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On an isomorphism lying behind the class number formula

VLAD CRIŞAN

ABSTRACT. Let p be an odd prime such that the Greenberg conjecture holds for the maximal real cyclotomic
subfield K1 of Q[ζp]. Let An = (C(Kn))p be the p-part of the class group of Kn, the n-th field in the cyclotomic
tower, and let En, Cn be the global and cyclotomic units of Kn, respectively. We prove that under this premise,

there is some n0 such that for all m ≥ n0, the class number formula
∣∣∣(Em/Cm)p

∣∣∣ = |Am| hides in fact an
isomorphism of Λ[Gal(K1/Q)]-modules.

1. NOTATIONS AND AUXILIARY RESULTS

We fix an odd prime p > 3 and introduce the following notations: for n ≥ 1, we set
Kn = Q[ζpn + ζpn ], with ζpn a primitive pn-th root of unity. The norm maps are denoted
by Nn,m = NKn/Km

; for a number field K, we denote by K∞ its cyclotomic Zp-extension.
In our case, K∞ =

⋃
n≥1 Kn is a totally real field. We let B∞/Q be the Zp-extension of Q, so

K∞ = K1 ·B∞, Gn is the Galois group of Kn/Q and Γ is the Galois group of Gal(K∞/K1),
with τ ∈ Γ a topological generator. We also let Γn = Gal(Kn/K1). We write as usual
T = τ − 1, Λ = Zp[[T ]] and

ωn = τp
n−1

− 1 = (T + 1)p
n−1

− 1, νn,m = ωn/ωm, for n > m ≥ 1.

We lift G1 to Gn in the standard way. Notice that τp
n−1

is the largest power of τ which
fixes Kn, so we have that αωn = 1, for all α ∈ Kn. Let An be the p-Sylow subgroup of the
ideal class group C(Kn) of Kn and let A∞ = lim←−n

An be the projective limit of the groups
(An)n≥1; Greenberg’s Conjecture specializes in our contexts to the following statement:

Greenberg’s Conjecture: |A∞| <∞.
Let En and Cn denote the global and the cyclotomic units of Kn, respectively. Then

the class number formula ([4] Theorem 8.2) reads |C(Kn)| = |En/Cn|, so the correspond-
ing p-parts satisfy |An| =

∣∣∣(En/Cn)p

∣∣∣. In this paper we prove that assuming Greenberg’s
conjecture, the last equality underlines an isomorphism of Λ[G1]-modules, for all n suffi-
ciently large.

2. A CORE LEMMA

For every n ≥ 1, let e1, . . . , ern (with the dependence on n being understood) be a
corresponding fundamental system of units of En, where rn = [Kn : Q] − 1, as Kn is
totally real. Then every element in En is of the form±ea1

1 · . . . ·e
arn
rn , where a1, . . . , arn ∈ Z.

Let g ∈ Z be a generator for (Z/p2Z)× and hence also for (Z/pnZ)× for any n ≥ 2. Let

ηn =
ζg
pn

−ζ
g
pn

ζ−ζ
and let Cn = η

Zp[Gn]
n be the subgroup of Cn generated by ηn as a Z[Gn]-

module. Then Cn = Cn/{±1} ([4] Lemma 8.11). As p is odd, we have
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(En/Cn)p = (En/Cn)p .

For each j = 1, . . . , rn, write

qj · pαj =
∣∣eZj / (eZj ∩ Cn

)∣∣ .
Now let ej = e

qj
j and letEn be the subgroup ofEn generated by the elements e1, . . . , ern

as a Z-module. Notice that for each j we have ej ∈ (En/Cn)p and En/Cn is a subgroup

of En/Cn with |En/Cn| =
∣∣∣(En/Cn)p

∣∣∣. As everything in sight is abelian, the p-Sylow
subgroup is unique and thus

En/Cn
∼= (En/Cn)p .

Notice also that the elements (ηn)n≥1 form a norm-coherent sequence in the extension
K∞/K.

Recall that the norms Nn,m : An → Am are surjective for all n > m ≥ 1, since K2 ∩
H(K1) = K1 (here H stands for the Hilbert class field). Consequently, the numbers |An|
build an increasing sequence of positive integers bounded above by |A∞|, which was
assumed to be finite. There must be thus an integer n0 such that for any n ≥ m ≥ n0, we
have |An| = |Am| = |A∞| and the norm Nn,m is in fact an isomorphism, so we have

An = Am
∼= A∞, ∀n > m ≥ n0.(2.1)

We now look at the ideal lift map ιm,n : Am → An and its kernel (of capitulation). Let
k′ > 0 be such that (A∞)p

k′

= 0, and n > n0. Since Nn,m ◦ ιm,n : Am → Am is the pn−m

power map for n > m ≥ n0, by letting n = m+ k′ we have

Nn,m ◦ ιm,n(Am) = (Am)p
k′

= 0.

We have seen that Nn,m is an isomorphism, so

ιm,n(Am) ⊂ Ker (Nn,m : An → Am) = 0.

This argument also works for 1 ≤ m < n0: let k = k′ + n0. Then ιm,n = ιn0,n ◦ ιm,n0

and since ιm,n0
(Am) ⊂ An0

, ιn0,n(An0
) = {1}, it follows that ιm,n(Am) = {1}. We have

proved:

Lemma 2.1. Assuming Greenberg’s conjecture, there exists a constant k such that for all m ≥ 1
and n ≥ m+ k we have

An
∼= A∞ and ιm,n(Am) = 0.

We now turn our attention to the units and start by proving that the cyclotomic units
are stable in the cyclotomic tower, in the following sense:

Lemma 2.2. For any n ≥ m ≥ 1, we have Cn ∩Km = Cm.

Proof. We know that Cn is a cyclic Z[Gn] module and NKn/Q(Cn) = {1}. So there is a
surjective homomorphism

Z[Gn]/(NKn/QZ[Gn])→ Cn given by θ → ηθn,

where θ denotes the image of θ ∈ Z[Gn] in Z[Gn]/(NKn/QZ[Gn]).
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We know Cn has finite index inEn, so it has the same Z-rank asEn, namely [Kn : Q]−1
by Dirichlet’s Unit Theorem. This is the same as the Z-rank of Z[Gn]/(NKn/QZ[Gn]), so by
Vasconcelos’ Theorem ([3] Theorem 2.4), we know that the kernel of the above described
map must be trivial. We have thus a short exact sequence

1 Z[Gn]/(NKn/QZ[Gn]) Cn 1.
θ→ηθ

n(2.2)

The inclusionCm ⊆ Cn∩Km is clear. Conversely, consider e ∈ Cn∩Km. Then e = ηθn+1,
for some θ ∈ Z[Gn]. We have that Gn = Γn × ⟨σ⟩, where ⟨σ⟩ is the cyclic group G1 =

Gal(K1/Q). Hence one has an isomorphism of Z-algebras ϕ : Z[Gn]
∼−→ Z[Γn] ⊗Z Z[G1]

given by

ϕ

(∑
i

ai · gi

)
=
∑
i

aihi ⊗ ni,

where ai ∈ Z, gi ∈ Gn, hi ∈ Γn, ni ∈ G1 and gi = hi · ni.
By a slight abuse of notation, we shall write ωm for the image of ωm = τp

m−1 − 1 =

(T +1)p
m−1 −1 in Z[Γn] and similarly for νm,1, T , etc. For the rest of the proof ωm, νm,1, T ,

etc will always refer to elements in Z[Γn]. Let ω̂m = ϕ−1(ωm ⊗ 1). Since e ∈ Km, we have
eω̂m = 1, thus

ηω̂m·θ
n = 1.(2.3)

By (2.2), this implies that ω̂m · θ ∈ NKn/QZ[Gn]. Let z ∈ Z[Gn] be such that ω̂m · θ =
NKn/Q · z and let us write NKn/Q = νn,1 · Nσ , where Nσ is the norm map NK1/Q. Under
the isomorphism Z[Gn] ∼= Z[Γn] ⊗Z Z[G1], the element ω̂m ∈ Z[Gn] is mapped to ωm ⊗ 1

and NKn/Q is mapped to νn,1 ⊗ Nσ . Now let {ei}
p−1
2

i=1 be a Z-basis for Z[G1]. Then for all
i = 1, 2, . . . , p−1

2 , there exist integers ai, ci and elements θi, z̃i ∈ Z[Γn] such that

ϕ(θ) =

(p−1)/2∑
i=1

aiθi ⊗ ei and ϕ(z) =

(p−1)/2∑
i=1

ciz̃i ⊗ ei.

Then

ϕ(ω̂m · θ) =
∑
i

aiωmθi ⊗ ei and ϕ(NKn/Q · z) =
∑
i

ciνn,1z̃i ⊗Nσei.

We now rewrite the expression
∑
i

ciνn,1z̃i ⊗ Nσei along the basis {ei}
p−1
2

i=1 , so that one

has

ϕ(NKn/Q · z) =
∑
i

biνn,1zi ⊗ ei,

for some bi ∈ Z and zi ∈ Z[Γn] which can be computed in terms of the ci’s and z̃i’s,
respectively.

Due to the equality ωm·θ = NKn/Q·z in Z[Gn], we must have that for all i = 1, 2, . . . , p−1
2 ,

the identity aiωmθi = biνn,1zi holds in Z[Γn].
We also know that ωm = νm,1 · T . Plugging this into the equality aiωmθi = biνn,1zi, we

obtain aiνm,1Tθi = biνn,1zi.
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Let κ : Z[Γn] → Z[X]

(Xpn−1−1)
be an explicit isomorphism with κ(T ) = X − 1. Then one

has κ(ωm) = Xpm−1 − 1 and κ(νn,1) = Xpn−1
−1

X−1 . From aiωmθi = biνn,1zi, we obtain

ai(X
pm−1

− 1)κ(θi) = bi
Xpn−1 − 1

X − 1
κ(zi) in

Z[X]

(Xpn−1 − 1)
.

So there exists a polynomial fi(X) ∈ Z[X] such that

ai(X
pm−1

− 1)κ(θi) + fi(X)(Xpn−1

− 1) = bi
Xpn−1 − 1

X − 1
κ(zi) in Z[X].

Dividing both sides by Xpm−1
−1

X−1 we get

ai(X − 1)κ(θi) + fi(X)(X − 1)
Xpn−1 − 1

Xpm−1 − 1
= bi

Xpn−1 − 1

Xpm−1 − 1
κ(zi).

From this, one deduces that Xpn−1
−1

Xpm−1−1
| ai(X−1)κ(θi) and since gcd((X−1), Xpn−1

−1

Xpm−1−1
) =

1 with Xpn−1
−1

Xpm−1−1
monic, we obtain Xpn−1

−1

Xpm−1−1
| κ(θi), as polynomials in Z[X]. Hence there

exists gi(X) ∈ Z[X] such that κ(θi) = κ(νn,m) · gi(X) as polynomials in Z[X]

(Xpn−1−1)
. Thus

θi = νn,m · si, where si = κ−1(gi(X)) ∈ Z[Γn]. Since this holds for all i, it implies via
the isomorphism Z[Gn] ∼= Z[Γn] ⊗Z Z[G1] that one can write θ ∈ Z[Gn] as ν̂n,m · s, where
ν̂n,m = ϕ−1(νn,m ⊗ 1) and s ∈ Z[Gn]. It is clear that ην̂n,m

n = ηm. Therefore, we obtain
e = η

ν̂n,m·s
n = ηsm, which shows that e ∈ Cm, as required. □

The above result implies in particular that for any n > m, if e ∈ Em \ Cm is a non-
cyclotomic unit, then e ̸∈ Cn either. Notice also thatEm ⊆ En for all n ≥ m ≥ 1. Therefore,
the sizes of the groups Em/Cm form an increasing sequence. The analytic class number
formula implies that this sequence also must stabilize beyond n0, so in view of (2.1), we
have

|En/Cn| = |En0
/Cn0

| = |A∞|, ∀n ≥ n0.
Since EmCn ⊆ En = EnCn and Em/Cm injects into (EmCn) /Cn for n > m, we conclude
that

En = EmCn, for all n ≥ m ≥ n0.(2.4)

This identity implies in particular that Eωm
n ⊂ Cn, for n ≥ m ≥ n0.

3. PROOF OF THE MAIN THEOREM

We now prove that the analytic class number formula also holds, for p-parts, as an
isomorphism of Λ[G1]-modules, for all sufficiently large m:

Proposition 3.1. For any m ≥ n0, there is an isomorphism of Λ[G1]-modules:

(Em/Cm)p
∼= Am.

Proof. Recall that (Em/Cm)p
∼= Em/Cm and this is an isomorphism of Λ[G1]-modules, so

it suffices to prove that Em/Cm
∼= Am as Λ[G1]-modules. Let k be such that pk annihilates

En0
/Cn0

and let n ≥ n0 be such that n −m ≥ k. Recall from above that under the given
assumptions onm, n, k, we have Pm,n := Ker (ιm,n : Am → An) ∼= Am as Λ[G1]-modules,
and also that |Em/Cm| = |Am|. Therefore, it suffices to prove that there is an injective
homomorphism of Λ[G1]-modules ψ : Em/Cm ↪→ Pm,n.
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Let δ ∈ Em \ Cm; since the maps Em/Cm ↪→ En/Cn are injective, as a consequence of
Lemma 2.2, it follows that δ represents some class d := [δ] ∈ En/Cn, for arbitrary n ≥ m.
Note that pn−mEm/Cm = {1}, since n−m ≥ k. Thus, there exists some x ∈ Cm such that
δp

n−m

= x.

The norm Nn,m : Cn → Cm is surjective, so there exists y ∈ Cn such that x = Nn,m(y).
Since δ is fixed by Gal(Kn/Km), we have:

Nn,m(δ) = δ[Kn:Km] = δp
n−m

= x.

Viewing now δ as an element of Kn via the embedding K×
m ↪→ K×

n , we see that γ :=
δ/y ∈ En has norm 1. Hilbert’s Theorem 90 implies that there is some α ∈ K×

n such that
γ = αωm .

We claim that α ̸∈ En. Let |En/Cn| = ps · a, with (a, p) = 1. Assuming α ∈ En, we
would have (αa)p

s ∈ Cn, so αa ∈ En. Since m ≥ n0, by (2.4) we have that γa = (αa)ωm ∈
Cn. As y ∈ Cn, we obtain that δa ∈ Cn and since (a, p) = 1, this gives further that δ ∈ Cn.
But we chose δ ∈ Em \Cm, so by Lemma 2.2, we get a contradiction. Thus α is not a unit.

We consider the factorization of the non-trivial fractional ideal (α) ⊂ Kn and will show
that (α) is the lift of some non-principal ideal class am ∈ Am. By construction, αωm = γ ∈
En, so the ideal (α) is invariant under Gal(Kn/Km).

We first prove that we can discard π from the factorization of (α) into prime ideals,
where π denotes the generator for the unique prime ideal of Kn lying above the rational
prime p. Indeed, πωm ∈ Cn, so modifying (α) by some power of (π) does not change the
class d ∈ En/Cn of δ. We may thus assume that π is not among the primes occurring with
positive or negative exponents in the factorization of (α).

Let Q be a prime dividing (α) and let q = Q ∩Km. We know that all the primes above
q in Kn are conjugate under the action of Gal(Kn/Km), so we can write

(α) =
∏
j

Q
fj(ωm)
j ,

where Qj are primes in Kn and fj(ωm) are elements of Z[Gal(Kn/Km)]. Since (α) is
invariant under Gal(Kn/Km), we have Nn,m(α) = (α)p

n−m

and thus for each j, also
pn−m · fj(ωm) = Tr(fj) · Nn,m, with Tr(fj) denoting the sum of the coefficients of fj .
This implies that all coefficients of fj are equal, so fj is a multiple of the norm Nn,m for
all j. This means precisely that (α) = ιm,n(a) for an ideal a whose class is in Am.

We now prove that the ideal a cannot be principal in Km, unless [δ] = 1, so δ ∈ Cm.
Assume that a = (αm), for some αm ∈ Km; then αmO(Kn) = (α), hence α = αm · u, for
some u ∈ En. But then αωm = αωm

m · uωm and since αm ∈ Km, it follows that αωm
m = 1,

hence γ ∈ Cm, and d = 1, as claimed.

Now let a = [a] denote the class of a in Am and let b ∈ a be a further ideal, so b =
(β) · a for some β ∈ K×

m. Then O(Kn)b = (α · β) is an ideal which contains αβ; but
(αβ)ωm = αωm = γ. We obtained a map ψ : Em/Cm → Pn,m given by ψ([δ]) = [a].
The ideals in X ∈ ψ[δ] share the property that the principal ideal O(Kn)X contains some
ξ ∈ O(Kn)X such that ξωm ∈ [δ]. The class is well defined. Indeed, assume that there is
some further class Y ∈ Am and an ideal Y ∈ Y which capitulates in O(Kn), and there
is some y ∈ O(Kn) · Y with yωm ∈ [δ]. Then (α/y)ωm ∈ Cn ∩ Ker (Nn,m : Cn → Cm).
Recall that Cn

∼= Z[Gn]/
(
NKn/QZ[Gn]

)
and Z[Gn] ∼= Z[Γn] ⊗Z Z[G1]. Thus, an element

η ∈ Ker (Nn,m : Cn → Cm) can be written as
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η = η

p−2∑
j=0

fj(τ)⊗ej

n and satisfies ην̂n,m = 1,

where fj ∈ Z[Γn] and we keep the notations from Lemma 2.2.
From Cn

∼= Z[Gn]/
(
NKn/QZ[Gn]

)
, we obtain that ην̂n,m must be in the ideal NKn/QZ[Gn].

Therefore, there exists some A =
p−2∑
j=0

g̃j(τ) ⊗ ej ∈ Z[Γn] ⊗ Z[G1] such that for each j, one

has

νn,m · fj(τ) = gj(τ) · νn,1,
with gj explicitly computable in terms of g̃j . Applying the same ideas as in the proof of
Lemma 2.2, it follows that η ∈ Cωm

n and hence Ker (Nn,m : Cn → Cm) = Cωm
n . Conse-

quently, there is a unit ϖ ∈ Cn such that (α/ϖy)ωm = 1. Now Ker (ωm : K×
n → K×

n ) =
K×

m, so we conclude that α = ϖ · y · z, z ∈ K×
m. This shows that Y = a, so the map is well

defined. It is injective, since we have shown that its image a = [a] is 1 if and only if [δ] = 1.
We finally show that ψ is also compatible with the action of Λ[G1]. It is linear, since for

c ∈ Zp we have the formal sequence of associations

δ 7→ δc ⇒ γ 7→ γc ⇒ (α) 7→ (α)c ⇒ [a] 7→ [a]c.

Likewise, for g ∈ Gn we have the sequence:

δ 7→ g(δ)⇒ γ 7→ g(γ)⇒ (α) 7→ (g(α))⇒ [a] 7→ g([(a]),

so ψ : Em/Cm → Pm,n is indeed an injective homomorphism of Λ[G1]-modules, and since
|Pm,n| = |Am| = |Em/Cm|, the map is also surjective, so it is an isomorphism. Moreover,
Pm,n

∼= Am as Λ[G1] - modules too, so we obtained an isomorphism Em/Cm
∼= Am as

Λ[G1]-modules, which completes the proof. □

Remark 3.1. One may note that the above result cannot be adapted to descend to levels
which are lower than n0. If we were able to do so, or if n0 = 1, then we would obtain a
weaker version of a famous conjecture due to Iwasawa and Leopoldt, which asserts that
the p-part of the class group C(Q[ζp])

− is Z[Gal(Q[ζp]/Q)]-cyclic.
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