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Ćirić type cyclic contractions and their best cyclic periodic
points

MUSTAFA ASLANTAS, HAKAN SAHIN and ISHAK ALTUN

ABSTRACT. In the present paper, by introducing a new notion named as nonunique cyclic contractions, we
give some best proximity point results for such mappings. Then, we indicate the shortcoming of the concept
of best periodic proximity point which is defined for cyclic mapping by giving a simple example. To overcome
this deficiency, we give a more suitable definition named as best cyclic periodic point. Finally, we obtain some
best cyclic periodic point theorems, including the famous periodic point result of Ćirić [8], for nonunique cyclic
contractions. We also provide some illustrative and comparative examples to support our results.

1. INTRODUCTION

Metric fixed point theory started with a result known as Banach contraction princi-
ple in 1922 [4]. Then, a great number of results has been proved to obtain existence and
uniqueness of fixed points in this field [12, 14, 19]. However, especially in nonlinear sys-
tems which is one of the important application areas of fixed point theory the solution
may not be unique. Therefore, some results were obtained by Ćirić including two con-
cepts so called nonunique fixed point and periodic point [8]. In these results, Ćirić used
the following contraction conditions to obtain fixed point and periodic point results for
the self mapping F on the metric space (℧, ρ): for all ς, ξ ∈ ℧
(1.1) P (ς, ξ)−R(ς, ξ) ≤ kρ(ς, ξ)

and

(1.2) 0 < ρ(ς, ξ) < ε implies P (ς, ξ) ≤ kρ(ς, ξ)

respectively, where k in [0, 1), ε > 0,

P (ς, ξ) = min {ρ(Fς,Fξ), ρ(ς,Fς), ρ(ξ,Fξ)}
and

R(ς, ξ) = min {ρ(ς,Fξ), ρ(ξ,Fς)} .
Moreover, the mapping F may not be continuous unlike existing many results in the
literature [3, 16]. Because of these reasons, Ćirić’s results have been studied to generalize
and extend in different ways [2, 9, 13, 17, 18].

On the other hand, recently, a different generalization of fixed point theory has been
obtained by taking into account nonself mappings. Consider the nonself mapping F :
℘ → ℜ where ℘,ℜ ⊆ ℧. If ℘ ∩ ℜ = ∅, then F cannot have a fixed point. That is, there is
no point in ℧ such that ρ(ς,Fς) = 0. In this case, since ρ(ς,Fς) ≥ ρ(℘,ℜ) for each point ς
in ℧, it makes sense to search the existence of a point ς such that ρ(ς,Fς) = ρ(℘,ℜ). This
point is called a best proximity point which was introduced Basha and Veeramani [5]. It
can be easily seen that if we take ℘ = ℜ = ℧, every best proximity point result becomes
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a fixed point result. Therefore, there are many authors studying to show the existence
of best proximity point [20, 21]. In this sense, defining the cyclic contraction mapping,
Eldred and Veeramani obtained a best proximity point theorem for such mappings [10].
Thus, they generalized a number of fixed point and best proximity point results. After
that, the result of Eldred and Veeramani has been extended in various ways [1, 11]. Now,
we recall some basic definitions and properties which will be used in the rest of paper:

Definition 1.1. Let ℧ be a nonempty set, ς0 ∈ ℧ and F : ℧ → ℧ be a mapping. Then, the
set OF (ς0) =

{
ς0,Fς0,F2ς0, · · ·

}
is said to be orbit of ς0.

Definition 1.2 ([7]). Let (℧, ρ) be a metric space and F : ℧ → ℧ be a mapping. If Fςn →
Fς∗for every sequence {ςn} in OF (ς) for all ς ∈ ℧ such that ςn → ς∗, then F is called an
orbitally continuous mapping at ς∗ ∈ ℧. If F is orbitally continuous at every point of ℧,
then F is said to be orbitally continuous on ℧.

Definition 1.3. Let (℧, ρ) be a metric space, ς ∈ ℧ and F : ℧ → ℧ be a mapping. Then the
point ς is said to be a periodic point of F with period m ∈ N, if Fmς = ς where F0ς = ς
and Fmς = FFm−1ς .

Definition 1.4 ([15]). Let (℧, ρ) be a metric space, ℘, ℜ be nonempty subsets of ℧ and
F : ℘ ∪ ℜ → ℘ ∪ ℜ be a mapping. If the mapping F satisfies F(℘) ⊆ ℜ and F(ℜ) ⊆ ℘,
then it is called a cyclic mapping.

Definition 1.5 ([10]). Let (℧, ρ) be a metric space, ℘, ℜ be nonempty subsets of ℧ and
F : ℘ ∪ ℜ → ℘ ∪ ℜ be a cyclic mapping. If there exists a k in (0, 1) such that

ρ(Fς,Fξ) ≤ kρ(ς, ξ) + (1− k)ρ(℘,ℜ)

for all ς ∈ ℘ and ξ ∈ ℜ, then F is called a cyclic contraction mapping.

In this paper, we generalize some results in literature by combining the contractions
(1.1) and (1.2) of some nonunique fixed point and periodic point results defined by Ćirić
[8] with the cyclic contraction mappings for some best proximity point results given by
Eldred and Veeramani [10]. Firstly, we give a definition of nonunique cyclic contraction
mapping. Then, we obtain some best proximity point results for such mappings. We
also introduce another notion, the best cyclic periodic point, to prove some periodic point
results. Finally, we present some illustrative and comparative examples to support and
show the meaningful of our results.

2. BEST PROXIMITY POINT RESULTS

Let’s start to this section with the following definition:

Definition 2.6. Let (℧, ρ) be a metric space, ℘, ℜ be nonempty subsets of ℧ and F : ℘∪ℜ →
℘ ∪ ℜ be a cyclic mapping. If there exists a k in [0, 1) such that

(2.3) P (ς, ξ)−R(ς, ξ) ≤ kρ(ς, ξ) + (1− k)ρ(℘,ℜ)

for all ς ∈ ℘ and ξ ∈ ℜ, then F is called a nonunique cyclic contraction mapping.

Proposition 2.1. Let (℧, ρ) be a metric space, ℘, ℜ be nonempty subsets of ℧ and F : ℘ ∪ ℜ →
℘ ∪ ℜ be a nonunique cyclic contraction mapping. For any sequence {ςn} defined by ςn+1 = Fςn
with initial point ς0 ∈ ℘ ∪ ℜ, if there exists n0 ∈ N such that

ρ(ςn0
, ςn0+1) ≤ ρ(ςn0+1, ςn0+2),

then F has a best proximity point in ℘ ∪ ℜ.
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Proof. Without loss of generality assume ς0 ∈ ℘. Since F is a cyclic mapping, we have
{ς2n} ⊆ ℘ and {ς2n+1} ⊆ ℜ for constructed the sequence {ςn} by ςn+1 = Fςn. Assume
that there exists n0 ∈ N such that

ρ(ςn0 , ςn0+1) ≤ ρ(ςn0+1, ςn0+2).

Now we consider the following cases:
Case 1. Let n0 be odd. Since F is a nonunique cyclic contraction, for ς = ςn0+1 and

ξ = ςn0
, we have

P (ςn0+1, ςn0
)−R(ςn0+1, ςn0

) ≤ kρ(ςn0+1, ςn0
) + (1− k)ρ(℘,ℜ)

which implies that

min{ρ(ςn0+1, ςn0+2), ρ(ςn0
, ςn0+1)} ≤ kρ(ςn0

, ςn0+1) + (1− k)ρ(℘,ℜ).
Because of ρ(ςn0

, ςn0+1) ≤ ρ(ςn0+1, ςn0+2), we get

ρ(ςn0 , ςn0+1) ≤ kρ(ςn0 , ςn0+1) + (1− k)ρ(℘,ℜ)
and so,

(1− k)ρ(ςn0
, ςn0+1) ≤ (1− k)ρ(℘,ℜ).

Thus, we have
ρ(ςn0

, ςn0+1) ≤ ρ(℘,ℜ).
On the other hand, since ρ(℘,ℜ) ≤ ρ(ςn0

, ςn0+1), we conclude that

ρ(ςn0
,Fςn0

) = ρ(ςn0
, ςn0+1) = ρ(℘,ℜ).

So, ςn0
is a best proximity point of F .

Case 2. Let n0 be even. In this case by taking ς = ςn0 and ξ = ςn0+1 in the nonunique
contractive condition, it can be shown ςn0 is a best proximity point of F . □

Remark 2.1. The sequence {ςn} mentioned in Proposition 2.1 is called a Picard sequence in
literature. Note that F has a best proximity point in ℘∪ℜ under conditions of Proposition
2.1. Hence, for every Picard sequence {ςn} in ℘ ∪ ℜ, we investigate the inequality

ρ(ςn+1, ςn+2) < ρ(ςn, ςn+1)

for all n ∈ N in the rest of the paper.

Proposition 2.2. Let (℧, ρ) be a metric space, ℘, ℜ be nonempty subsets of ℧ and F : ℘ ∪ ℜ →
℘∪ℜ be a nonunique cyclic contraction mapping. Then, for every Picard sequence {ςn} in ℘∪ℜ,
we have

ρ(ςn, ςn+1) → ρ(℘,ℜ) as n → +∞.

Proof. Without loss of the generality, we assume that ς0 is an arbitrary point in ℘. Since
F is a cyclic mapping, we have {ς2n} ⊆ ℘ and {ς2n+1} ⊆ ℜ for constructed the sequence
{ςn} by ςn+1 = Fςn. Since F is a nonunique cyclic contraction mapping, for ς = ς0 and
ξ = ς1, we have

P (ς0, ς1)−R(ς0, ς1) ≤ kρ(ς0, ς1) + (1− k)ρ(℘,ℜ)
and so,

min {ρ(ς1, ς2), ρ(ς0, ς1)} ≤ kρ(ς0, ς1) + (1− k)ρ(℘,ℜ).
Thus, from Remark 2.1, we obtain

ρ(ς1, ς2) ≤ kρ(ς0, ς1) + (1− k)ρ(℘,ℜ).
Similarly, from the inequality (2.3) and Remark 2.1, we get

P (ς2, ς1)−R(ς2, ς1) ≤ kρ(ς1, ς2) + (1− k)ρ(℘,ℜ)
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for ς = ς2, ξ = ς1 and so,

ρ(ς2, ς3) ≤ kρ(ς1, ς2) + (1− k)ρ(℘,ℜ).

Continuing this process, we have

ρ(ςn, ςn+1) ≤ kρ(ςn−1, ςn) + (1− k)ρ(℘,ℜ).

for all n ∈ N. Thus, we obtain

ρ(℘,ℜ) ≤ ρ(ςn, ςn+1)

≤ kρ(ςn−1, ςn) + (1− k)ρ(℘,ℜ)
≤ k (kρ(ςn−2, ςn−1) + (1− k)ρ(℘,ℜ)) + (1− k)ρ(℘,ℜ)
= k2ρ(ςn−2, ςn−1) + (1 + k)(1− k)ρ(℘,ℜ)

...
≤ knρ(ς0, ς1) + (1 + k + k2 + · · ·+ kn−1)(1− k)ρ(℘,ℜ)
= knρ(ς0, ς1) + (1− kn)ρ(℘,ℜ)

for all n ∈ N. Therefore, ρ(ςn, ςn+1) → ρ(℘,ℜ) as n → +∞. □

Theorem 2.1. Let (℧, ρ) be a metric space, ℘, ℜ be nonempty subsets of ℧ and F : ℘∪ℜ → ℘∪ℜ
be a nonunique cyclic contraction mapping. Then we have the following:

(i) if the sequence {ς2n} has a convergent subsequence in ℘ for every Picard sequence {ςn}
with the initial point ς0 ∈ ℘ and f : ℘ → R defined by f(ς) = ρ(ς,Fς) for all ς ∈ ℘ is lower
semicontinuous, then F has a best proximity point in ℘.

(ii) if the sequence {ς2n} has a convergent subsequence in ℜ for every Picard sequence {ςn}
with the initial point ς0 ∈ ℜ and f : ℜ → R defined by f(ς) = ρ(ς,Fς) for all ς ∈ ℜ is lower
semicontinuous, then F has a best proximity point in ℜ.

Proof. Assume that the condition (i) holds. Let ς0 ∈ ℘ be an arbitrary point and consider
the Picard sequence {ςn} with the initial point ς0. Because of the condition (i), there exists
a subsequence {ς2nk

} of {ς2n} such that ς2nk
→ ς∗ ∈ ℘ as k → +∞. Moreover, since

f(ς) = ρ(ς,Fς) is lower semicontinuous and from (2.2), we have

ρ(℘,ℜ) ≤ ρ(ς∗,Fς∗)

= f(ς∗)

≤ lim
k→+∞

inf f(ς2nk
)

= lim
k→+∞

inf ρ(ς2nk,Fς2nk
)

= ρ(℘,ℜ)

Hence, ρ(ς∗,Fς∗) = ρ(℘,ℜ) and so, ς∗ is a best proximity point of F . Note that, if we
assume that the condition (ii) holds, then choosing initial point ς0 ∈ ℜ, we show that F
has a best proximity point in ℜ by the similar way as above. □

Theorem 2.2. Let (℧, ρ) be a metric space, ℘, ℜ be nonempty subsets of ℧ and F : ℘∪ℜ → ℘∪ℜ
be an orbitally continuous nonunique cyclic contraction mapping. Then we have the following:

(i) if the sequence {ς2n} has a convergent subsequence in ℘ for every Picard sequence {ςn} with
the initial point ς0 ∈ ℘, then F has a best proximity point in ℘.

(ii) if the sequence {ς2n} has a convergent subsequence in ℜ for every Picard sequence {ςn}
with the initial point ς0 ∈ ℜ, then F has a best proximity point in ℜ.
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Proof. Assume that the condition (i) holds. Let ς0 ∈ ℘ be an arbitrary point and consider
the Picard sequence {ςn} with the initial point ς0. Then, there exists a subsequence {ς2nk

}
of {ς2n} such that ς2nk

→ ς∗ ∈ ℘ as k → +∞. Since F is orbitally continuous, we have
ς2nk+1 = Fς2nk

→ Fς∗as k → +∞. Thus, using the Proposition 2.2, we obtain

ρ(℘,ℜ) ≤ ρ(ς∗,Fς∗)

= lim
k→+∞

ρ(ς2nk
, ς2nk+1)

= ρ(℘,ℜ)

and so, ς∗ is a best proximity point of F . Note that, if the condition (ii) holds, then it can
be shown that F has a best proximity point in ℜ. □

Example 2.1. Let ℧ = R endowed with the usual metric ρ. Let’s consider the sets

℘ = {− 1

2n
: n ∈ N} ∪ {0}

and

ℜ = {1 + 1

2n
: n ∈ N} ∪ {1}.

Then, ρ(℘,ℜ) = 1. Define a mapping F : ℘ ∪ ℜ → ℘ ∪ ℜ by

Fς =


1 + 1

2n+1 , ς = − 1
2n , n ∈ N

− 1
2n+1 , ς = 1 + 1

2n , n ∈ N
1 , ς = 0
0 , ς = 1

.

In this case, F is an orbitally continuous mapping. Now by investigated the following
cases we show that F is a nonunique cyclic contraction mapping for k = 1

2 :
Case 1: Let ς = − 1

2n , ξ = 1 + 1
2m with m > n. Then, we have

P (ς, ξ)−R(ς, ξ) ≤ P (ς, ξ)

= min {ρ(Fς,Fξ), ρ(ς,Fς), ρ(ξ,Fξ)}

= min

{
1 +

1

2n+1
+

1

2m+1
, 1 +

1

2n
+

1

2n+1
, 1 +

1

2m
+

1

2m+1

}
= 1 +

1

2m
+

1

2m+1

≤ 1 +
1

2n+1
+

1

2m+1

= kρ(ς, ξ) + (1− k)ρ(℘,ℜ).

Case 2: Let ς = − 1
2n , ξ = 1 + 1

2n . Then, we have

P (ς, ξ)−R(ς, ξ) ≤ P (ς, ξ)

= min {ρ(Fς,Fξ), ρ(ς,Fς), ρ(ξ,Fξ)}

= min

{
1 +

1

2n+1
+

1

2n+1
, 1 +

1

2n
+

1

2n+1

}
= 1 +

1

2n

= kρ(ς, ξ) + (1− k)ρ(℘,ℜ)
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Case 3: Let ς = − 1
2n , ξ = 1 + 1

2m with m < n. Then, we have

P (ς, ξ)−R(ς, ξ) ≤ P (ς, ξ)

= min {ρ(Fς,Fξ), ρ(ς,Fς), ρ(ξ,Fξ)}

= min

{
1 +

1

2n+1
+

1

2m+1
, 1 +

1

2n
+

1

2n+1
, 1 +

1

2m
+

1

2m+1

}
= 1 +

1

2n
+

1

2n+1

≤ 1 +
1

2m+1
+

1

2n+1

= kρ(ς, ξ) + (1− k)ρ(℘,ℜ).

Case 4: If ς ∈ ℘, ξ ∈ ℜ with {ς, ξ} ∩ {0, 1} ≠ ∅, then we have

P (ς, ξ)−R(ς, ξ) ≤ 1 ≤ kρ(ς, ξ) + (1− k)ρ(℘,ℜ).

Finally, the sequence {ς2n} is convergent in ℘∪ℜ for every Picard sequence {ςn} with the
initial point ς0 ∈ ℘∪ℜ. Therefore, all hypothesis of Theorem 2.2 are satisfied and so F has
a best proximity point in ℘ ∪ ℜ.

If we assume that ℘ or ℜ are compact subset of ℧ in Theorem 2.2, then we obtain the
following corollary:

Corollary 2.1. Let (℧, ρ) be a metric space, ℘ and ℜ be nonempty subsets of ℧ where ℘ or ℜ is a
compact. If F : ℘∪ℜ → ℘∪ℜ is an orbitally continuous nonunique cyclic contraction mapping,
then F has a best proximity point in ℘ ∪ ℜ.

Taking ℘ = ℜ = ℧ in Theorem 2.2 and Corollary 2.1, respectively, we have following
fixed point results:

Corollary 2.2. Let (℧, ρ) be a metric space and F : ℧ → ℧ be an orbitally continuous mapping.
If there exists a k in [0, 1) such that

min {ρ(Fς,Fξ), ρ(ς,Fς), ρ(ξ,Fξ)} −min {ρ(ς,Fξ), ρ(ξ,Fς)} ≤ kρ(ς, ξ)

for all ς, ξ ∈ ℧ and every Picard sequence in ℧ has a convergent subsequence, then F has a fixed
point in ℧.

If we take ℘ = ℜ = ℧ in Theorem 2.2, then we can show that every Picard sequence
{ςn} in ℧ is a Cauchy sequence. Hence, by accepting the orbitally completeness of ℧, we
have every Picard sequence in ℧ has a convergent subsequence. Therefore we obtain the
following corollary which is actually main result of Ćirić [8].

Corollary 2.3. Let (℧, ρ) be an orbitally complete metric space and F : ℧ → ℧ be an orbitally
continuous mapping. If there exists a k in [0, 1) such that

min {ρ(Fς,Fξ), ρ(ς,Fς), ρ(ξ,Fξ)} −min {ρ(ς,Fξ), ρ(ξ,Fς)} ≤ kρ(ς, ξ)

for all ς, ξ ∈ ℧, then F has a fixed point in ℧.

3. BEST CYCLIC PERIODIC POINT

In this section, we investigate some periodic point results for cyclic mappings which
satisfies inequality (1.2). Before we recall the definition of best periodic proximity point
for cyclic mappings by given Chiming and Lin [6]:



Ćirić type cyclic contractions and their best cyclic periodic points 321

Definition 3.7. Let (℧, ρ) be a metric space, ℘, ℜ be nonempty subsets of ℧ and
F : ℘ ∪ ℜ → ℘ ∪ ℜ be a cyclic mapping. If there exists a z ∈ ℘ ∪ ℜ such that

ρ(z,F2q+1z) = ρ(℘,ℜ)
for some q ∈ N, then z is called a best periodic proximity point of F .

In fact, best proximity point theory has emerged by considering nonself mappings in
fixed point theory. Therefore, in case of ℘ = ℜ = ℧, the concepts in the best proximity
point theory coincide with their counterparts in the fixed point theory. For example, the
concepts of fixed point and best proximity point coincide with each other for a self map-
pings. However, according to Definition 3.7, every periodic point is not a best periodic
proximity point for a self mapping. Indeed, let ℧ = R\{0} endowed with the usual met-
ric ρ. Define a mapping F : R → R by Fς = −ς for all ς ∈ ℧. In this case, for all ς ∈ ℧
and n ∈ N, we have ρ(ς,F2nς) = 0, that is, each point in ℧ is a periodic point of F . But,
ρ(ς,F2n+1ς) ̸= 0 for all ς ∈ ℧ and n ∈ N, hence F has no best periodic proximity point.

To overcome this problem, we introduce a new concept called best cyclic periodic point
of a cyclic mapping by modifying the Definition 3.7:

Definition 3.8. Let (℧, ρ) be a metric space, ℘, ℜ be nonempty subsets of ℧ and
F : ℘ ∪ ℜ → ℘ ∪ ℜ be a cyclic mapping. If there exists a z ∈ ℘ ∪ ℜ such that

ρ(z,Fqz) =

 0 , q ∈ Z+
e

ρ(℘,ℜ) , q ∈ Z+
o

for some positive integer q, where Z+
e and Z+

o are the sets of all positive even and odd
integers, respectively, then z is called a best cyclic periodic point of F .

Note that, if we take ℘ = ℜ = ℧ in Definition 3.8, then best cyclic periodic point become
a periodic point of F .

Now, we give main result of this section as follows:

Theorem 3.3. Let (℧, ρ) be a metric space, ℘, ℜ be nonempty subsets of ℧, F : ℘ ∪ ℜ → ℘ ∪ ℜ
be an orbitally continuous cyclic mapping and ε > 0. Assume, there exists a k in [0, 1) such that,
for all (ς, ξ) ∈ ℘2 ∪ ℜ2

(3.4) 0 < ρ(ς, ξ) < ε implies P (ς, ξ) ≤ kρ(ς, ξ)

and for all (ς, ξ) ∈ ℘×ℜ
(3.5) ρ(℘,ℜ) < ρ(ς, ξ) < ρ(℘,ℜ) + ε implies P (ς, ξ) ≤ kρ(ς, ξ) + (1− k)ρ(℘,ℜ).
Then F has a best cyclic periodic point in ℘ ∪ ℜ provided that one of the following holds:

(i) Ko
ε ̸= ∅ and there exists an ς0 ∈ ℘∪ℜ satisfying ρ(ς0,FminKo

ε ς0) < ρ(℘,ℜ) + ε such that
the Picard sequence {ςn} with the initial point ς0 has a convergent subsequence in ℘ ∪ ℜ, where

Ko
ε = {q ∈ Z+

o : ρ(ς,Fqς) < ρ(℘,ℜ) + ε for some ς ∈ ℘ ∪ ℜ}.
(ii) Ke

ε ̸= ∅ and there exists an ς0 ∈ ℘∪ℜ satisfying ρ(ς0,FminKe
ε ς0) < ε such that the Picard

sequence {ςn} with the initial point ς0 has a convergent subsequence in ℘ ∪ ℜ, where

Ke
ε = {q ∈ Z+

e : ρ(ς,Fqς) < ε for some ς ∈ ℘ ∪ ℜ}.

Proof. Assume (i) holds and let minKo
ε = m. Then there exists an ς0 ∈ ℘ ∪ ℜ satisfying

ρ(ς0,Fmς0) < ρ(℘,ℜ) + ε. Note that, since m ∈ Ko
ε ⊆ Z+

o , if ς0 ∈ ℘, then Fmς0 ∈ ℜ and
vice versa. Consider the mentioned Picard sequence {ςn}. If there exists n0 ∈ N such that
ρ(ςn0

,Fmςn0
) = ρ(℘,ℜ), then ςn0

is a best cyclic periodic point of F . Now assume

(3.6) ρ(ςn,Fmςn) > ρ(℘,ℜ)
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for all n ∈ N. In this case we investigate the following two cases:
Case 1. Let m = 1. Then, we have

(3.7) ρ(℘,ℜ) < ρ(ς0, ς1) = ρ(ς0,Fς0) < ρ(℘,ℜ) + ε.

Taking ς = ς0 and ξ = ς1 in implication (3.5), we get

P (ς0, ς1) ≤ kρ(ς0, ς1) + (1− k)ρ(℘,ℜ)
which implies that

(3.8) min{ρ(ς1, ς2), ρ(ς0, ς1)} ≤ kρ(ς0, ς1) + (1− k)ρ(℘,ℜ)
If ρ(ς0, ς1) ≤ ρ(ς1, ς2), then we have

ρ(ς0, ς1) ≤ kρ(ς0, ς1) + (1− k)ρ(℘,ℜ)
and so,

ρ(ς0, ς1) ≤ ρ(℘,ℜ),
which contradicts (3.7). Hence we have ρ(ς0, ς1) > ρ(ς1, ς2) and so, from (3.8), we have

ρ(ς1, ς2) ≤ kρ(ς0, ς1) + (1− k)ρ(℘,ℜ)
< k(ρ(℘,ℜ) + ε) + (1− k)ρ(℘,ℜ)
= kε+ ρ(℘,ℜ)
< ρ(℘,ℜ) + ε.

In a similar way, we obtain

(3.9) ρ(ςn, ςn+1) ≤ kρ(ςn−1, ςn) + (1− k)ρ(℘,ℜ)
for all n ∈ N. Thus, doing as in the proof of Theorem 2.2, we can show that F has a best
proximity point which is also a best cyclic periodic point of F .

Case 2. Now, assume m > 1. That is,

(3.10) ρ(ς,Fς) ≥ ρ(℘,ℜ) + ε

for all ς ∈ ℘ ∪ ℜ. In this case, since

ρ(℘,ℜ) < ρ(ς0,Fmς0) = ρ(ς0, ςm) < ρ(℘,ℜ) + ε,

taking ς = ς0 and ξ = ςm in implication (3.5), we have

P (ς0, ςm) ≤ kρ(ς0, ςm) + (1− k)ρ(℘,ℜ)
which implies that

min{ρ(ς1, ςm+1), ρ(ς0,Fς0), ρ(ςm,Fςm)} ≤ kρ(ς0, ςm) + (1− k)ρ(℘,ℜ).
From (3.10), we get

ρ(ς1, ςm+1) ≤ kρ(ς0, ςm) + (1− k)ρ(℘,ℜ)
and since ρ(ς0, ςm) < ρ(℘,ℜ) + ε, we have

ρ(ς1, ςm+1) < k (ρ(℘,ℜ) + ε) + (1− k)ρ(℘,ℜ)
= kε+ ρ(℘,ℜ)
< ρ(℘,ℜ) + ε.

Then, taking into account (3.6), we have

ρ(℘,ℜ) < ρ(ς1, ςm+1) < ρ(℘,ℜ) + ε

and so taking ς = ς1 and ξ = ςm+1 in implication (3.5), we obtain

P (ς1, ςm+1) ≤ kρ(ς1, ςm+1) + (1− k)ρ(℘,ℜ)
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which implies that

min{ρ(ς2, ςm+2), ρ(ς1,Fς1), ρ(ςm+1,Fςm+1)} ≤ kρ(ς1, ςm+1) + (1− k)ρ(℘,ℜ).

From (3.10), we get

ρ(ς2, ςm+2) ≤ kρ(ς1, ςm+1) + (1− k)ρ(℘,ℜ)

and since ρ(ς1, ςm+1) < ρ(℘,ℜ) + ε, we have

ρ(ς2, ςm+2) < k(ρ(℘,ℜ) + ε) + (1− k)ρ(℘,ℜ)
= kε+ ρ(℘,ℜ)
< ρ(℘,ℜ) + ε.

Continuing this process, we obtain

ρ(ςn, ςm+n) ≤ kρ(ςn−1, ςm+n−1) + (1− k)ρ(℘,ℜ)

for all n ∈ N. Thus, we have

ρ(ςn, ςm+n) ≤ kρ(ςn−1, ςm+n−1) + (1− k)ρ(℘,ℜ)
≤ k2ρ(ςn−2, ςm+n−2) + (1 + k)(1− k)ρ(℘,ℜ)

...
≤ knρ(ς0,ςm) + (1− k)

(
1 + k + k2 + · · · kn−1

)
ρ(℘,ℜ)

= knρ(ς0,ςm) + (1− k)

(
1− kn

1− k

)
ρ(℘,ℜ)

= knρ(ς0,ςm) + (1− kn) ρ(℘,ℜ).

Therefore, we get

(3.11) ρ(ςn, ςm+n) → ρ(℘,ℜ)

as n → +∞. From the condition (i), there exists a subsequence {ςnk
} of the sequence {ςn}

such that ςnk
→ ς∗ ∈ ℘ ∪ ℜ. On the other hand, since F is orbitally continuous, then Fm

is also orbitally continuous. Thus, we have

ςm+nk
= Fmςnk

→ Fmς∗ as k → +∞.

Hence, from (3.11), we obtain

ρ(ς∗,Fmς∗) = ρ(℘,ℜ).

Thus, F has a best cyclic periodic point in ℘ ∪ ℜ.
Now assume (ii) holds and let minKe

ε = m. Then there exists an ς0 ∈ ℘ ∪ ℜ satisfying
ρ(ς0,Fmς0) = ρ(ς0, ςm) < ε. Note that, since m ∈ Ke

ε ⊆ Z+
e , if ς0 ∈ ℘ (resp. ς0 ∈ ℜ), then

Fmς0 ∈ ℘ (resp. Fmς0 ∈ ℜ). Consider the mentioned Picard sequence {ςn}. If there exists
n0 ∈ N such that ρ(ςn0 ,Fmςn0) = 0, then ςn0 is a best cyclic periodic point of F . Now
assume

(3.12) ρ(ςn,Fmςn) > 0

for all n ∈ N. Also we can assume

(3.13) ρ(ςn,Fςn) ≥ ρ(℘,ℜ) + ε

for all n ∈ N. Otherwise, since the condition (i) holds, the proof is completed. Now taking
ς = ς0 and ξ = ςm in implication (3.4), we have

P (ς0, ςm) ≤ kρ(ς0, ςm)
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which implies that

min{ρ(ς1, ςm+1), ρ(ς0,Fς0), ρ(ςm,Fςm)} ≤ kρ(ς0, ςm).

From (3.13), we get
ρ(ς1, ςm+1) ≤ kρ(ς0, ςm)

and since ρ(ς0, ςm) < ε, we have

ρ(ς1, ςm+1) < kε < ε.

Then, taking into account (3.12), we have

0 < ρ(ς1, ςm+1) < ε

and so taking ς = ς1 and ξ = ςm+1 in implication (3.4), we obtain

P (ς1, ςm+1) ≤ kρ(ς1, ςm+1)

which implies that

min{ρ(ς2, ςm+2), ρ(ς1,Fς1), ρ(ςm+1,Fςm+1)} ≤ kρ(ς1, ςm+1).

From (3.13), we get
ρ(ς2, ςm+2) ≤ kρ(ς1, ςm+1)

and since ρ(ς1, ςm+1) < ε, we have

ρ(ς2, ςm+2) < kε < ε.

Continuing this process, we obtain

ρ(ςn, ςm+n) ≤ kρ(ςn−1, ςm+n−1) ≤ · · · ≤ knρ(ς0,ςm)

for all n ∈ N. Therefore, we get

(3.14) ρ(ςn, ςm+n) → 0

as n → +∞. From the condition (ii), there exists a subsequence {ςnk
} of the sequence {ςn}

such that ςnk
→ ς∗ ∈ ℘ ∪ ℜ. On the other hand, since F is orbitally continuous, then Fm

is also orbitally continuous. Thus, we have

ςm+nk
= Fmςnk

→ Fmς∗ as k → +∞.

Hence, from (3.14) we obtain
ρ(ς∗,Fmς∗) = 0.

Thus, F has a best cyclic periodic point in ℘ ∪ ℜ. □

Example 3.2. Let R2 endowed with the taxicab metric ρ. Let’s consider the sets

℘ = {(0, ς) : ς ∈ Z\{0}}
and

ℜ = {(1, ς) : ς ∈ Z\ {0}} .
Then, ρ(℘,ℜ) = 1. Define a mapping F : ℘ ∪ ℜ → ℘ ∪ ℜ by

Fς =



(1,−t) , ς = (0, t), t ̸= −1, 2
(0,−t) , ς = (1, t) , t ̸= −1, 2
(1, 2) , ς = (0,−1)
(1, 1) , ς = (0, 2)
(0, 2) , ς = (1,−1)
(0, 1) , ς = (1, 2)

.

Since OF (ς) is finite set for all ς ∈ ℘∪ℜ, then F is an orbitally continuous mapping and the
sequence {ςn} has a convergent subsequence for every Picard sequence {ςn}. Further, note
that for all (ς, ξ) ∈ ℘2 ∪ ℜ2 with ρ(ς, ξ) > 0, we have ρ(ς, ξ) ≥ 1 and for all (ς, ξ) ∈ ℘ × ℜ
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with ρ(ς, ξ) > ρ(℘,ℜ), we have ρ(ς, ξ) ≥ 2. Therefore, the implications (3.4) and (3.5)
hold for ε = 1

2 . Moreover, for all ς ∈ ℘ ∪ ℜ we have ρ(ς,Fς) ≥ ρ(℘,ℜ) + 1
2 and for

ς0 = (0, 1) ∈ ℘, we have ρ(ς0,F3ς0) = ρ(℘,ℜ). This shows that minKo
1
2

= 3. Hence the
condition (i) is satisfied. Therefore, all hypothesis of Theorem 3.3 are satisfied, then F has
a best cyclic periodic point in ℘ ∪ ℜ. Note that, for ς0 = (1, 4) ∈ ℜ we have ρ(ς0,F2ς0) = 0
and so minKe

1
2

= 2. Hence the condition (ii) is also satisfied.

Note that, if we take ℘ = ℜ = ℧ in Theorem 3.3, we obtain the following periodic point
result:

Corollary 3.4. Let (℧, ρ) be an orbitally complete metric space, F : ℧ → ℧ be an orbitally
continuous mapping and ε > 0. Assume that there exists an ς ∈ ℧ such that ρ(ς,Fqς) < ε for
some q ∈ Z+ and there exists a k in [0, 1) such that

0 < ρ(ς, ξ) < ε implies min {ρ(Fς,Fξ), ρ(ς,Fς), ρ(ξ,Fξ)} ≤ kρ(ς, ξ)

for all ς, ξ ∈ ℧. Then F has a periodic point in ℧.

Proof. Define
Kε = {q ∈ N : ρ(ς,Fqς) < ε for some ς ∈ ℧}.

Then from the hypothesis Kε is nonempty. Let m = minKε, then there exists an ς0 ∈
℧ such that ρ(ς0,Fmς0) < ε. It can be show that the subsequence {ςnm} of the Picard
sequence {ςn} with the initial point ς0 is a Cauchy sequence in ℧. Hence, by the orbitally
completeness of ℧, we have {ςnm} is convergent. Therefore all conditions of Theorem 3.3
are satisfied and so F has a best cyclic periodic point, which is actually a periodic point in
℧. □
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18100, ÇANKIRI, TURKEY

Email address: maslantas@karatekin.edu.tr

DEPARTMENT OF MATHEMATICS

AMASYA UNIVERSITY

05100, AMASYA, TURKEY

Email address: hakan.sahin@amasya.edu.tr

DEPARTMENT OF MATHEMATICS

KIRIKKALE UNIVERSITY

71450 YAHSIHAN, KIRIKKALE, TURKEY

Email address: ishakaltun@yahoo.com


