (1.3),
where

Si = gij
(
∂L

∂xj
− ∂2L

∂xk∂yj
yk
)
,

which is a metric nonlinear connection (see [3]).
If (T ∗M, τ,M) is the cotangent bundle then the local coordinates on τ−1(U) are denoted (xi, pi), (i, j = 1, n). The

natural basis on T ∗M is given by

(
∂

∂xi
,
∂

∂pi

)
. We have the following geometric objects

(1.4) C∗ = pi
∂

∂pi
, θ = pidx

i, ω = dθ = dpi ∧ dxi,

where (dxi, dpi) is the dual natural basis. The following properties hold:
1◦ C∗ is a vertical vector field, globally defined on T ∗M , called the Liouville-Hamilton vector field.
2◦ The 1-form θ is globally defined on T ∗M and is called the Liouville 1-form.
3◦ ω is a symplectic structure, called canonical.

The Poisson bracket {·, ·} on T ∗M , is defined by

(1.5) {f, g} =
∂f

∂pi

∂g

∂xi
− ∂g

∂pi

∂f

∂xi
, ∀f, g ∈ F(T ∗M).

In the following by a d-tensor field we mean a tensor field on T ∗M whose components, under a change of coordinates
on T ∗M , behave like the components of a tensor field on M .
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2. NONLINEAR CONNECTION ON THE COTANGENT BUNDLE

On the cotangent bundle T ∗M there exists the integrable vertical distribution VuT ∗M , u ∈ T ∗M generated locally
by the basis

(
∂
∂pi

)
, i = 1, n. A nonlinear connection N is a horizontal distribution HuT

∗M which is supplementary
to the vertical distribution, that is TuT ∗M = VuT

∗M ⊕ HuT
∗M. If N is a nonlinear connection then on the every

domain of the local chart τ−1(U), the adapted basis of the horizontal distribution HT ∗M has the form

(2.1)
δ

δxi
=

∂

∂xi
+Nij

∂

∂pj
,

where Nij(x, p) are the coefficients of the nonlinear connection N . The dual adapted basis is

(2.2) δpi = dpi −Nijdxj .

The system of vector fields
(

δ
δxi ,

∂
∂pj

)
defines the local Berwald basis on T ∗M . We consider the nonlinear connection

N and denote

(2.3) τij =
1

2
(Nij −Nji).

Definition 2.1. The nonlinear connection N on T ∗M is called symmetric if

ω(hX, hY ) = 0, X, Y ∈ X (T ∗M),

where h is the horizontal projector induced by nonlinear connection.

Locally, we obtain that the nonlinear connection is symmetric if and only if τij = 0, that isNij = Nji. The following
equations hold

(2.4)
[
δ

δxi
,
δ

δxj

]
= Rkij

∂

∂pk
,

[
δ

δxi
,
∂

∂pj

]
= −∂Nir

∂pj

∂

∂pr
,

(2.5) Rijk =
δNjk
δxi

− δNik
δxj

.

The curvature of the nonlinear connection N on T ∗M is given by Ω = −Nh where h is the horizontal projector
induced by N and Nh = 1

2 [h, h] is the Nijenhuis tensor associated to h. In local coordinates we obtain

Ω = −1

2
Rijk

∂

∂pk
⊗ dxi ∧ dxj ,

where Rijk is given by (2.5) and is called the curvature d-tensor of the nonlinear connection N .
The curvature of a nonlinear connection is an obstruction to the integrability of the horizontal distribution. Using
(2.4), it results that the horizontal distribution is integrable if and only if the curvature vanishes.

Definition 2.2. An almost tangent structure on the total space T ∗M is a morphism J : X (T ∗M)→ X (T ∗M) of rank
n such that J 2 = 0. The almost tangent structure is called adapted if

ImJ = KerJ = V T ∗M.

Locally, an adapted almost tangent structure has the form

(2.6) J = tijdx
i ⊗ ∂

∂pj
,

where tij(x, p) is a d-tensor field of rank n.

Proposition 2.1. The adapted almost tangent structure J is integrable if and only if

(2.7)
∂tij

∂pk
=
∂tkj

∂pi

where tijtjk = δki .

Proof. We consider the Nijenhuis tensor associated to the adapted almost tangent structure J
NJ (X,Y ) = [JX,J Y ]− J [JX,Y ]− J [X,J Y ] + J 2[X,Y ], ∀X,Y ∈ X (T ∗M)

and locally, we obtain

NJ

(
∂

∂xi
,
∂

∂xj

)
=

(
tik
∂tjs
∂pk

− tjk
∂tis
∂pk

)
∂

∂ps
,

NJ

(
∂

∂xi
,
∂

∂pj

)
= NJ

(
∂

∂pi
,
∂

∂pj

)
= 0.

Thus J is integrable if and only if

tik
∂tjs
∂pk

= tjk
∂tis
∂pk

.
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We multiply this equation with tsr and using the fact that

∂tjs
∂pk

tsr = −tjs
∂tsr

∂pk
,

∂tis
∂pk

tsr = −tis
∂tsr

∂pk
,

we obtain tiktjs
∂tsr

∂pk
= tjktis

∂tsr

∂pk
. But tjktis

∂tsr

∂pk
= tjstik

∂tkr

∂ps
and

it results (2.7) �

Definition 2.3. The adapted almost tangent structure J is called symmetric if

(2.8) ω(JX,Y ) = ω(J Y,X).

Locally, this relation is equivalent with the symmetry of the tensor tij(x, p).
If g is a pseudo-Riemannian metric on the vertical subbundle V T ∗M , then there exists a unique adapted almost
tangent structure J on T ∗M such that

(2.9) g(JX,J Y ) = −ω(JX,Y ), X, Y ∈ X (T ∗M),

and we say that J is induced by the metric g.
Locally, if we consider

g(x, p) = gijdpi ⊗ dpj ,
then (2.9) implies that tij = gij .
A symmetric adapted almost tangent structure on T ∗M induces a pseudo-Riemannian metric on the vertical subbun-
dle, by (2.9).

Definition 2.4. The torsion of a nonlinear connection N on T ∗M is defined by T = [J , h], where h is the horizontal
projector and [J , h] is the Frölicher-Nijenhuis bracket

[J , h](X,Y ) = [JX,hY ] + [hX,J Y ] + J [X,Y ]− J [X,hY ]−
−J [hX, Y ]− h[X,J Y ]− h[JX,Y ].

Locally, we consider

T =
1

2
Tijk

∂

∂pk
⊗ dxi ∧ dxj ,

and by straightforward computation, it results

(2.10) Tijk = tis
∂Njk
∂ps

− tjs
∂Nik
∂ps

+
δtjk
δxi
− δtik
δxj

.

Let us consider the F(T ∗M)−linear application F : X (T ∗M)→ X (T ∗M) defined by

(2.11) F (hX) = JX, F (JX) = −hX, X ∈ X (T ∗M).

We obtain
F 2(hX) = F (J (hX)) = −hX, F 2(JX) = F (−hX) = −JX,

F

(
δ

δxi

)
= tij

∂

∂pj
, F

(
∂

∂pi

)
= −tij δ

δxj
.

These equations lead to the following results:

Proposition 2.2. The map F has the properties:
i) F is an almost complex structure, F 2 = −Id.
ii) The local expression of F is given by

F = tij
∂

∂pi
⊗ dxj − tij δ

δxi
⊗ δpj .

Proposition 2.3. The almost complex structure F is integrable if and only if

(2.12) Tijk = 0, Rijs = tik
∂tjs
∂pk

− tjk
∂tis
∂pk

.

Proof. Let us consider the Nijenhuis tensor of the almost complex structure NF . We set

NF

(
δ

δxi
,
δ

δxj

)
= Nk

ij

δ

δxk
+ Nij(k)

∂

∂pk
,

NF

(
δ

δxi
,
∂

∂pj

)
= N

(j)k
i

δ

δxk
+ N

(j)
i(k)

∂

∂pk
,

NF

(
∂

∂pi
,
∂

∂pj

)
= −tistjkNF (

δ

δxs
,
δ

δxk
),
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These components are given by

Nk
ij = Tijstsk, Nij(s) = tik

∂tjs
∂pk

− tjk
∂tis
∂pk
−Rijs,

Nij(k) = N
(s)r
i tsjtkr, Nk

ij = N
(s)
i(r)t

rktjs,

hence NF vanishes, if and only if (2.12) hold. �

Remark 2.1. A nonlinear connection on T ∗M is a morphism N : X (T ∗M)→ X (T ∗M) which satisfies

(2.13) JN = J , NJ = −J .
From [16] we have:

Definition 2.5. Let J be the adapted almost tangent structure on T ∗M . A vector field X ∈ X (T ∗M) is called J -
regular if it satisfies the equation

(2.14) J [X,J Y ] = −J Y, ∀Y ∈ X (T ∗M).

Locally, a vector field on T ∗M given in local coordinates by

X = ξi(x, p)
∂

∂xi
+ χi(x, p)

∂

∂pi
,

is J -regular if and only if

(2.15) tij =
∂ξj

∂pi
,

where tijtjk = δki .

Remark 2.2. If the equation J [X,J Y ] = −J Y is satisfied, for any Y ∈ X (T ∗M), with the condition rank[∂ξ
j

∂pi
] = n,

then J is an integrable structure.

Indeed, we have
∂tij

∂pk
=

∂ξj

∂pk∂pi
=

∂ξj

∂pi∂pk
=
∂tkj

∂pi
,

and using (2.7) it results that J is integrable. From [16] we set:

Theorem 2.1. Let J be an adapted tangent structure and X a J -regular vector field on T ∗M . Then

(2.16) N = −LXJ ,
is a nonlinear connection on T ∗M .

In local coordinates the coefficients of the above nonlinear connection are given by

(2.17) Nij =
1

2

(
tik
∂χj
∂pk
− tkj

∂ξk

∂xi
−X(tij)

)
.

Proposition 2.4. The torsion of the nonlinear connection N = −LXJ vanishes.

Proof. From the expression of the horizontal projector h = 1
2 (Id−N ) we obtain

T = [J , h] =
1

2
([J , Id] + [J ,−[X,J ]) =

1

2
[J , [J , X]],

and using the Jacobi identity, it results T = 0. �

A vector field X on T ∗M is called a Hamiltonian vector field if it is J -regular and

(2.18) LXω = 0.

In local coordinates, for X = ξi ∂
∂xi + χi

∂
∂pi

, then the condition (2.18) is equivalent with [16]

(2.19) a)
∂ξj

∂pi
=
∂ξi

∂pj
, b)

∂χi
∂pj

= −∂ξ
j

∂xi
, c)

∂χi
∂xj

=
∂χj
∂xi

.

Definition 2.6. A vector field X ∈ X (T ∗M) is a semi-Hamiltonian vector field if it is J -regular and satisfies the
relation

iν(LXω) = 0, ∀ν ∈ Γ(V T ∗M).

where iν is the interior product.

By direct computation, it results that in the case of semi-Hamiltonian vector field, only the conditions (2.19) a) and
b) are satisfied.
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3. HAMILTONIAN FORMALISM

A Hamilton space [12] is a pair (M,H) where M is a differentiable, n−dimensional manifolds and H is a function
on T ∗M with the properties:

1◦ H : (x, p) ∈ T ∗M → H(x, p) ∈ R is differentiable on T ∗M and continuous on the null section of the projection
τ : T ∗M →M .

2◦ The Hessian of H with respect to pi is nondegenerate

(3.1) gij =
∂2H

∂pi∂pj
, rank

∥∥gij(x, p)∥∥ = n, on T̃ ∗M = T ∗M\{0}.

3◦ d-tensor field gij(x, p) has constant signature on T̃ ∗M.
Every Hamiltonian H on T ∗M induces a pseudo-Riemannian metric gij with gijg

jk = δki and gjk given by (3.1) on
V T ∗M . It induces a unique adapted almost tangent structure, denoted

JH = gijdx
i ⊗ ∂

∂pj
,

such that (2.9) is satisfied. Moreover JH is symmetric and integrable, because (2.7) is fulfilled. A J -regular vector
field induced by the regular Hamiltonian H is given by

(3.2) XH =
∂H

∂pi

∂

∂xi
+ χi

∂

∂pi
.

The relation between the symplectic structure ω and the Poisson bracket {·, ·} can be given using the notion of Hamil-
tonian system. A Hamiltonian system is a triple (T ∗M,ω,H) formed by the cotangent bundle T ∗M , the canonical
symplectic structure ω and a differentiable Hamiltonian, which satisfies the properties:

1◦ There exists a unique Hamiltonian vector field XH ∈ X (T ∗M) such that

iXH
ω = −dH,

(iXH
ω is the interior product) given by

XH =
∂H

∂pi

∂

∂xi
− ∂H

∂xi
∂

∂pi
.

2◦ The integral curves of the Hamiltonian vector field XH are given by Hamilton’s equations

(3.3)
dxi

dt
=
∂H

∂pi
,

dpi
dt

= −∂H
∂xi

or, equivalently
dxi

dt
= {H,xi}, dpi

dt
= {H, pi}.

The Theorem 2.1 leads to the following result:

Corollary 3.1. The symmetric nonlinear connection

(3.4) N = −LXH
JH ,

has the coefficients given by

(3.5) Nij =
1

2

(
{gij , H} −

(
gik

∂2H

∂pk∂xj
+ gjk

∂2H

∂pk∂xi

))
,

and is called the canonical nonlinear connection of the Hamilton space (M,H).

This connection has been introduced by R. Miron [10], using the Legendre transformation defined by H and the
canonical nonlinear connection of the Lagrange space, dual to (M,H).

3.1. The duality between Lagrangian and Hamiltonian formalism. For convenience, we will denote by (xi, yi) the
coordinates in a local chart on TM and by (qi, pi) the coordinates in a local chart on T ∗M . Let us consider the regular
Hamiltonian H(q, p) on T ∗M which induces a local diffeomorphism Φ : T ∗M → TM given by

(3.6) xi = qi, yi = ξi(q, p) =
∂H

∂pi
.

and Φ−1 has the following components

(3.7) qi = xi, pi = ζi(x, y) =
∂L

∂yi
,

where

(3.8) L(x, y) = ζiy
i −H(q, p),
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is the Legendre transformation. From the condition for Φ−1 to be the inverse of Φ we obtain [16]

(3.9)
∂ζi
∂yj
◦ Φ = gij ,

∂ζi
∂xj
◦ Φ = −gik

∂ξk

∂qj
,

where

gij =
∂ξj

∂pi
=

∂2H

∂pi∂pj
, gijg

jk = δki .

We have

Φ∗
∂

∂pi
= (gik ◦ Φ−1)

∂

∂yk
,

(3.10) Φ∗
∂

∂qi
=

∂

∂xi
+

(
∂ξk

∂qi
◦ Φ−1

)
∂

∂yk
,

Φ−1
∗

∂

∂yi
= gki

∂

∂pk
, Φ−1

∗
∂

∂xi
=

∂

∂qi
− gkh

∂ξh

∂qi
∂

∂pk
,

where Φ∗ is the tangent application of Φ.

Theorem 3.2. LetX be a J -regular vector field on T ∗M and Φ : T ∗M → TM the diffeomorphism induced by the Hamiltonian
H . Then the vector field Φ∗X is a semispray on TM whose induced nonlinear connection N is the image by Φ of the connection
N induced by X on T ∗M .

Proof. We consider X = ξi ∂
∂qi + ρi

∂
∂pi

a J -regular vector field on T ∗M and from (3.10) it results

S = Φ∗X = ξi
(

∂

∂xi
+

(
∂ξk

∂qi
◦ Φ−1

)
∂

∂yk
+ ρi

(
gik ◦ Φ−1

) ∂

∂yk

)
,

and using (3.6) we obtain

S = yi
∂

∂xi
+ Sk

∂

∂yk
,

where

Sk ◦ Φ = ξi
∂ξk

∂qi
+ ρi

∂ξk

∂pi
.

We denote by Φ̃ the application induced by Φ at the level of tensor fields, and using (3.10) we have

Φ̃J =
(
gijΦ

−1
)

Φ∗
∂

∂pi
⊗ Φ−1

∗ (dqj) =
∂

∂yi
⊗ dxi = J,

which leads to
N = −LSJ = −LΦ∗XΦ̃J = −Φ̃ (LXJ ) = Φ̃N .

that is the nonlinear connection N on TM is the image of nonlinear connection N on T ∗M by application Φ̃. �

The previous theorem shows that the decomposition V T ∗M ⊕HT ∗M induced by the nonlinear connection N on
T ∗M is mapped by Φ∗ into the decomposition V TM ⊕HTM induced by N . It implies (see also [7, 16])

Corollary 3.2. The following equations hold

(3.11) Φ∗
δ

δqi
=

δ

δxi
, Φ−1

∗
δ

δxi
=

δ

δqi
,

(3.12) Nij(q, p) = −
(
Nk
i (x, y) +

∂ξk

∂qi

)
gjk,

(3.13) Rijkg
is = Rsjk ◦ Φ, Rsjk

∂ζi
∂ys

= Rijk ◦ Φ−1,

(3.14) N j
i ◦ Φ = −δξ

j

δqi
, Nij ◦ Φ−1 = − δζi

δxj
.

Proof. We have

Φ−1
∗

(
δ

δxi

)
=

δ

δqi
=

∂

∂qi
+Nij

∂

∂pj
,

and on the other hand

Φ−1
∗

(
δ

δxi

)
= Φ−1

∗

(
∂

∂xi
−N j

i

∂

∂yj

)
=

∂

∂qi
− gkh

∂ξh

∂qi
∂

∂pk
−N j

i gkj
∂

∂pk
,
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and it results (3.12). Next, because Φ−1 is a diffeomorphism, we obtain[
Φ−1
∗ (

δ

δxi
),Φ−1
∗ (

δ

δxj
)

]
= RkijΦ

−1
∗ (

∂

∂yk
),[

Φ−1
∗ (

δ

δxi
),Φ−1
∗ (

δ

δxj
)

]
=

[
δ

δqi
,
δ

δqj

]
= Rijk

∂

∂pk
,

and using (3.10) we obtain (3.13). �

The next result shows the relation between the metric nonlinear connection on TM and the semi-Hamiltonian
vector field on T ∗M , via Legendre transformation.

Theorem 3.3. Let us consider a semispray S on TM and Φ−1 : TM → T ∗M the diffeomorphism induced by a regular
HamiltonianH . Then Y = Φ−1

∗ S is a semi-Hamiltonian vector field on T ∗M if and only if the nonlinear connectionN = −LSJ
induced by semispray on TM is metric and

(3.15)
δζi
δxj

=
δζj
δxi

,

with ζi = ∂L
∂yi .

Proof. We consider a semispray S = yi
∂

∂xi
+ Si

∂

∂yi
on TM and from (3.10) it results

Φ−1
∗ S = ξi

∂

∂qi
+

(
−ξigkj

∂ξj

∂qi
+ Sigik

)
∂

∂pk
.

This, together with the conditions (2.19) b) and (3.10), is equivalent with

gkj
(
∂ζi
∂xk
− ∂ζk
∂xi

+
∂Sl

∂yk
gli + ξl

∂gik
∂xl

+ Sl
∂gik
∂yl

)
= 0,

and using (1.3) we obtain

(3.16)
∂ζi
∂xk
− ∂ζk
∂xi

= S(gik)− 2N l
kgli,

and it results (interchanging i with k)
S(gik)−N l

kgli −N l
iglk = 0,

(which means that N on TM is a metric nonlinear connection), and
∂ζi
∂xk
− ∂ζk
∂xi

= N l
i

∂ζk
∂yl
−N l

k

∂ζi
∂yl

,

where, gij = ∂ζi/∂y
j , which leads to

δζi
δxk

=
δζk
δxi

.

Converselly, if 3.15 is satisfied and N is a metric nonlinear connection, then we obtain 3.16 which ends the proof. �
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