On an isomorphism lying behind the class number formula

Vlad CRIşan

ABSTRACT. Let p be an odd prime such that the Greenberg conjecture holds for the maximal real cyclotomic subfield \mathbb{K}_{1} of $\mathbb{Q}\left[\zeta_{p}\right]$. Let $A_{n}=\left(\mathcal{C}\left(\mathbb{K}_{n}\right)\right)_{p}$ be the p-part of the class group of \mathbb{K}_{n}, the n-th field in the cyclotomic tower, and let $\underline{E}_{n}, \underline{C}_{n}$ be the global and cyclotomic units of \mathbb{K}_{n}, respectively. We prove that under this premise, there is some n_{0} such that for all $m \geq n_{0}$, the class number formula $\left|\left(\underline{E}_{m} / \underline{C}_{m}\right)_{p}\right|=\left|A_{m}\right|$ hides in fact an isomorphism of $\Lambda\left[\operatorname{Gal}\left(\mathbb{K}_{1} / \mathbb{Q}\right)\right]$-modules.

1. Notations and auxiliary results

We fix an odd prime $p>3$ and introduce the following notations: for $n \geq 1$, we set $\mathbb{K}_{n}=\mathbb{Q}\left[\zeta_{p^{n}}+\bar{\zeta}_{p^{n}}\right]$, with $\zeta_{p^{n}}$ a primitive p^{n}-th root of unity. The norm maps are denoted by $N_{n, m}=\mathbf{N}_{\mathbb{K}_{n} / \mathbb{K}_{m}}$; for a number field \mathbf{K}, we denote by \mathbf{K}_{∞} its cyclotomic \mathbb{Z}_{p}-extension. In our case, $\mathbb{K}_{\infty}=\bigcup_{n \geq 1} \mathbb{K}_{n}$ is a totally real field. We let $\mathbb{B}_{\infty} / \mathbb{Q}$ be the \mathbb{Z}_{p}-extension of \mathbb{Q}, so $\mathbb{K}_{\infty}=\mathbb{K}_{1} \cdot \mathbb{B}_{\infty}, G_{n}$ is the Galois group of $\mathbb{K}_{n} / \mathbb{Q}$ and Γ is the Galois group of $\operatorname{Gal}\left(\mathbb{K}_{\infty} / \mathbb{K}_{1}\right)$, with $\tau \in \Gamma$ a topological generator. We also let $\Gamma_{n}=\operatorname{Gal}\left(\mathbb{K}_{n} / \mathbb{K}_{1}\right)$. We write as usual $T=\tau-1, \Lambda=\mathbb{Z}_{p}[[T]]$ and

$$
\omega_{n}=\tau^{p^{n-1}}-1=(T+1)^{p^{n-1}}-1, \quad \nu_{n, m}=\omega_{n} / \omega_{m}, \quad \text { for } n>m \geq 1
$$

We lift G_{1} to G_{n} in the standard way. Notice that $\tau^{p^{n-1}}$ is the largest power of τ which fixes \mathbb{K}_{n}, so we have that $\alpha^{\omega_{n}}=1$, for all $\alpha \in \mathbb{K}_{n}$. Let A_{n} be the p-Sylow subgroup of the ideal class group $\mathcal{C}\left(\mathbb{K}_{n}\right)$ of \mathbb{K}_{n} and let $A_{\infty}=\lim _{n} A_{n}$ be the projective limit of the groups $\left(A_{n}\right)_{n \geq 1}$; Greenberg's Conjecture specializes in our contexts to the following statement:

Greenberg's Conjecture: $\left|A_{\infty}\right|<\infty$.
Let \underline{E}_{n} and \underline{C}_{n} denote the global and the cyclotomic units of \mathbb{K}_{n}, respectively. Then the class number formula ([4] Theorem 8.2) reads $\left|\mathcal{C}\left(\mathbb{K}_{n}\right)\right|=\left|\underline{E}_{n} / \underline{C}_{n}\right|$, so the corresponding p-parts satisfy $\left|A_{n}\right|=\left|\left(\underline{E}_{n} / \underline{C}_{n}\right)_{p}\right|$. In this paper we prove that assuming Greenberg's conjecture, the last equality underlines an isomorphism of $\Lambda\left[G_{1}\right]$-modules, for all n sufficiently large.

2. A Core lemma

For every $n \geq 1$, let $\underline{e}_{1}, \ldots, \underline{e}_{r_{n}}$ (with the dependence on n being understood) be a corresponding fundamental system of units of \underline{E}_{n}, where $r_{n}=\left[\mathbb{K}_{n}: \mathbb{Q}\right]-1$, as \mathbb{K}_{n} is totally real. Then every element in \underline{E}_{n} is of the form $\pm \underline{e}_{1}^{a_{1}} \cdot \ldots \underline{e}_{r_{n}}^{a_{r_{n}}}$, where $a_{1}, \ldots, a_{r_{n}} \in \mathbb{Z}$. Let $g \in \mathbb{Z}$ be a generator for $\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)^{\times}$and hence also for $\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times}$for any $n \geq 2$. Let $\eta_{n}=\frac{\zeta_{p^{n}}^{g}-\bar{\zeta}_{p^{n}}^{g}}{\zeta-\bar{\zeta}}$ and let $C_{n}=\eta_{n}^{\mathbb{Z}_{p}}\left[G_{n}\right]$ be the subgroup of \underline{C}_{n} generated by η_{n} as a $\mathbb{Z}\left[G_{n}\right]-$ module. Then $C_{n}=\underline{C}_{n} /\{ \pm 1\}$ ([4] Lemma 8.11). As p is odd, we have

$$
\left(\underline{E}_{n} / \underline{C}_{n}\right)_{p}=\left(\underline{E}_{n} / C_{n}\right)_{p}
$$

For each $j=1, \ldots, r_{n}$, write

$$
q_{j} \cdot p^{\alpha_{j}}=\left|\underline{e}_{j}^{\mathbb{Z}} /\left(\underline{e}_{j}^{\mathbb{Z}} \cap C_{n}\right)\right|
$$

Now let $e_{j}=\underline{e}_{j}^{q_{j}}$ and let E_{n} be the subgroup of \underline{E}_{n} generated by the elements $e_{1}, \ldots, e_{r_{n}}$ as a \mathbb{Z}-module. Notice that for each j we have $e_{j} \in\left(\underline{E}_{n} / C_{n}\right)_{p}$ and E_{n} / C_{n} is a subgroup of $\underline{E}_{n} / C_{n}$ with $\left|E_{n} / C_{n}\right|=\left|\left(\underline{E}_{n} / C_{n}\right)_{p}\right|$. As everything in sight is abelian, the p-Sylow subgroup is unique and thus

$$
E_{n} / C_{n} \cong\left(\underline{E}_{n} / C_{n}\right)_{p} .
$$

Notice also that the elements $\left(\eta_{n}\right)_{n \geq 1}$ form a norm-coherent sequence in the extension $\mathbb{K}_{\infty} / \mathbb{K}$.

Recall that the norms $N_{n, m}: A_{n} \rightarrow A_{m}$ are surjective for all $n>m \geq 1$, since $\mathbb{K}_{2} \cap$ $\mathbb{H}\left(\mathbb{K}_{1}\right)=\mathbb{K}_{1}$ (here \mathbb{H} stands for the Hilbert class field). Consequently, the numbers $\left|A_{n}\right|$ build an increasing sequence of positive integers bounded above by $\left|A_{\infty}\right|$, which was assumed to be finite. There must be thus an integer n_{0} such that for any $n \geq m \geq n_{0}$, we have $\left|A_{n}\right|=\left|A_{m}\right|=\left|A_{\infty}\right|$ and the norm $N_{n, m}$ is in fact an isomorphism, so we have

$$
\begin{equation*}
A_{n}=A_{m} \cong A_{\infty}, \quad \forall n>m \geq n_{0} . \tag{2.1}
\end{equation*}
$$

We now look at the ideal lift map $\iota_{m, n}: A_{m} \rightarrow A_{n}$ and its kernel (of capitulation). Let $k^{\prime}>0$ be such that $\left(A_{\infty}\right)^{k^{k^{\prime}}}=0$, and $n>n_{0}$. Since $N_{n, m} \circ \iota_{m, n}: A_{m} \rightarrow A_{m}$ is the p^{n-m} power map for $n>m \geq n_{0}$, by letting $n=m+k^{\prime}$ we have

$$
N_{n, m} \circ \iota_{m, n}\left(A_{m}\right)=\left(A_{m}\right)^{p^{k^{\prime}}}=0 .
$$

We have seen that $N_{n, m}$ is an isomorphism, so

$$
\iota_{m, n}\left(A_{m}\right) \subset \operatorname{Ker}\left(N_{n, m}: A_{n} \rightarrow A_{m}\right)=0
$$

This argument also works for $1 \leq m<n_{0}$: let $k=k^{\prime}+n_{0}$. Then $\iota_{m, n}=\iota_{n_{0}, n} \circ \iota_{m, n_{0}}$ and since $\iota_{m, n_{0}}\left(A_{m}\right) \subset A_{n_{0}}, \iota_{n_{0}, n}\left(A_{n_{0}}\right)=\{1\}$, it follows that $\iota_{m, n}\left(A_{m}\right)=\{1\}$. We have proved:

Lemma 2.1. Assuming Greenberg's conjecture, there exists a constant k such that for all $m \geq 1$ and $n \geq m+k$ we have

$$
A_{n} \cong A_{\infty} \quad \text { and } \quad \iota_{m, n}\left(A_{m}\right)=0
$$

We now turn our attention to the units and start by proving that the cyclotomic units are stable in the cyclotomic tower, in the following sense:
Lemma 2.2. For any $n \geq m \geq 1$, we have $C_{n} \cap \mathbb{K}_{m}=C_{m}$.
Proof. We know that C_{n} is a cyclic $\mathbb{Z}\left[G_{n}\right]$ module and $N_{\mathbb{K}_{n} / \mathbb{Q}}\left(C_{n}\right)=\{1\}$. So there is a surjective homomorphism

$$
\mathbb{Z}\left[G_{n}\right] /\left(N_{\mathbb{K}_{n} / \mathbb{Q}} \mathbb{Z}\left[G_{n}\right]\right) \rightarrow C_{n} \quad \text { given by } \quad \bar{\theta} \rightarrow \eta_{n}^{\theta}
$$

where $\bar{\theta}$ denotes the image of $\theta \in \mathbb{Z}\left[G_{n}\right]$ in $\mathbb{Z}\left[G_{n}\right] /\left(N_{\mathbb{K}_{n} / \mathbb{Q}} \mathbb{Z}\left[G_{n}\right]\right)$.

We know C_{n} has finite index in E_{n}, so it has the same \mathbb{Z}-rank as E_{n}, namely $\left[\mathbb{K}_{n}: \mathbb{Q}\right]$ - 1 by Dirichlet's Unit Theorem. This is the same as the \mathbb{Z}-rank of $\mathbb{Z}\left[G_{n}\right] /\left(N_{\mathbb{K}_{n}} / \mathbb{Q}\left[G_{n}\right]\right)$, so by Vasconcelos' Theorem ([3] Theorem 2.4), we know that the kernel of the above described map must be trivial. We have thus a short exact sequence

$$
\begin{equation*}
1 \longrightarrow \mathbb{Z}\left[G_{n}\right] /\left(N_{\mathbb{K}_{n} / \mathbb{Q}} \mathbb{Z}\left[G_{n}\right]\right) \xrightarrow{\bar{\theta} \rightarrow \eta_{n}^{\theta}} C_{n} \longrightarrow 1 . \tag{2.2}
\end{equation*}
$$

The inclusion $C_{m} \subseteq C_{n} \cap \mathbb{K}_{m}$ is clear. Conversely, consider $e \in C_{n} \cap \mathbb{K}_{m}$. Then $e=\eta_{n+1}^{\theta}$, for some $\theta \in \mathbb{Z}\left[G_{n}\right]$. We have that $G_{n}=\Gamma_{n} \times\langle\sigma\rangle$, where $\langle\sigma\rangle$ is the cyclic group $G_{1}=$ $\operatorname{Gal}\left(\mathbb{K}_{1} / \mathbb{Q}\right)$. Hence one has an isomorphism of \mathbb{Z}-algebras $\phi: \mathbb{Z}\left[G_{n}\right] \xrightarrow{\sim} \mathbb{Z}\left[\Gamma_{n}\right] \otimes_{\mathbb{Z}} \mathbb{Z}\left[G_{1}\right]$ given by

$$
\phi\left(\sum_{i} a_{i} \cdot g_{i}\right)=\sum_{i} a_{i} h_{i} \otimes n_{i}
$$

where $a_{i} \in \mathbb{Z}, g_{i} \in G_{n}, h_{i} \in \Gamma_{n}, n_{i} \in G_{1}$ and $g_{i}=h_{i} \cdot n_{i}$.
By a slight abuse of notation, we shall write ω_{m} for the image of $\omega_{m}=\tau^{p^{m-1}}-1=$ $(T+1)^{p^{m-1}}-1$ in $\mathbb{Z}\left[\Gamma_{n}\right]$ and similarly for $\nu_{m, 1}, T$, etc. For the rest of the proof $\omega_{m}, \nu_{m, 1}, T$, etc will always refer to elements in $\mathbb{Z}\left[\Gamma_{n}\right]$. Let $\widehat{\omega_{m}}=\phi^{-1}\left(\omega_{m} \otimes 1\right)$. Since $e \in \mathbb{K}_{m}$, we have $e^{\widehat{\omega_{m}}}=1$, thus

$$
\begin{equation*}
\eta_{n}^{\widehat{\omega_{m}} \cdot \theta}=1 . \tag{2.3}
\end{equation*}
$$

By (2.2), this implies that $\widehat{\omega_{m}} \cdot \theta \in N_{\mathbb{K}_{n} / \mathbb{Q}} \mathbb{Z}\left[G_{n}\right]$. Let $z \in \mathbb{Z}\left[G_{n}\right]$ be such that $\widehat{\omega_{m}} \cdot \theta=$ $N_{\mathbb{K}_{n} / \mathbb{Q}} \cdot z$ and let us write $N_{\mathbb{K}_{n} / \mathbb{Q}}=\nu_{n, 1} \cdot N_{\sigma}$, where N_{σ} is the norm map $N_{\mathbb{K}_{1} / \mathbb{Q}}$. Under the isomorphism $\mathbb{Z}\left[G_{n}\right] \cong \mathbb{Z}\left[\Gamma_{n}\right] \otimes_{\mathbb{Z}} \mathbb{Z}\left[G_{1}\right]$, the element $\widehat{\omega_{m}} \in \mathbb{Z}\left[G_{n}\right]$ is mapped to $\omega_{m} \otimes 1$ and $N_{\mathbb{K}_{n} / \mathbb{Q}}$ is mapped to $\nu_{n, 1} \otimes N_{\sigma}$. Now let $\left\{e_{i}\right\}_{i=1}^{\frac{p-1}{2}}$ be a \mathbb{Z}-basis for $\mathbb{Z}\left[G_{1}\right]$. Then for all $i=1,2, \ldots, \frac{p-1}{2}$, there exist integers a_{i}, c_{i} and elements $\theta_{i}, \tilde{z}_{i} \in \mathbb{Z}\left[\Gamma_{n}\right]$ such that

$$
\phi(\theta)=\sum_{i=1}^{(p-1) / 2} a_{i} \theta_{i} \otimes e_{i} \quad \text { and } \quad \phi(z)=\sum_{i=1}^{(p-1) / 2} c_{i} \tilde{z}_{i} \otimes e_{i} .
$$

Then

$$
\phi\left(\widehat{\omega_{m}} \cdot \theta\right)=\sum_{i} a_{i} \omega_{m} \theta_{i} \otimes e_{i} \quad \text { and } \quad \phi\left(N_{\mathbb{K}_{n} / \mathbb{Q}} \cdot z\right)=\sum_{i} c_{i} \nu_{n, 1} \tilde{z}_{i} \otimes N_{\sigma} e_{i} .
$$

We now rewrite the expression $\sum_{i} c_{i} \nu_{n, 1} \tilde{z}_{i} \otimes N_{\sigma} e_{i}$ along the basis $\left\{e_{i}\right\}_{i=1}^{\frac{p-1}{2}}$, so that one has

$$
\phi\left(N_{\mathbb{K}_{n} / \mathbb{Q}} \cdot z\right)=\sum_{i} b_{i} \nu_{n, 1} z_{i} \otimes e_{i},
$$

for some $b_{i} \in \mathbb{Z}$ and $z_{i} \in \mathbb{Z}\left[\Gamma_{n}\right]$ which can be computed in terms of the $c_{i}{ }^{\prime}$ s and $\tilde{z}_{i}{ }^{\prime}$ s, respectively.

Due to the equality $\omega_{m} \cdot \theta=N_{\mathbb{K}_{n} / \mathbb{Q}} \cdot z$ in $\mathbb{Z}\left[G_{n}\right]$, we must have that for all $i=1,2, \ldots, \frac{p-1}{2}$, the identity $a_{i} \omega_{m} \theta_{i}=b_{i} \nu_{n, 1} z_{i}$ holds in $\mathbb{Z}\left[\Gamma_{n}\right]$.

We also know that $\omega_{m}=\nu_{m, 1} \cdot T$. Plugging this into the equality $a_{i} \omega_{m} \theta_{i}=b_{i} \nu_{n, 1} z_{i}$, we obtain $a_{i} \nu_{m, 1} T \theta_{i}=b_{i} \nu_{n, 1} z_{i}$.

Let $\kappa: \mathbb{Z}\left[\Gamma_{n}\right] \rightarrow \frac{\mathbb{Z}[X]}{\left(X^{p^{n-1}}-1\right)}$ be an explicit isomorphism with $\kappa(T)=X-1$. Then one has $\kappa\left(\omega_{m}\right)=X^{p^{m-1}}-1$ and $\kappa\left(\nu_{n, 1}\right)=\frac{X^{p^{n-1}}-1}{X-1}$. From $a_{i} \omega_{m} \theta_{i}=b_{i} \nu_{n, 1} z_{i}$, we obtain

$$
a_{i}\left(X^{p^{m-1}}-1\right) \kappa\left(\theta_{i}\right)=b_{i} \frac{X^{p^{n-1}}-1}{X-1} \kappa\left(z_{i}\right) \quad \text { in } \quad \frac{\mathbb{Z}[X]}{\left(X^{p^{n-1}}-1\right)}
$$

So there exists a polynomial $f_{i}(X) \in \mathbb{Z}[X]$ such that

$$
a_{i}\left(X^{p^{m-1}}-1\right) \kappa\left(\theta_{i}\right)+f_{i}(X)\left(X^{p^{n-1}}-1\right)=b_{i} \frac{X^{p^{n-1}}-1}{X-1} \kappa\left(z_{i}\right) \quad \text { in } \quad \mathbb{Z}[X]
$$

Dividing both sides by $\frac{X^{p^{m-1}}-1}{X-1}$ we get

$$
a_{i}(X-1) \kappa\left(\theta_{i}\right)+f_{i}(X)(X-1) \frac{X^{p^{n-1}}-1}{X^{p^{m-1}}-1}=b_{i} \frac{X^{p^{n-1}}-1}{X^{p^{m-1}}-1} \kappa\left(z_{i}\right)
$$

From this, one deduces that $\left.\frac{X^{p^{n-1}}-1}{X^{p m-1}-1} \right\rvert\, a_{i}(X-1) \kappa\left(\theta_{i}\right)$ and since $\operatorname{gcd}\left((X-1), \frac{X^{p^{n-1}}-1}{X^{p^{m-1}}-1}\right)=$ 1 with $\frac{X^{p^{n-1}}-1}{X^{p^{m-1}}-1}$ monic, we obtain $\left.\frac{X^{p^{p-1}}-1}{X^{p^{m-1}}-1} \right\rvert\, \kappa\left(\theta_{i}\right)$, as polynomials in $\mathbb{Z}[X]$. Hence there exists $g_{i}(X) \in \mathbb{Z}[X]$ such that $\kappa\left(\theta_{i}\right)=\kappa\left(\nu_{n, m}\right) \cdot g_{i}(X)$ as polynomials in $\frac{\mathbb{Z}[X]}{\left(X^{p^{n-1}}-1\right)}$. Thus $\theta_{i}=\nu_{n, m} \cdot s_{i}$, where $s_{i}=\kappa^{-1}\left(g_{i}(X)\right) \in \mathbb{Z}\left[\Gamma_{n}\right]$. Since this holds for all i, it implies via the isomorphism $\mathbb{Z}\left[G_{n}\right] \cong \mathbb{Z}\left[\Gamma_{n}\right] \otimes_{\mathbb{Z}} \mathbb{Z}\left[G_{1}\right]$ that one can write $\theta \in \mathbb{Z}\left[G_{n}\right]$ as $\widehat{\nu_{n, m}} \cdot s$, where $\widehat{\nu_{n, m}}=\phi^{-1}\left(\nu_{n, m} \otimes 1\right)$ and $s \in \mathbb{Z}\left[G_{n}\right]$. It is clear that $\eta_{n}^{\widehat{n_{n, m}^{m}}}=\eta_{m}$. Therefore, we obtain $e=\eta_{n}^{\widehat{\nu_{n, m}} \cdot s}=\eta_{m}^{s}$, which shows that $e \in C_{m}$, as required.

The above result implies in particular that for any $n>m$, if $e \in \underline{E}_{m} \backslash C_{m}$ is a noncyclotomic unit, then $e \notin C_{n}$ either. Notice also that $E_{m} \subseteq E_{n}$ for all $n \geq m \geq 1$. Therefore, the sizes of the groups E_{m} / C_{m} form an increasing sequence. The analytic class number formula implies that this sequence also must stabilize beyond n_{0}, so in view of (2.1), we have

$$
\left|E_{n} / C_{n}\right|=\left|E_{n_{0}} / C_{n_{0}}\right|=\left|A_{\infty}\right|, \quad \forall n \geq n_{0}
$$

Since $E_{m} C_{n} \subseteq E_{n}=E_{n} C_{n}$ and E_{m} / C_{m} injects into $\left(E_{m} C_{n}\right) / C_{n}$ for $n>m$, we conclude that

$$
\begin{equation*}
E_{n}=E_{m} C_{n}, \quad \text { for all } n \geq m \geq n_{0} \tag{2.4}
\end{equation*}
$$

This identity implies in particular that $E_{n}^{\omega_{m}} \subset C_{n}$, for $n \geq m \geq n_{0}$.

3. Proof of the main Theorem

We now prove that the analytic class number formula also holds, for p-parts, as an isomorphism of $\Lambda\left[G_{1}\right]$-modules, for all sufficiently large m :
Proposition 3.1. For any $m \geq n_{0}$, there is an isomorphism of $\Lambda\left[G_{1}\right]$-modules:

$$
\left(\underline{E}_{m} / \underline{C}_{m}\right)_{p} \cong A_{m}
$$

Proof. Recall that $\left(\underline{E}_{m} / \underline{C}_{m}\right)_{p} \cong E_{m} / C_{m}$ and this is an isomorphism of $\Lambda\left[G_{1}\right]$-modules, so it suffices to prove that $E_{m} / C_{m} \cong A_{m}$ as $\Lambda\left[G_{1}\right]$-modules. Let k be such that p^{k} annihilates $E_{n_{0}} / C_{n_{0}}$ and let $n \geq n_{0}$ be such that $n-m \geq k$. Recall from above that under the given assumptions on m, n, k, we have $P_{m, n}:=\operatorname{Ker}\left(\iota_{m, n}: A_{m} \rightarrow A_{n}\right) \cong A_{m}$ as $\Lambda\left[G_{1}\right]$-modules, and also that $\left|E_{m} / C_{m}\right|=\left|A_{m}\right|$. Therefore, it suffices to prove that there is an injective homomorphism of $\Lambda\left[G_{1}\right]$-modules $\psi: E_{m} / C_{m} \hookrightarrow P_{m, n}$.

Let $\delta \in E_{m} \backslash C_{m}$; since the maps $E_{m} / C_{m} \hookrightarrow E_{n} / C_{n}$ are injective, as a consequence of Lemma 2.2, it follows that δ represents some class $d:=[\delta] \in E_{n} / C_{n}$, for arbitrary $n \geq m$. Note that $p^{n-m} E_{m} / C_{m}=\{1\}$, since $n-m \geq k$. Thus, there exists some $x \in C_{m}$ such that $\delta^{p^{n-m}}=x$.

The norm $N_{n, m}: C_{n} \rightarrow C_{m}$ is surjective, so there exists $y \in C_{n}$ such that $x=N_{n, m}(y)$. Since δ is fixed by $\operatorname{Gal}\left(\mathbb{K}_{n} / \mathbb{K}_{m}\right)$, we have:

$$
N_{n, m}(\delta)=\delta^{\left[\mathbb{K}_{n}: \mathbb{K}_{m}\right]}=\delta^{p^{n-m}}=x .
$$

Viewing now δ as an element of \mathbb{K}_{n} via the embedding $\mathbb{K}_{m}^{\times} \hookrightarrow \mathbb{K}_{n}^{\times}$, we see that $\gamma:=$ $\delta / y \in E_{n}$ has norm 1. Hilbert's Theorem 90 implies that there is some $\alpha \in \mathbb{K}_{n}^{\times}$such that $\gamma=\alpha^{\omega_{m}}$.

We claim that $\alpha \notin \underline{E}_{n}$. Let $\left|\underline{E}_{n} / C_{n}\right|=p^{s} \cdot a$, with $(a, p)=1$. Assuming $\alpha \in \underline{E}_{n}$, we would have $\left(\alpha^{a}\right)^{p^{s}} \in C_{n}$, so $\alpha^{a} \in E_{n}$. Since $m \geq n_{0}$, by (2.4) we have that $\gamma^{a}=\left(\alpha^{a}\right)^{\omega_{m}} \in$ C_{n}. As $y \in C_{n}$, we obtain that $\delta^{a} \in C_{n}$ and since $(a, p)=1$, this gives further that $\delta \in C_{n}$. But we chose $\delta \in E_{m} \backslash C_{m}$, so by Lemma 2.2, we get a contradiction. Thus α is not a unit.

We consider the factorization of the non-trivial fractional ideal $(\alpha) \subset \mathbb{K}_{n}$ and will show that (α) is the lift of some non-principal ideal class $a_{m} \in A_{m}$. By construction, $\alpha^{\omega_{m}}=\gamma \in$ E_{n}, so the ideal (α) is invariant under $\operatorname{Gal}\left(\mathbb{K}_{n} / \mathbb{K}_{m}\right)$.

We first prove that we can discard π from the factorization of (α) into prime ideals, where π denotes the generator for the unique prime ideal of \mathbb{K}_{n} lying above the rational prime p. Indeed, $\pi^{\omega_{m}} \in C_{n}$, so modifying (α) by some power of (π) does not change the class $d \in E_{n} / C_{n}$ of δ. We may thus assume that π is not among the primes occurring with positive or negative exponents in the factorization of (α).

Let \mathfrak{Q} be a prime dividing (α) and let $\mathfrak{q}=\mathfrak{Q} \cap \mathbb{K}_{m}$. We know that all the primes above \mathfrak{q} in \mathbb{K}_{n} are conjugate under the action of $\operatorname{Gal}\left(\mathbb{K}_{n} / \mathbb{K}_{m}\right)$, so we can write

$$
(\alpha)=\prod_{j} \mathfrak{Q}_{j}^{f_{j}\left(\omega_{m}\right)},
$$

where \mathfrak{Q}_{j} are primes in \mathbb{K}_{n} and $f_{j}\left(\omega_{m}\right)$ are elements of $\mathbb{Z}\left[\operatorname{Gal}\left(\mathbb{K}_{n} / \mathbb{K}_{m}\right)\right]$. Since (α) is invariant under $\operatorname{Gal}\left(\mathbb{K}_{n} / \mathbb{K}_{m}\right)$, we have $N_{n, m}(\alpha)=(\alpha)^{p^{n-m}}$ and thus for each j, also $p^{n-m} \cdot f_{j}\left(\omega_{m}\right)=\operatorname{Tr}\left(f_{j}\right) \cdot N_{n, m}$, with $\operatorname{Tr}\left(f_{j}\right)$ denoting the sum of the coefficients of f_{j}. This implies that all coefficients of f_{j} are equal, so f_{j} is a multiple of the norm $N_{n, m}$ for all j. This means precisely that $(\alpha)=\iota_{m, n}(\mathfrak{a})$ for an ideal \mathfrak{a} whose class is in A_{m}.

We now prove that the ideal \mathfrak{a} cannot be principal in \mathbb{K}_{m}, unless $[\delta]=1$, so $\delta \in C_{m}$. Assume that $\mathfrak{a}=\left(\alpha_{m}\right)$, for some $\alpha_{m} \in \mathbb{K}_{m}$; then $\alpha_{m} \mathfrak{O}\left(\mathbb{K}_{n}\right)=(\alpha)$, hence $\alpha=\alpha_{m} \cdot u$, for some $u \in \underline{E}_{n}$. But then $\alpha^{\omega_{m}}=\alpha_{m}^{\omega_{m}} \cdot u^{\omega_{m}}$ and since $\alpha_{m} \in \mathbb{K}_{m}$, it follows that $\alpha_{m}^{\omega_{m}}=1$, hence $\gamma \in C_{m}$, and $d=1$, as claimed.

Now let $a=[\mathfrak{a}]$ denote the class of \mathfrak{a} in A_{m} and let $\mathfrak{b} \in a$ be a further ideal, so $\mathfrak{b}=$ $(\beta) \cdot \mathfrak{a}$ for some $\beta \in \mathbb{K}_{m}^{\times}$. Then $\mathcal{O}\left(\mathbb{K}_{n}\right) \mathfrak{b}=(\alpha \cdot \beta)$ is an ideal which contains $\alpha \beta$; but $(\alpha \beta)^{\omega_{m}}=\alpha^{\omega_{m}}=\gamma$. We obtained a map $\psi: E_{m} / C_{m} \rightarrow P_{n, m}$ given by $\psi([\delta])=[\mathfrak{a}]$. The ideals in $\mathfrak{X} \in \psi[\delta]$ share the property that the principal ideal $\mathcal{O}\left(\mathbb{K}_{n}\right) \mathfrak{X}$ contains some $\xi \in \mathcal{O}\left(\mathbb{K}_{n}\right) \mathfrak{X}$ such that $\xi^{\omega_{m}} \in[\delta]$. The class is well defined. Indeed, assume that there is some further class $Y \in A_{m}$ and an ideal $\mathfrak{Y} \in Y$ which capitulates in $\mathcal{O}\left(\mathbb{K}_{n}\right)$, and there is some $y \in \mathcal{O}\left(\mathbb{K}_{n}\right) \cdot \mathfrak{Y}$ with $y^{\omega_{m}} \in[\delta]$. Then $(\alpha / y)^{\omega_{m}} \in C_{n} \cap \operatorname{Ker}\left(N_{n, m}: C_{n} \rightarrow C_{m}\right)$. Recall that $C_{n} \cong \mathbb{Z}\left[G_{n}\right] /\left(N_{\mathbb{K}_{n} / \mathbb{Q}} \mathbb{Z}\left[G_{n}\right]\right)$ and $\mathbb{Z}\left[G_{n}\right] \cong \mathbb{Z}\left[\Gamma_{n}\right] \otimes_{\mathbb{Z}} \mathbb{Z}\left[G_{1}\right]$. Thus, an element $\eta \in \operatorname{Ker}\left(N_{n, m}: C_{n} \rightarrow C_{m}\right)$ can be written as

$$
\eta=\eta_{n}^{\sum_{j=0}^{p-2} f_{j}(\tau) \otimes e_{j}} \quad \text { and satisfies } \quad \eta^{\widehat{/ n, m}}=1
$$

where $f_{j} \in \mathbb{Z}\left[\Gamma_{n}\right]$ and we keep the notations from Lemma 2.2.
From $C_{n} \cong \mathbb{Z}\left[G_{n}\right] /\left(N_{\mathbb{K}_{n} / \mathbb{Q}} \mathbb{Z}\left[G_{n}\right]\right)$, we obtain that $\eta^{\widehat{\nu_{n, m}^{m}}}$ must be in the ideal $N_{\mathbb{K}_{n}} / \mathbb{Q} \mathbb{Z}\left[G_{n}\right]$. Therefore, there exists some $A=\sum_{j=0}^{p-2} \tilde{g}_{j}(\tau) \otimes e_{j} \in \mathbb{Z}\left[\Gamma_{n}\right] \otimes \mathbb{Z}\left[G_{1}\right]$ such that for each j, one has

$$
\nu_{n, m} \cdot f_{j}(\tau)=g_{j}(\tau) \cdot \nu_{n, 1}
$$

with g_{j} explicitly computable in terms of \tilde{g}_{j}. Applying the same ideas as in the proof of Lemma 2.2, it follows that $\eta \in C_{n}^{\omega_{m}}$ and hence $\operatorname{Ker}\left(N_{n, m}: C_{n} \rightarrow C_{m}\right)=C_{n}^{\omega_{m}}$. Consequently, there is a unit $\varpi \in C_{n}$ such that $(\alpha / \varpi y)^{\omega_{m}}=1$. Now $\operatorname{Ker}\left(\omega_{m}: \mathbb{K}_{n}^{\times} \rightarrow \mathbb{K}_{n}^{\times}\right)=$ \mathbb{K}_{m}^{\times}, so we conclude that $\alpha=\varpi \cdot y \cdot z, z \in \mathbb{K}_{m}^{\times}$. This shows that $Y=a$, so the map is well defined. It is injective, since we have shown that its image $a=[\mathfrak{a}]$ is 1 if and only if $[\delta]=1$.

We finally show that ψ is also compatible with the action of $\Lambda\left[G_{1}\right]$. It is linear, since for $c \in \mathbb{Z}_{p}$ we have the formal sequence of associations

$$
\delta \mapsto \delta^{c} \Rightarrow \gamma \mapsto \gamma^{c} \Rightarrow(\alpha) \mapsto(\alpha)^{c} \Rightarrow[\mathfrak{a}] \mapsto[\mathfrak{a}]^{c} .
$$

Likewise, for $g \in G_{n}$ we have the sequence:

$$
\delta \mapsto g(\delta) \Rightarrow \gamma \mapsto g(\gamma) \Rightarrow(\alpha) \mapsto(g(\alpha)) \Rightarrow[\mathfrak{a}] \mapsto g([(\mathfrak{a}]),
$$

so $\psi: E_{m} / C_{m} \rightarrow P_{m, n}$ is indeed an injective homomorphism of $\Lambda\left[G_{1}\right]$-modules, and since $\left|P_{m, n}\right|=\left|A_{m}\right|=\left|E_{m} / C_{m}\right|$, the map is also surjective, so it is an isomorphism. Moreover, $P_{m, n} \cong A_{m}$ as $\Lambda\left[G_{1}\right]$ - modules too, so we obtained an isomorphism $E_{m} / C_{m} \cong A_{m}$ as $\Lambda\left[G_{1}\right]$-modules, which completes the proof.

Remark 3.1. One may note that the above result cannot be adapted to descend to levels which are lower than n_{0}. If we were able to do so, or if $n_{0}=1$, then we would obtain a weaker version of a famous conjecture due to Iwasawa and Leopoldt, which asserts that the p-part of the class group $\mathcal{C}\left(\mathbb{Q}\left[\zeta_{p}\right]\right)^{-}$is $\mathbb{Z}\left[\operatorname{Gal}\left(\mathbb{Q}\left[\zeta_{p}\right] / \mathbb{Q}\right)\right]$-cyclic.

References

[1] Iwasawa, K., On \mathbf{Z}_{l}-extensions of algebraic number fields, Ann. of Math., 98 (1973), No. 2, 246-326
[2] Lang, S., Cyclotomic fields I and II, Springer-Verlag, 1990, GTM 121
[3] Matsumura, H., Commutative Ring Theory, Cambridge University Press, 1989
[4] Washington, Lawrence C., Introduction to Cyclotomic fields, Second Edition, Springer, 1997

