A hybrid scheme for fixed points of a countable family of generalized nonexpansive-type maps and finite families of variational inequality and equilibrium problems, with applications

Markjoe O. Uba, Maria A. Onyido, Cyril I. Udeani and Peter U. Nwokoro

Abstract

Let C be a nonempty closed and convex subset of a uniformly smooth and uniformly convex real Banach space E with dual space E^{*}. We present a novel hybrid method for finding a common solution of a family of equilibrium problems, a common solution of a family of variational inequality problems and a common element of fixed points of a family of a general class of nonlinear nonexpansive maps. The sequence of this new method is proved to converge strongly to a common element of the families. Our theorem and its applications complement, generalize, and extend various results in literature.

1. Introduction

Let E be a real Banach space with topological dual E^{*}. Let $C \subset E$ be closed and convex with $J C$ also closed and convex, where J is the normalized duality map (see definition 2.1). The variational inequality problem, which has its origin in the 1964 result of Stampacchia [21], has engaged the interest of researchers in the recent past (see, e.g., [26, 27] and many others). This is concerned with the following: For a monotone operator $A: C \rightarrow E$, find a point $x^{*} \in C$ such that

$$
\begin{equation*}
\left\langle y-x^{*}, A x^{*}\right\rangle \geq 0 \text { for all } y \in C \text {. } \tag{1.1}
\end{equation*}
$$

The set of solutions of (1.1) is denoted by $V I(C, A)$. This problem, which plays a crucial role in nonlinear analysis, is also related to fixed point problems, zeros of nonlinear operators, complementarity problems, and convex minimization problems (see, for example, [9, 20]).
A related problem is the equilibrium problem, which has been studied by several researchers and is mostly applied in solving optimization problems (see [3]). For a map $f: C \rightarrow E$, the equilibrium problem is concerned with finding a point $x^{*} \in C$ such that

$$
\begin{equation*}
f\left(x^{*}, y\right) \geq 0 \text { for all } y \in C . \tag{1.2}
\end{equation*}
$$

The set of solutions of (1.2) is denoted by $E P(f)$. The variational inequality and equilibrium problems are special cases of the so-called generalized mixed equilibrium problem (see [18]). Another related problem is the fixed point problem. For a map $T: D(T) \subset$ $E \rightarrow E$, the fixed points of T are the points $x^{*} \in D(T)$ such that $T x^{*}=x^{*}$. Recently, owing to the need to develop methods for solving fixed points of problems for functions

[^0]from a space to its dual, a new concept of fixed points for maps from a real normed space E to its dual space E^{*}, called J-fixed point has been introduced and studied (see [5, 15, 25]).
With this evolving fixed point theory, we study the J-fixed points of certain maps and the following equilibrium problem. Let $f: J C \times J C \rightarrow \mathbb{R}$ be a bifunction. The equilibrium problem for f is finding
\[

$$
\begin{equation*}
x^{*} \in C \text { such that } f\left(J x^{*}, J y\right) \geq 0, \forall y \in C . \tag{1.3}
\end{equation*}
$$

\]

We denote the solution set of (1.3) by $E P(f)$. Several problems in physics, optimization and economics reduce to finding a solution of (1.3) (see, e.g., [8, 26] and the references in them). Most of the equilibrium problems studied in the past two decades centered on their existence and applications (see, e.g., $[3,8]$). However, recently, several researchers have started working on finding approximate solutions of equilibrium problems and their generalizations (see, e.g., [11, 27]). Not long ago, some researchers investigated the problem of establishing a common element in the solution set of an equilibrium problem, fixed point of a family of nonexpansive maps and solution set of a variational inequality problem for different classes of maps (see [28] and references therein).

In this paper, inspired by the above results especially the works in [4, 24, 28], we present an algorithm for finding a common element of the fixed point of an infinite family of generalized J_{*}-nonexpansive maps, the solution set of the variational inequality problem of a finite family of continuous monotone maps and the solution set of the equilibrium point of a finite family of bifunctions satisfying some given conditions. Our results complement, generalize and extend results in $[14,19,17,28]$ (see the section on conclusion) and other recent results in this direction. It is worth noting that very recently, the authors in [4] introduced a new class of maps which they called relatively weak J-nonexpasive and developed an algorithm for approximating a common element of the J-fixed point of a countable family of such maps and zeros of some other class of maps in certain Banach spaces. Previously, maps with similar requirements as these relatively weak J-nonexpasive maps have also been studied in [6] where they were called quasi- $\phi-J$-nonexpansive. We observe that these two sets of maps (relatively weak J-nonexpasive and quasi $-\phi-J-$ nonexpansive) coincide in definition with the J_{*}-nonexpansive maps in our results.

2. Preliminaries

In this section, we present definitions and lemmas used in proving our main results.
Definition 2.1. (Normalized duality map) The map $J: E \rightarrow 2^{E^{*}}$ defined by

$$
J x:=\left\{x^{*} \in E^{*}:\left\langle x, x^{*}\right\rangle=\|x\| \cdot\left\|x^{*}\right\|,\|x\|=\left\|x^{*}\right\|\right\}
$$

is called the normalized duality map on E.
It is well known that if E is smooth, strictly convex and reflexive then J^{-1} exists (see e.g., [22]); $J^{-1}: E^{*} \rightarrow E$ is the normalized duality mapping on E^{*}, and $J^{-1}=J_{*}, J J_{*}=I_{E^{*}}$ and $J_{*} J=I_{E}$, where I_{E} and $I_{E^{*}}$ are the identity maps on E and E^{*}, respectively. A well known property of J is, see e.g., [7, 22], if E is uniformly smooth, then J is uniformly continuous on bounded subsets of E.

Definition 2.2. (Lyapunov Functional) [1, 11] Let E be a smooth real Banach space with dual E^{*}. The Lyapunov functional $\phi: E \times E \rightarrow \mathbb{R}$, is defined by

$$
\begin{equation*}
\phi(x, y)=\|x\|^{2}-2\langle x, J y\rangle+\|y\|^{2}, \text { for } x, y \in E \tag{2.4}
\end{equation*}
$$

where J is the normalized duality map. If $E=H$, a real Hilbert space, then equation (2.4) reduces to $\phi(x, y)=\|x-y\|^{2}$ for $x, y \in H$. Additionally,

$$
\begin{equation*}
(\|x\|-\|y\|)^{2} \leq \phi(x, y) \leq(\|x\|+\|y\|)^{2} \text { for } x, y \in E \tag{2.5}
\end{equation*}
$$

Definition 2.3. (Generalized nonexpansive) [12,13] Let C be a nonempty closed and convex subset of a real Banach space E and T be a map from C to E. The map T is called generalized nonexpansive if $F(T):=\{x \in C: T x=x\} \neq \emptyset$ and $\phi(T x, p) \leq \phi(x, p)$ for all $x \in C, p \in F(T)$.
Definition 2.4. (Retraction) [12,13] A map R from E onto C is said to be a retraction if $R^{2}=R$. The map R is said to be sunny if $R(R x+t(x-R x))=R x$ for all $x \in E$ and $t \leq 0$.

A nonempty closed subset C of a smooth Banach space E is said to be a sunny generalized nonexpansive retract of E if there exists a sunny generalized nonexpansive retraction R from E onto C.
NST-condition. Let C be a closed subset of a Banach space E. Let $\left\{T_{n}\right\}$ and Γ be two families of generalized nonexpansive maps of C into E such that $\cap_{n=1}^{\infty} F\left(T_{n}\right)=F(\Gamma) \neq \emptyset$, where $F\left(T_{n}\right)$ is the set of fixed points of $\left\{T_{n}\right\}$ and $F(\Gamma)$ is the set of common fixed points of Γ.

Definition 2.5. [12] The sequence $\left\{T_{n}\right\}$ satisfies the NST-condition (see e.g., [16]) with Γ if for each bounded sequence $\left\{x_{n}\right\} \subset C$,

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{n} x_{n}\right\|=0 \Rightarrow \lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0, \text { for all } T \in \Gamma
$$

Remark 2.1. If $\Gamma=\{T\}$ a singleton, $\left\{T_{n}\right\}$ satisfies the NST-condition with $\{T\}$. If $T_{n}=T$ for all $n \geq 1$, then, $\left\{T_{n}\right\}$ satisfies the NST-condition with $\{T\}$.
Let C be a nonempty closed and convex subset of a uniformly smooth and uniformly convex real Banach space E with dual space E^{*}. Let J be the normalized duality map on E and J_{*} be the normalized duality map on E^{*}. Observe that under this setting, J^{-1} exists and $J^{-1}=J_{*}$. With these notations, we have the following definitions.

Definition 2.6. (Closed map) [24] A map $T: C \rightarrow E^{*}$ is called $J_{*}-$ closed if $\left(J_{*} \circ T\right): C \rightarrow$ E is a closed map, i.e., if $\left\{x_{n}\right\}$ is a sequence in C such that $x_{n} \rightarrow x$ and $\left(J_{*} \circ T\right) x_{n} \rightarrow y$, then $\left(J_{*} \circ T\right) x=y$.
Definition 2.7. (J-fixed Point) [5] A point $x^{*} \in C$ is called a J-fixed point of T if $T x^{*}=$ $J x^{*}$. The set of J-fixed points of T will be denoted by $F_{J}(T)$.
Definition 2.8. (Generalized J_{*} nonexpansive) [24] A map $T: C \rightarrow E^{*}$ will be called generalized J_{*}-nonexpansive if $F_{J}(T) \neq \emptyset$, and $\phi\left(p,\left(J_{*} \circ T\right) x\right) \leq \phi(p, x)$ for all $x \in C$ and for all $p \in F_{J}(T)$.

Remark 2.2. Exampes of generalized $J_{*}-$ nonexpansive maps in Hilbert and more general Banach spaces were given in [4, 24].
Let C be a nonempty closed subset of a smooth, strictly convex and reflexive Banach space E such that $J C$ is closed and convex. For solving the equilibrium problem, let us assume that a bifunction $f: J C \times J C \rightarrow \mathbb{R}$ satisfies the following conditions:
(A1) $f\left(x^{*}, x^{*}\right)=0$ for all $x^{*} \in J C$;
(A2) f is monotone, i.e. $f\left(x^{*}, y^{*}\right)+f\left(y^{*}, x^{*}\right) \leq 0$ for all $x^{*}, y^{*} \in J C$;
(A3) for all $x^{*}, y^{*}, z^{*} \in J C, \lim \sup _{t \downarrow 0} f\left(t z^{*}+(1-t) x^{*}, y^{*}\right) \leq f\left(x^{*}, y^{*}\right)$;
(A4) for all $x^{*} \in J C, f\left(x^{*}, \cdot\right)$ is convex and lower semicontinuous.
With the above definitions, we now provide the lemmas we shall use.

Lemma 2.1. [29] Let E be a uniformly convex Banach space, $r>0$ be a positive number, and $B_{r}(0)$ be a closed ball of E. For any given points $\left\{x_{1}, x_{2}, \cdots, x_{N}\right\} \subset B_{r}(0)$ and any given positive numbers $\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{N}\right\}$ with $\sum_{n=1}^{N} \lambda_{n}=1$, there exists a continuous strictly increasing and convex function $g:[0,2 r) \rightarrow[0, \infty)$ with $g(0)=0$ such that, for any $i, j \in\{1,2, \cdots N\}, i<j$,

$$
\begin{equation*}
\left\|\sum_{n=1}^{N} \lambda_{n} x_{n}\right\|^{2} \leq \sum_{n=1}^{N} \lambda_{n}\left\|x_{n}\right\|^{2}-\lambda_{i} \lambda_{j} g\left(\left\|x_{i}-x_{j}\right\|\right) \tag{2.6}
\end{equation*}
$$

Lemma 2.2. [11] Let X be a real smooth and uniformly convex Banach space, and let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be two sequences of X. If either $\left\{x_{n}\right\}$ or $\left\{y_{n}\right\}$ is bounded and $\phi\left(x_{n}, y_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, then $\left\|x_{n}-y_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$.

Lemma 2.3. [1] Let C be a nonempty closed and convex subset of a smooth, strictly convex and reflexive Banach space E. Then, the following are equivalent.
(i) C is a sunny generalized nonexpansive retract of E,
(ii) C is a generalized nonexpansive retract of E,
(iii) $J C$ is closed and convex.

Lemma 2.4. [1] Let C be a nonempty closed and convex subset of a smooth and strictly convex Banach space E such that there exists a sunny generalized nonexpansive retraction R from E onto C. Then, the following hold.
(i) $z=R x$ iff $\langle x-z, J y-J z\rangle \leq 0$ for all $y \in C$,
(ii) $\phi(x, R x)+\phi(R x, z) \leq \phi(x, z)$.

Lemma 2.5. [10] Let C be a nonempty closed sunny generalized nonexpansive retract of a smooth and strictly convex Banach space E. Then the sunny generalized nonexpansive retraction from E to C is uniquely determined.
Lemma 2.6. [3] Let C be a nonempty closed subset of a smooth, strictly convex and reflexive Banach space E such that $J C$ is closed and convex, let f be a bifunction from $J C \times J C$ to \mathbb{R} satisfying $(A 1)-(A 4)$. For $r>0$ and let $x \in E$. Then there exists $z \in C$ such that $f(J z, J y)+\frac{1}{r}\langle z-x, J y-J z\rangle \geq 0, \forall y \in C$.
Lemma 2.7. [23] Let C be a nonempty closed subset of a smooth, strictly convex and reflexive Banach space E such that $J C$ is closed and convex, let f be a bifunction from $J C \times J C$ to \mathbb{R} satisfying $(A 1)-(A 4)$. For $r>0$ and let $x \in E$, define a mapping $T_{r}(x)$: $E \rightarrow C$ as follows:

$$
T_{r}(x)=\left\{z \in C: f(J z, J y)+\frac{1}{r}\langle y-z, J z-J x\rangle \geq 0, \forall y \in C\right\}
$$

Then the following hold:
(i) T_{r} is single valued;
(ii) for all $x, y \in E,\left\langle T_{r} x-T_{r} y, J T_{r} x-J T_{r} y\right\rangle \leq\left\langle x-y, J T_{r} x-J T_{r} y\right\rangle$;
(iii) $F\left(T_{r}\right)=E P(f)$;
(iv) $\phi\left(p, T_{r}(x)\right)+\phi\left(T_{r}(x), x\right) \leq \phi(p, x)$ for all $p \in F\left(T_{r}\right)$.
(v) $J E P(f)$ is closed and convex.

Lemma 2.8. [24] Let C be a nonempty closed subset of a smooth, strictly convex and reflexive Banach space E. Let $A: C \rightarrow E^{*}$ be a continuous monotone mapping. For $r>0$ and let $x \in E$, define a mapping $F_{r}(x): E \rightarrow C$ as follows:

$$
F_{r}(x)=\left\{z \in C:\langle y-z, A z\rangle+\frac{1}{r}\langle y-z, J z-J x\rangle \geq 0, \forall y \in C\right\}
$$

Then the following hold:
(i) F_{r} is single valued;
(ii) for all $x, y \in E,\left\langle F_{r} x-T_{r} y, J F_{r} x-J F_{r} y\right\rangle \leq\left\langle x-y, J F_{r} x-J F_{r} y\right\rangle$;
(iii) $F\left(F_{r}\right)=V I(C, A)$;
(iv) $\phi\left(p, F_{r}(x)\right)+\phi\left(F_{r}(x), x\right) \leq \phi(p, x)$ for all $p \in F\left(F_{r}\right)$.
(v) $\operatorname{JVI}(C, A)$ is closed and convex.

Lemma 2.9. [24] Let E be a uniformly convex and uniformly smooth real Banach space with dual space E^{*} and let C be a closed subset of E such that $J C$ is closed and convex. Let T be a generalized J_{*}-nonexpansive map from C to E^{*} such that $F_{J}(T) \neq \emptyset$, then $F_{J}(T)$ and $J F_{J}(T)$ are closed. Additionally, if $J F_{J}(T)$ is convex, then $F_{J}(T)$ is a sunny generalized nonexpansive retract of E.

3. Main results

Let E be a uniformly smooth and uniformly convex real Banach space with dual space E^{*} and let C be a nonempty closed and convex subset of E such that $J C$ is closed and convex. Let $f_{l}, l=1,2,3, \ldots, L$ be a family of bifunctions from $J C \times J C$ to \mathbb{R} satisfying $(A 1)-(A 4)$, $T_{n}: C \rightarrow E^{*}, n=1,2,3, \ldots$ be an infinite family of generalized J_{*}-nonexpansive maps, and $A_{k}: C \rightarrow E^{*}, k=1,2,3, \ldots, N$ be a finite family of continuous monotone mappings. Let the sequence $\left\{x_{n}\right\}$ be generated by the following iteration process:

$$
\left\{\begin{array}{l}
x_{1}=x \in C ; C_{1}=C, \tag{3.7}\\
z_{n}:=\left\{z \in C: f_{n}(J z, J y)+\frac{1}{r_{n}}\left\langle y-z, J z-J x_{n}\right\rangle \geq 0, \forall y \in C\right\}, \\
u_{n}:=\left\{z \in C:\left\langle y-z, A_{n} z\right\rangle+\frac{1}{r_{n}}\left\langle y-z, J z-J x_{n}\right\rangle \geq 0, \forall y \in C\right\}, \\
y_{n}=J^{-1}\left(\alpha_{1} J x_{n}+\alpha_{2} J z_{n}+\alpha_{3} T_{n} u_{n}\right) \\
C_{n+1}=\left\{z \in C_{n}: \phi\left(z, y_{n}\right) \leq \phi\left(z, x_{n}\right)\right\}, \\
x_{n+1}=R_{C_{n+1}} x
\end{array}\right.
$$

for all $n \in \mathbb{N}$, with $\alpha_{1}, \alpha_{2}, \alpha_{3} \in(0,1)$ satisfying $\alpha_{1}+\alpha_{2}+\alpha_{3}=1,\left\{r_{n}\right\} \subset[a, \infty)$ for some $a>0, A_{n}=A_{n(\bmod N)}$ and $f_{n}(\cdot, \cdot)=f_{n(\bmod L)}(\cdot, \cdot)$.

Lemma 3.10. The sequence $\left\{x_{n}\right\}$ generated by (3.7) is well defined.
Proof. Observe that $J C_{1}$ is closed and convex. Moreover, it is easy to see that $\phi\left(z, y_{n}\right) \leq$ $\phi\left(z, x_{n}\right)$ is equivalent to

$$
0 \leq\left\|x_{n}\right\|^{2}-\left\|y_{n}\right\|^{2}-2\left\langle z, J x_{n}-J y_{n}\right\rangle
$$

which is affine in z. Hence, by induction $J C_{n}$ is closed and convex for each $n \geq 1$. Therefore, from Lemma 2.3, we have that C_{n} is a sunny generalized retract of E for each $n \geq 1$. This shows that $\left\{x_{n}\right\}$ is well defined.

Theorem 3.1. Let E be a uniformly smooth and uniformly convex real Banach space with dual space E^{*} and let C be a nonempty closed and convex subset of E such that JC is closed and convex. Let $f_{l}, l=1,2,3, \ldots, L$ be a family of bifunctions from $J C \times J C$ to \mathbb{R} satisfying (A1) - (A4), $T_{n}: C \rightarrow E^{*}, n=1,2,3, \ldots$ be an infinite family of generalized J_{*}-nonexpansive maps, A_{k} : $C \rightarrow E^{*}, k=1,2,3, \ldots, N$ be a finite family of continuous monotone mappings and Γ be a family of J_{*}-closed and generalized J_{*}-nonexpansive maps from C to E^{*} such that $\cap_{n=1}^{\infty} F_{J}\left(T_{n}\right)=$ $F_{J}(\Gamma) \neq \emptyset$ and $B:=F_{J}(\Gamma) \cap\left[\cap_{l=1}^{L} E P\left(f_{l}\right)\right] \cap\left[\cap_{k=1}^{N} V I\left(C, A_{k}\right)\right] \neq \emptyset$. Assume that $J F_{J}(\Gamma)$ is convex and $\left\{T_{n}\right\}$ satisfies the NST-condition with Γ. Then, $\left\{x_{n}\right\}$ generated by (3.7) converges strongly to $R_{B} x$, where R_{B} is the sunny generalized nonexpansive retraction of E onto B.

Proof. The proof is given in 6 steps.

Step 1: We show that the expected limit $R_{B} x$ exists as a point in C_{n} for all $n \geq 1$.
First, we show that $B \subset C_{n}$ for all $n \geq 1$ and B is a sunny generalized retract of E.
Since $C_{1}=C$, we have $B \subset C_{1}$. Suppose $B \subset C_{n}$ for some $n \in \mathbb{N}$. Let $u \in B$. We observe from algorithm (3.7) that $u_{n}=F_{r_{n}} x_{n}$ and $z_{n}=T_{r_{n}} x_{n}$ for all $n \in \mathbb{N}$, using this and the fact that $\left\{T_{n}\right\}$ is an infinite family of generalized J_{*}-nonexpansive maps, the definition of y_{n}, Lemmas 2.7, 2.8, and 2.1, we compute as follows:

$$
\begin{aligned}
\phi\left(u, y_{n}\right)= & \phi\left(u, J^{-1}\left(\alpha_{1} J x_{n}+\alpha_{2} J z_{n}+\alpha_{3} T_{n} u_{n}\right)\right. \\
\leq & \alpha_{1}\left[\|u\|^{2}-2\left\langle u, J x_{n}\right\rangle+\left\|x_{n}\right\|^{2}\right]+\alpha_{2}\left[\|u\|^{2}-2\left\langle u, J z_{n}\right\rangle+\left\|z_{n}\right\|^{2}\right] \\
& +\alpha_{3}\left[\|u\|^{2}-2\left\langle u, J\left(J_{*} \circ T_{n}\right) u_{n}\right\rangle+\left\|T_{n} u_{n}\right\|^{2}\right] \\
& -\alpha_{1} \alpha_{3} g\left(\left\|J x_{n}-J\left(J_{*} \circ T_{n}\right) u_{n}\right\|\right) \\
= & \alpha_{1} \phi\left(u, x_{n}\right)+\alpha_{2} \phi\left(u, z_{n}\right)+\alpha_{3} \phi\left(u,\left(J_{*} \circ T_{n}\right) u_{n}\right)-\alpha_{1} \alpha_{3} g\left(\left\|J x_{n}-T_{n} u_{n}\right\|\right) \\
\leq & \alpha_{1} \phi\left(u, x_{n}\right)+\alpha_{2} \phi\left(u, z_{n}\right)+\alpha_{3} \phi\left(u, u_{n}\right)-\alpha_{1} \alpha_{3} g\left(\left\|J x_{n}-T_{n} u_{n}\right\|\right) \\
= & \alpha_{1} \phi\left(u, x_{n}\right)+\alpha_{2} \phi\left(u, T_{r_{n}} x_{n}\right)+\alpha_{3} \phi\left(u, u_{n}\right)-\alpha_{1} \alpha_{3} g\left(\left\|J x_{n}-T_{n} u_{n}\right\|\right) \\
\leq & \alpha_{1} \phi\left(u, x_{n}\right)+\alpha_{2} \phi\left(u, x_{n}\right)+\alpha_{3} \phi\left(u, u_{n}\right)-\alpha_{1} \alpha_{3} g\left(\left\|J x_{n}-T_{n} u_{n}\right\|\right),
\end{aligned}
$$

which yields

$$
\begin{equation*}
\phi\left(u, y_{n}\right) \leq \phi\left(u, x_{n}\right)-\alpha_{1} \alpha_{3} g\left(\left\|J x_{n}-T_{n} u_{n}\right\|\right) . \tag{3.9}
\end{equation*}
$$

Hence, $\phi\left(u, y_{n}\right) \leq \phi\left(u, x_{n}\right)$ and we have that $u \in C_{n+1}$, which implies that $B \subset C_{n}$ for all $n \geq 1$. Moreover, From Lemma 2.7 and 2.8 both $J V I\left(C, A_{k}\right)$ and $J E P\left(f_{l}\right)$ are closed and convex for each l and for each k. Also, using our assumption and lemma 2.9, we have that $J\left(F_{J}(\Gamma)\right.$ is closed and convex. Since E is uniformly convex, J is one-to-one. Thus, we have that,
$J\left(F_{J}(\Gamma) \cap\left[\cap_{l=1}^{L} E P\left(f_{l}\right)\right] \cap\left[\cap_{k=1}^{N} V I\left(C, A_{k}\right)\right]\right)=J F_{J}(\Gamma) \cap J\left[\cap_{l=1}^{L} E P\left(f_{l}\right)\right] \cap J\left[\cap_{k=1}^{N} V I\left(C, A_{k}\right)\right]$
so $J(B)$ is closed and convex. Using Lemma 2.3, we obtain that B is a sunny generalized retract of E. Therefore, from Lemma 2.5 , we have that $R_{B} x$ exists as a point in C_{n} for all $n \geq 1$. This completes step 1 .
Step 2: We show that the sequence $\left\{x_{n}\right\}$ defined by (3.7) converges to some $x^{*} \in C$.
Using the fact that $x_{n}=R_{C_{n}} x$ and Lemma 2.4(ii), we obtain

$$
\phi\left(x, x_{n}\right)=\phi\left(x, R_{C_{n}} x\right) \leq \phi(x, u)-\phi\left(R_{C_{n}} x, u\right) \leq \phi(x, u),
$$

for all $u \in F_{J}(\Gamma) \cap E P\left(f_{l}\right) \cap V I\left(C, A_{k}\right) \subset C_{n} ;(l=1,2, \ldots, L ; k=1,2, \ldots, K)$. This implies that $\left\{\phi\left(x, x_{n}\right)\right\}$ is bounded. Hence, from equation (2.5), $\left\{x_{n}\right\}$ is bounded. Also, since $x_{n+1}=R_{C_{n+1}} x \in C_{n+1} \subset C_{n}$, and $x_{n}=R_{C_{n}} x \in C_{n}$, applying Lemma 2.4(ii) gives

$$
\phi\left(x, x_{n}\right) \leq \phi\left(x, x_{n+1}\right) \forall n \in \mathbb{N} .
$$

So, $\lim _{n \rightarrow \infty} \phi\left(x, x_{n}\right)$ exists. Again, using Lemma 2.4(ii) and $x_{n}=R_{C_{n}} x$, we obtain that for all $m, n \in \mathbb{N}$ with $m>n$,

$$
\begin{align*}
\phi\left(x_{n}, x_{m}\right) & =\phi\left(R_{C_{n}} x, x_{m}\right) \leq \phi\left(x, x_{m}\right)-\phi\left(x, R_{C_{n}} x\right) \\
& =\phi\left(x, x_{m}\right)-\phi\left(x, x_{n}\right) \rightarrow 0 \text { as } n \rightarrow \infty . \tag{3.10}
\end{align*}
$$

From Lemma 2.2, we conclude that $\left\|x_{n}-x_{m}\right\| \rightarrow 0$, as $m, n \rightarrow \infty$. Hence, $\left\{x_{n}\right\}$ is a Cauchy sequence in C, and so, there exists $x^{*} \in C$ such that $x_{n} \rightarrow x^{*}$ completing step 2.
Step 3: We prove $x^{*} \in \cap_{k=1}^{N} V I\left(C, A_{k}\right)$.
From the definitions of C_{n+1} and x_{n+1}, we obtain that $\phi\left(x_{n+1}, y_{n}\right) \leq \phi\left(x_{n+1}, x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Hence, by Lemma 2.2 , we have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0 \tag{3.11}
\end{equation*}
$$

Since from step $2 x_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$, equation (3.11) implies that $y_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$. Using the fact that $u_{n}=F_{r_{n}} x_{n}$ for all $n \in \mathbb{N}$ and Lemma 2.2, we get for $u \in B$,

$$
\begin{align*}
\phi\left(u_{n}, x_{n}\right) & =\phi\left(F_{r_{n}} x_{n}, x_{n}\right) \tag{3.12}\\
& \leq \phi\left(u, x_{n}\right)-\phi\left(u, F_{r_{n}} x_{n}\right) \\
& =\phi\left(u, x_{n}\right)-\phi\left(u, u_{n}\right) .
\end{align*}
$$

From equations (3.8) and (3.9) we have

$$
\begin{equation*}
\phi\left(u, y_{n}\right) \leq \alpha_{1} \phi\left(u, x_{n}\right)+\alpha_{2} \phi\left(u, x_{n}\right)+\alpha_{3} \phi\left(u, u_{n}\right) \leq \phi\left(u, x_{n}\right) . \tag{3.13}
\end{equation*}
$$

Since $x_{n}, y_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$, equation (3.13) implies that $\phi\left(u, u_{n}\right) \rightarrow \phi\left(u, x^{*}\right)$ as $n \rightarrow \infty$. Therefore, from (3.12), we have $\phi\left(u, x_{n}\right)-\phi\left(u, u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ which implies that $\lim _{n \rightarrow \infty} \phi\left(u_{n}, x_{n}\right)=0$. Hence, from Lemma 2.2, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}-x_{n}\right\|=0 \tag{3.14}
\end{equation*}
$$

Observe that since J is uniformly continuous on bounded subsets of E, it follows from (3.14) that $\left\|J u_{n}-J x_{n}\right\| \rightarrow 0$.

Again, since $r_{n} \in[a, \infty)$, we have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\left\|J u_{n}-J x_{n}\right\|}{r_{n}}=0 \tag{3.15}
\end{equation*}
$$

From $u_{n}=F_{r_{n}} x_{n}$, we have

$$
\begin{equation*}
\left\langle y-u_{n}, A_{n} u_{n}\right\rangle+\frac{1}{r_{n}}\left\langle y-u_{n}, J u_{n}-J x_{n}\right\rangle \geq 0, \forall y \in C \tag{3.16}
\end{equation*}
$$

Let $\left\{n_{l}\right\}_{l=1}^{\infty} \subset \mathbb{N}$ be such that $A_{n_{l}}=A_{1} \forall l \geq 1$. Then, from (3.16), we obtain

$$
\begin{equation*}
\left\langle y-u_{n_{l}}, A_{1} u_{n_{l}}\right\rangle+\frac{1}{r_{n_{l}}}\left\langle y-u_{n_{l}}, J u_{n_{l}}-J x_{n_{l}}\right\rangle \geq 0, \forall y \in C \tag{3.17}
\end{equation*}
$$

If we set $v_{t}=t y+(1-t) x^{*}$ for all $t \in(0,1]$ and $y \in C$, then we get that $v_{t} \in C$. Hence, it follows from (3.17) that

$$
\begin{equation*}
\left\langle v_{t}-u_{n_{l}}, A_{1} u_{n_{l}}\right\rangle+\left\langle y-u_{n_{l}}, \frac{J u_{n_{l}}-J x_{n_{l}}}{r_{n_{l}}}\right\rangle \geq 0 \tag{3.18}
\end{equation*}
$$

This implies that

$$
\begin{aligned}
\left\langle v_{t}-u_{n_{l}}, A_{1} v_{t}\right\rangle & \geq\left\langle v_{t}-u_{n_{l}}, A_{1} v_{t}\right\rangle-\left\langle v_{t}-u_{n_{l}}, A_{1} u_{n_{l}}\right\rangle-\left\langle y-u_{n_{l}}, \frac{J u_{n_{l}}-J x_{n_{l}}}{r_{n_{l}}}\right\rangle \\
& =\left\langle v_{t}-u_{n_{l}}, A_{1} v_{t}-A_{1} u_{n_{l}}\right\rangle-\left\langle y-u_{n_{l}}, \frac{J u_{n_{l}}-J x_{n_{l}}}{r_{n_{l}}}\right\rangle .
\end{aligned}
$$

Since A_{1} is monotone, $\left\langle v_{t}-u_{n_{l}}, A_{1} v_{t}-A u_{n_{l}}\right\rangle \geq 0$. Thus, using (3.15), we have that

$$
0 \leq \lim _{l \rightarrow \infty}\left\langle v_{t}-u_{n_{l}}, A_{1} v_{t}\right\rangle=\left\langle v_{t}-x^{*}, A_{1} v_{t}\right\rangle
$$

therefore,

$$
\left\langle y-x^{*}, A_{1} v_{t}\right\rangle \geq 0, \forall y \in C
$$

Letting $t \rightarrow 0$ and using continuity of A_{1}, we have that

$$
\left\langle y-x^{*}, A_{1} x^{*}\right\rangle \geq 0, \forall y \in C
$$

This implies that $x^{*} \in V I\left(C, A_{1}\right)$. Similarly, if $\left\{n_{i}\right\}_{i=1}^{\infty} \subset \mathbb{N}$ is such that $A_{n_{i}}=A_{2}$ for all $i \geq$ 1 , then we have again that $x^{*} \in V I\left(C, A_{2}\right)$. If we continue in similar manner, we obtain that $x^{*} \in \cap_{k=1}^{N} V I\left(C, A_{k}\right)$.

Step 4: We prove that $x^{*} \in F_{J}(\Gamma)$.
First, we show that $\lim _{n \rightarrow \infty}\left\|J x_{n}-T u_{n}\right\|=0 \forall T \in \Gamma$.
From inequality (3.9) and the fact that g is nonnegative, we obtain

$$
0 \leq \alpha_{1} \alpha_{3} g\left(\left\|J x_{n}-T_{n} u_{n}\right\|\right) \leq \phi\left(u, x_{n}\right)-\phi\left(u, y_{n}\right) \leq 2\|u\| .\left\|J x_{n}-J y_{n}\right\|+\left\|x_{n}-y_{n}\right\| M,
$$

for some $M>0$. Thus, using (3.11) and properties of g, we obtain that $\lim _{n \rightarrow \infty}\left\|J x_{n}-T_{n} u_{n}\right\|=0$. Using the above and triangle inequality gives $\| J u_{n}-T_{n} u_{n} \mid \rightarrow$ 0 as $n \rightarrow \infty$. Since $\left\{T_{n}\right\}_{n=1}^{\infty}$ satisfies the NST condition with Γ, we have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|J u_{n}-T u_{n}\right\|=0 \forall T \in \Gamma \tag{3.19}
\end{equation*}
$$

Now, from equation (3.14), we have $u_{n} \rightarrow x^{*} \in C$. Assume that $\left(J_{*} \circ T\right) u_{n} \rightarrow y^{*}$. Since T is J_{*}-closed, we have $y^{*}=\left(J_{*} \circ T\right) x^{*}$. Furthermore, by the uniform continuity of J on bounded subsets of E, we have: $J u_{n} \rightarrow J x^{*}$ and $J\left(J_{*} \circ T\right) u_{n} \rightarrow J y^{*}$ as $n \rightarrow \infty$. Hence, we have

$$
\lim _{n \rightarrow \infty}\left\|J u_{n}-J\left(J_{*} \circ T\right) u_{n}\right\|=\lim _{n \rightarrow \infty}\left\|J u_{n}-T u_{n}\right\|=0, \forall T \in \Gamma
$$

which implies $\left\|J x^{*}-J y^{*}\right\|=\left\|J x^{*}-J\left(J_{*} \circ T\right) x^{*}\right\|=\left\|J x^{*}-T x^{*}\right\|=0$. So, $x^{*} \in F_{J}(\Gamma)$.
Step 5: We prove that $x^{*} \in \cap_{l=1}^{L} E P\left(f_{l}\right)$.
This follows by similar argument as in step 3 but for the sake of completeness we provide the details. Using the fact that $z_{n}=T_{r_{n}} x_{n}$ and Lemma 2.7, we obtain that for $u \in F_{J}(\Gamma) \cap$ $E P\left(f_{l}\right) \cap V I\left(C, A_{k}\right)$ for all i, k,

$$
\begin{align*}
\phi\left(z_{n}, x_{n}\right) & =\phi\left(T_{r_{n}} x_{n}, x_{n}\right) \tag{3.20}\\
& \leq \phi\left(u, x_{n}\right)-\phi\left(u, T_{r_{n}} x_{n}\right) \\
& =\phi\left(u, x_{n}\right)-\phi\left(u, z_{n}\right) .
\end{align*}
$$

From equations (3.8) and (3.9), we have

$$
\begin{equation*}
\phi\left(u, y_{n}\right) \leq \alpha_{1} \phi\left(u, x_{n}\right)+\alpha_{2} \phi\left(u, z_{n}\right)+\alpha_{3} \phi\left(u, x_{n}\right) \leq \phi\left(u, x_{n}\right) . \tag{3.21}
\end{equation*}
$$

Since $x_{n}, y_{n}, u_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$, from equation (3.21) we have $\phi\left(u, z_{n}\right) \rightarrow \phi\left(u, x^{*}\right)$ as $n \rightarrow \infty$. Therefore, from (3.20), we have $\phi\left(u, x_{n}\right)-\phi\left(u, u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Hence $\lim _{n \rightarrow \infty} \phi\left(z_{n}, x_{n}\right)=0$. From Lemma 2.2, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-x_{n}\right\|=0 \tag{3.22}
\end{equation*}
$$

which implies that $z_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$. Again, since J is uniformly continuous on bounded subsets of E, (3.22) implies $\left\|J z_{n}-J x_{n}\right\| \rightarrow 0$. Since $r_{n} \in[a, \infty)$, we have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\left\|J z_{n}-J x_{n}\right\|}{r_{n}}=0 . \tag{3.23}
\end{equation*}
$$

Since $z_{n}=T_{r_{n}} x_{n}$, we have that

$$
\frac{1}{r_{n}}\left\langle y-z_{n}, J z_{n}-J x_{n}\right\rangle \geq-f_{n}\left(J z_{n}, J y\right), \forall y \in C
$$

Let $\left\{n_{l}\right\}_{l=1}^{\infty} \subset \mathbb{N}$ be such that $f_{n_{l}}=f_{1} \forall l \geq 1$. Then, using (A2), we have

$$
\begin{equation*}
\left\langle y-z_{n}, \frac{J z_{n}-J x_{n}}{r_{n}}\right\rangle \geq-f_{1}\left(J z_{n}, J y\right) \geq f_{1}\left(J y, J z_{n}\right), \forall y \in C \tag{3.24}
\end{equation*}
$$

Since $f_{1}(x, \cdot)$ is convex and lower-semicontinuous and $z_{n} \rightarrow x^{*}$, it follows from equation (3.23) and inequality (3.24) that

$$
f_{1}\left(J y, J x^{*}\right) \leq 0, \forall y \in C .
$$

For $t \in(0,1]$ and $y \in C$, let $y_{t}^{*}=t J y+(1-t) J x^{*}$. Since $J C$ is convex, we have that $y_{t}^{*} \in J C$ and hence $f_{1}\left(y_{t}^{*}, J x^{*}\right) \leq 0$. Applying (A1) gives,

$$
0=f_{1}\left(y_{t}^{*}, y_{t}^{*}\right) \leq t f_{1}\left(y_{t}^{*}, J y\right)+(1-t) f_{1}\left(y_{t}^{*}, J x^{*}\right) \leq t f_{1}\left(y_{t}^{*}, J y\right), \forall y \in C
$$

This implies that

$$
f_{1}\left(y_{t}^{*}, J y\right) \geq 0, \forall y \in C
$$

Letting $t \downarrow 0$ and using (A3), we get

$$
f_{1}\left(J x^{*}, J y\right) \geq 0, \forall y \in C
$$

Therefore, we have that $J x^{*} \in J E P\left(f_{1}\right)$. This implies that $x^{*} \in E P\left(f_{1}\right)$. Applying similar argument, we can show that $x^{*} \in E P\left(f_{l}\right)$ for $l=2,3, \ldots, L$. Hence, $x^{*} \in \cap_{l=1}^{L} E P\left(f_{l}\right)$.
Step 6: Finally, we show that $x^{*}=R_{B} x$.
From Lemma 2.4(ii), we obtain that

$$
\begin{equation*}
\phi\left(x, R_{B} x\right) \leq \phi\left(x, x^{*}\right)-\phi\left(R_{B} x, x^{*}\right) \leq \phi\left(x, x^{*}\right) \tag{3.25}
\end{equation*}
$$

Again, using Lemma 2.4(ii), definition of x_{n+1}, and $x^{*} \in B \subset C_{n}$, we compute as follows:

$$
\begin{aligned}
\phi\left(x, x_{n+1}\right) & \leq \phi\left(x, x_{n+1}\right)+\phi\left(x_{n+1}, R_{B} x\right) \\
& =\phi\left(x, R_{C_{n+1}} x\right)+\phi\left(R_{C_{n+1}} x, R_{B} x\right) \leq \phi\left(x, R_{B} x\right)
\end{aligned}
$$

Since $x_{n} \rightarrow x^{*}$, taking limits on both sides of the last inequality, we obtain

$$
\begin{equation*}
\phi\left(x, x^{*}\right) \leq \phi\left(x, R_{B} x\right) \tag{3.26}
\end{equation*}
$$

Using inequalities (3.25) and (3.26), we obtain that $\phi\left(x, x^{*}\right)=\phi\left(x, R_{B} x\right)$. By the uniqueness of R_{B} (Lemma 2.5), we obtain that $x^{*}=R_{B} x$. This completes proof of the theorem.

4. Applications

Corollary 4.1. Let E be a uniformly smooth and uniformly convex real Banach space with dual space E^{*} and let C be a nonempty closed and convex subset of E such that JC is closed and convex. Let f be a bifunction from $J C \times J C$ to \mathbb{R} satisfying $(A 1)-(A 4), A: C \rightarrow E^{*}$, be a continuous monotone mapping, $T: C \rightarrow E^{*}$, be a generalized J_{*}-nonexpansive and J_{*}-closed map such that $B:=F_{J}(T) \cap E P(f) \cap V I(C, A) \neq \emptyset$. Assume that $J F_{J}(T)$ is convex. Then, $\left\{x_{n}\right\}$ generated by (3.7) converges strongly to $R_{B} x$, where R_{B} is the sunny generalized nonexpansive retraction of E onto B.

Proof. Set $T_{n}:=T$ for all $n \in \mathbb{N}, A:=A_{i}$ for any $i=1,2, \cdots, N$, and $f:=f_{l}$ for any $l=1,2, \cdots, L$. Then, from remark 2.1, $\left\{T_{n}\right\}$ satisfies the NST-condition with $\{T\}$. The conclusion follows from Theorem 3.1.

Corollary 4.2. Let E be a uniformly smooth and uniformly convex real Banach space with dual space E^{*} and let C be a nonempty closed and convex subset of E such that JC is closed and convex. Let $f_{l}, l=1,2,3, \ldots, L$ be a family of bifunctions from $J C \times J C$ to \mathbb{R} satisfying (A1) (A4), $T_{n}: C \rightarrow E^{*}, n=1,2,3, \ldots$ be an infinite family of generalized J_{*}-nonexpansive maps and Γ be a family of J_{*}-closed and generalized J_{*}-nonexpansive maps from C to E^{*} such that $\cap_{n=1}^{\infty} F_{J}\left(T_{n}\right)=F_{J}(\Gamma) \neq \emptyset$ and $B:=F_{J}(\Gamma) \cap\left[\cap \cap_{l=1}^{L} E P\left(f_{l}\right)\right] \neq \emptyset$. Assume that $J F_{J}(\Gamma)$ is convex and $\left\{T_{n}\right\}$ satisfies the NST-condition with Γ. Then, $\left\{x_{n}\right\}$ generated by (3.7) converges strongly to $R_{B} x$, where R_{B} is the sunny generalized nonexpansive retraction of E onto B.
Proof. Setting $A_{k}=0$ for any $k=1,2,3, \ldots, N$, then result follows from Theorem 3.1.

Remark 4.3. We note here that the theorem and corollaries presented above are applicable in classical Banach spaces, such as L_{p}, l_{p}, or $W_{p}^{m}(\Omega), 1<p<\infty$, where $W_{p}^{m}(\Omega)$ denotes the usual Sobolev space.
Remark 4.4. ([2]; p. 36) The analytical representations of duality maps are known in a number of Banach spaces, for example, in the spaces L_{p}, l_{p}, and $W_{m}^{p}(\Omega), p \in(1, \infty), p^{-1}+q^{-1}=1$.

Corollary 4.3. Let $E=H$, a real Hilbert space and let C be a nonempty closed and convex subset of H. Let $f_{l}, l=1,2,3, \ldots, L$ be a family of bifunctions from $C \times C$ to \mathbb{R} satisfying (A1) $-(A 4), T_{n}: C \rightarrow H, n=1,2,3, \ldots$ be an infinite family of nonexpansive maps, A_{k} : $C \rightarrow H, k=1,2,3, \ldots, N$ be a finite family of continuous monotone mappings and Γ be a family of closed and generalized nonexpansive maps from C to H such that $\cap_{n=1}^{\infty} F\left(T_{n}\right)=F(\Gamma) \neq \emptyset$ and $B:=F(\Gamma) \cap\left[\cap_{l=1}^{L} E P\left(f_{l}\right)\right] \cap\left[\cap_{k=1}^{N} V I\left(C, A_{k}\right)\right] \neq \emptyset$. Assume that $\left\{T_{n}\right\}$ satisfies the NST-condition with Γ. Let $\left\{x_{n}\right\}$ be generated by:

$$
\left\{\begin{array}{l}
x_{1}=x \in C ; C_{1}=C, \tag{4.27}\\
z_{n}:=\left\{z \in C: f_{n}(z, y)+\frac{1}{r_{n}}\left\langle y-z, z-x_{n}\right\rangle \geq 0, \forall y \in C\right\}, \\
u_{n}:=\left\{z \in C:\left\langle y-z, A_{n} z\right\rangle+\frac{1}{r_{n}}\left\langle y-z, z-x_{n}\right\rangle \geq 0, \forall y \in C\right\}, \\
y_{n}=\alpha_{1} J x_{n}+\alpha_{2} z_{n}+\alpha_{3} T_{n} u_{n} \\
C_{n+1}=\left\{z \in C_{n}:\left\|z-y_{n}\right\| \leq\left\|z-x_{n}\right\|\right\}, \\
x_{n+1}=P_{C_{n+1}} x,
\end{array}\right.
$$

for all $n \in \mathbb{N}, \alpha_{1}, \alpha_{2}, \alpha_{3} \in(0,1)$ such that $\alpha_{1}+\alpha_{2}+\alpha_{3}=1,\left\{r_{n}\right\} \subset[a, \infty)$ for some $a>0$, $A_{n}=A_{n(\bmod N)}$ and $f_{n}(\cdot, \cdot)=f_{n(\bmod L)}(\cdot, \cdot)$. Then, $\left\{x_{n}\right\}$ converges strongly to $P_{B} x$, where P_{B} is the metric projection of H onto B.

Proof. In a Hilbert space, J is the identity operator and $\phi(x, y)=\|x-y\|^{2}$ for all $x, y \in H$. The result follows from Theorem 3.1.

Example 4.1. Let $E=l_{p}, 1<p<\infty, \frac{1}{p}+\frac{1}{q}=1$, and $C=\overline{B_{l_{p}}}(0,1)=\left\{x \in l_{p}:\|x\|_{l_{p}} \leq 1\right\}$. Then $J C=\overline{B_{l_{q}}}(0,1)$. Let $f: J C \times J C \longrightarrow \mathbb{R}$ defined by $f\left(x^{*}, y^{*}\right)=\left\langle J^{-1} x^{*}, x^{*}-y^{*}\right\rangle \forall x^{*} \in$ $J C, A: C \longrightarrow l_{q}$ defined by $T x=J\left(x_{1}, x_{2}, x_{3}, \cdots\right) \forall x=\left(x_{1}, x_{2}, x_{3}, \cdots\right) \in C, T: C \longrightarrow l_{q}$ defined by $T x=J\left(0, x_{1}, x_{2}, x_{3}, \cdots\right) \forall x=\left(x_{1}, x_{2}, x_{3}, \cdots\right) \in C$, and $T_{n}: C \longrightarrow l_{q}$ defined by $T_{n} x=\alpha_{n} J x+\left(1-\alpha_{n}\right) T x, \forall n \geq 1, \forall x \in C, \alpha_{n} \in(0,1)$ such that $1-\alpha_{n} \geq \frac{1}{2}$. Then $C, J C$, f, A, T, and T_{n} satisfy the conditions of Theorem 3.1. Moreover, $0 \in F_{J}(\Gamma) \cap E P(f) \cap V I(C, A)$.

5. CONCLUSION

Our theorem and its applications complement, generalize, and extend results of Uba et al. [24], Zegeye and Shahzad [28], Kumam [14], Qin and Su [19], and Nakajo and Takahashi [17]. Theorem 3.1 is a complementary analogue and extension of Theorem 3.2 of [28] in the following sense: while Theorem 3.2 of [28] is proved for a finite family of self-maps in uniformly smooth and strictly convex real Banach space which has the Kadec-Klee property, Theorem 3.1 is proved for countable family of non-self maps in uniformly smooth and uniformly convex real Banach space; in Hilbert spaces, Corollary 4.3 is an extension of Corollary 3.5 of [28] from finite family of nonexpansive self-maps to countable family of nonexpansive non-self maps. Additionally, Theorem 3.1 extends and generalizes Theorem 3.7 of [24] in the following sense: while Theorem 3.7 of [24] studied equilibrium problem and countable family of generalized J_{*}-nonexpansive non-self maps, Theorem 3.1 studied finite family of equilibrium and variational inequality problems and countable family of generalizes J_{*} - nonexpansive non-self maps; corollary 4.2 generalized Theorem 3.7 of [24] to a
finite family of equilibrium problems and countable family of generalized J_{*}-nonexpansive non-self maps. Furthermore, Corollary 4.1 extends Theorem 3.1 of [14] from Hilbert spaces to a more general uniformly smooth and uniformly convex Banach spaces and to a more general class of continuous monotone mappings. Finally, Corollary 4.1 improves and extends the results in $[19,17]$ from a nonexpansive self-map to a generalized J_{*}-nonexpansive non-self map.
Acknowledgement. The research of the third author is supported by the Slovak Research and Development Agency under the project APVV-20-0311.

REFERENCES

[1] Alber, Y. Metric and generalized projection operators in Banach spaces: properties and applications. In Theory and Applications of Nonlininear Operators of Accretive and Monotone Type. (A. G. Kartsatos, Ed.), Marcel Dekker, New York (1996), 15-50.
[2] Alber, Y.; Ryazantseva, I. Nonlinear Ill Posed Problems of Monotone Type. Springer, London, UK, 2006.
[3] Blum, E.; Oettli, W. From optimization and variational inequalities to equilibrium problems. Math. Stud. 63 (1994), 123-145.
[4] Chidume, C. E.; Ezea, C. G. New algorithms for approximating zeros of inverse strongly monotone maps and J - fixed points. Fixed Point Theory Appl. 3 (2020).
[5] Chidume, C. E.; Idu, K. O. Approximation of zeros of bounded maximal monotone maps, solutions of Hammerstein integral equations and convex minimization problems. Fixed Point Theory Appl. 97 (2016).
[6] Chidume, C. E.; Otubo, E. E.; Ezea, C. G.; Uba, M. O. A new monotone hybrid algorithm for a convex feasibility problem for an infinite family of nonexpansive-type maps, with applications. Adv. Fixed Point Theory 7 (2017), no. 3, 413-431.
[7] Cioranescu, I. Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. vol. 62, Kluwer Academic Publishers, 1990.
[8] Combettes, P. L.; Hirstoaga, S. A. Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6 (2005), 117-136.
[9] Dong, Q. L.; Deng, B. C. Strong convergence theorem by hybrid method for equilibrium problems, variational inequality problems and maximal monotone operators. Nonlinear Anal. Hybrid Syst. 4 (2010), no. 4, 689-698.
[10] Ibaraki, T.; Takahashi, W. A new projection and convergence theorems for the projections in Banach spaces. J. Approx. Theory 149 (2007) 1-14
[11] Kamimura, S.; Takahashi, W. Strong convergence of a proximal-type algorithm in a Banach space. SIAM J. Optim. 13 (2002), no. 3, 938-945.
[12] Klin-eam, C.; Suantai, S.; Takahashi, W. Strong convergence theorems by monotone hybrid method for a family of generalized nonexpansive mappings in Banach spaces. Taiwanese J. Math. 16 (2012), no. 6, 1971-1989.
[13] Kohsaka, F.; Takahashi, W. Generalized nonexpansive retractions and a proximal-type algorithm in Banach spaces. J. Nonlinear and Convex Anal. 8 (2007), no. 2, 197-209.
[14] Kumam, P. A hybrid approximation method for equilibrium and fixed point problems for a monotone mapping and a nonexpansive. Nonlinear Anal. Hybrid Syst. 2 (2008), no. 4, 1245-1255.
[15] Liu, B. Fixed point of strong duality pseudocontractive mappings and applications. Abstract Appl. Anal. 2012, Article ID 623625, 7 pp.
[16] Nakajo, K.; Shimoji, K.; Takahashi, W. Strong convergence theorems to common fixed points of families of nonexpansive mappings in Banach spaces. J. Nonlinear Convex Anal. * (2007) 11-34
[17] Nakajo, K.; Takahashi, W. Strong convergence theorems for nonexpansive mappings and nonexpansive semi-groups. J. Math. Anal. Appl. 279(2003), 372-379
[18] Peng, J. W.; Yao J. C. A new hybrid-extragradient method for generalized mixed euqilibrium problems, fixed point problems and variational inequality problems. Taizanese J. Math. 12 (2008), 1401-1432.
[19] Qin, X.; Su, Y. Strong convergence of monotone hybrid method for fixed point iteration process. J. Syst. Sci. and Complexity 21 (2008), 474-482.
[20] Saewan, S.; Kumam, P. A new iteration process for equilibrium, variational inequality, fixed point problems, and zeros of maximal monotone operators in a Banach space. J. Inequal. Appl. 23 (2013).
[21] Stampacchia, G. Formes bilineaires coercitives sur les ensembles convexes. C. R. Acad. Sci. Paris 258 (1964), 4413-4416
[22] Takahashi, W. Nonlinear functional analysis, Fixed point theory and its applications. Yokohama Publ., Yokohama, (2000).
[23] Takahashi, W.; Zembayashi, K. A strong convergence theorem for the equilibrium problem with a bifunction defined on the dual space of a Banach space. Fixed point theory and its applications, Yokohama Publ., Yokohama, (2008), 197-209.
[24] Uba, M. O.; Otubo, E. E.; Onyido, M. A. A Novel Hybrid Method for Equilibrium Problem and A Countable Family of Generalized Nonexpansive-type Maps, with Applications. Fixed Point Theory 22 (2021), no. 1, 359376.
[25] Zegeye, H. Strong convergence theorems for maximal monotone mappings in Banach spaces. J. Math. Anal. Appl. 343 (2008), 663-671
[26] Zegeye, H.; Shahzad, N. Strong convergence theorems for a solution of finite families of equilibrium and variational inequality problems. Optimization 63 (2014), no. 2, 207-223
[27] Zegeye, H.; Ofoedu, E.U.; Shahzad, N. Convergence theorems for equilibrium problem, variational inequality problem and countably infinite relatively quasi-nonexpansive mappings. Appl. Math. Comput. 216 (2010), 3439-3449.
[28] Zegeye, H.; Shahzad, N. A hybrid scheme for finite families of equilibrium, variational inequality and fixed point problems. Nonlinear Anal. 74 (2011), 263-272
[29] Zhang, S. Generalized mixed equilibrium problems in Banach spaces. Appl. Math. Mech. -Engl. Ed. 30 (2009), no. 9, 1105-1112.

University of Nigeria
Department of Mathematics
Nsukka - Onitsha Rd, 410001 Nsukka, Nigeria
Email address: markjoeuba@gmail.com
Email address: peter.nwokoro@unn.edu.ng

Northern Illinois University
Department of Mathematical Sciences,
DeKalb, IL 60115, United States
Email address: mao0021@auburn.edu
Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics, Mlynská dolina F1, 84248 Bratislava, Slovak Republic
Email address: cyrilizuchukwu04@gmail.com

[^0]: Received: 22.11.2021. In revised form: 07.07.2022. Accepted: 14.07.2022
 2010 Mathematics Subject Classification. 47H09, 47H05, 47J25, 47 J 05.
 Key words and phrases. equilibrium problem, $J_{*}-$ nonexpansive, fixed points, variational inequality, strong convergence.

 Corresponding author: Maria A. Onyido; mao0021@auburn.edu

