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On an isomorphism lying behind the class number formula

VLAD CRISAN

ABSTRACT. Let pbe an odd prime such that the Greenberg conjecture holds for the maximal real cyclotomic
subfield Ky of Q[(p]. Let A,, = (C(Ky))p be the p-part of the class group of Ky, the n-th field in the cyclotomic
tower, and let £, C,, be the global and cyclotomic units of Ky, respectively. We prove that under this premise,

there is some no such that for all m > ng, the class number formula |(E,,/C,,),| = |Am| hides in fact an
isomorphism of A[Gal(K; /Q)]-modules.

1. NOTATIONS AND AUXILIARY RESULTS

We fix an odd prime p > 3 and introduce the following notations: for n > 1, we set
K, = Q[¢pn + an], with ¢, a primitive p™-th root of unity. The norm maps are denoted
by Ny.m = Nk, /k,,; for anumber field K, we denote by K, its cyclotomic Z,-extension.
In our case, K« = J,,~; Ky, is a totally real field. We let B /Q be the Z,-extension of Q, so
Ky = K; - B, G, is the Galois group of K,,/Q and I is the Galois group of Gal(K /K1),
with 7 € T' a topological generator. We also let I', = Gal(K,,/K;). We write as usual
T=1—1,A=2Z,[[T]] and

wp=7"""=1=(T+1" " =1, Uppm=wn/wm, forn>m>1.

We lift G; to G, in the standard way. Notice that """ is the largest power of 7 which
fixes K,,, so we have that a“» = 1, for all a« € K,,. Let A,, be the p-Sylow subgroup of the
ideal class group C(K,,) of K,, and let A, = lim = A, be the projective limit of the groups
(Ay)n>1; Greenberg’s Conjecture specializes in our contexts to the following statement:

Greenberg’s Conjecture: |A| < co.

Let £, and C,, denote the global and the cyclotomic units of K,,, respectively. Then
the class number formula ([4] Theorem 8.2) reads |C(K,,)| = |E,,/C,,|, so the correspond-

ing p-parts satisfy | A, | = ‘(En/Qn)p
conjecture, the last equality underlines an isomorphism of A[G1]-modules, for all n suffi-
ciently large.

2. A CORE LEMMA

For every n > 1, let ¢y,...,¢e, (with the dependence on n being understood) be a
corresponding fundamental system of units of E,,, where r,, = [K,, : Q] — 1, as K,, is
totally real. Then every element in E,, is of the form +ej* -. .. -errm, where ay, ..., a,, €7Z.
Let g € Z be a generator for (Z/pzZ) and hence also for (Z/p"Z)* for any n > 2. Let

M = 427(: and let C,, = 7" » 1% be the subgroup of C,, generated by 7, as a Z[Gy]-

module. Then C,, = C,, /{£1} ([4] Lemma 8.11). As p is odd, we have
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Foreach j=1,...,r,, write

g; ™ = lej/ (f N Cn)|.
Now lete; = ggj and let F,, be the subgroup of E,, generated by the elementsey, ..., e,
as a Z-module. Notice that for each j we have ¢; € (E,,/ C’n)p and E,,/C,, is a subgroup

of E, /C, with |E,/C,| = \(En /Ca), |-
subgroup is unique and thus

As everything in sight is abelian, the p-Sylow

ETL/CTL = (En/c"l)p .

Notice also that the elements (77, ),>1 form a norm-coherent sequence in the extension
Koo /K.

Recall that the norms N,, ,,, : A, — A,, are surjective for all n > m > 1, since Ky N
H(K;) = K; (here H stands for the Hilbert class field). Consequently, the numbers |A,|
build an increasing sequence of positive integers bounded above by | A |, which was
assumed to be finite. There must be thus an integer ng such that for any n > m > ng, we
have |A,| = | A | = |Ax| and the norm N,, ,,, is in fact an isomorphism, so we have

(2.1) A, =A,2 A, Yn>m>ng.

We now look at the ideal lift map ¢y, : Ar, — A, and its kernel (of capitulation). Let

k' > 0 be such that (Aoo)pkl = 0,and n > ng. Since Ny © tm.p * Ay — Ay, is the p"=™
power map for n > m > ng, by letting n = m + k' we have

k/
Nym o Lm,n(Am) = (A, =0.
We have seen that N, ,, is an isomorphism, so

tmn(Am) C Ker (Nym 0 Ay — Ap) = 0.

This argument also works for 1 < m < ng: let k = k' + ng. Then ¢y, 0, = tngn © tmyng
and since iy g (Am) C Ang, tng,n(An,) = {1}, it follows that ¢, ,,(A,,) = {1}. We have
proved:

Lemma 2.1. Assuming Greenberg’s conjecture, there exists a constant k such that for all m > 1
and n > m + k we have
A, 2 A and iy n(Am) =0.

We now turn our attention to the units and start by proving that the cyclotomic units
are stable in the cyclotomic tower, in the following sense:

Lemma 2.2. Foranyn > m > 1, we have C,, N K,,, = Cpy,.
Proof. We know that C,, is a cyclic Z[G,] module and Nk, ,o(Crn) = {1}. So there is a
surjective homomorphism
Z[G,)/(Nx, joZGy]) = C,  givenby 6 — 1f,
where 6 denotes the image of 6 € Z[G,,] in Z[G,]/(Nk,, /oZ[Gh)).
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We know C,, has finite index in E,,, so it has the same Z-rank as E,,, namely [K,, : Q] —
by Dirichlet’s Unit Theorem. This is the same as the Z-rank of Z[G,]/(Nk,, /oZ[Gr]), so by
Vasconcelos” Theorem ([3] Theorem 2.4), we know that the kernel of the above described
map must be trivial. We have thus a short exact sequence

oy 0
00—,

(2.2) 1 —— Z[Gn]/(Nk,, j0Z[Gr]) — Cp, —— 1.

The inclusion C,,, C C,NK,, is clear. Conversely, consider e € C,,NK,,,. Thene = nﬁ i1
for some 6 € Z[G,]. We have that G,, = T',, x (o), where (o) is the cyclic group G; =
Gal(K;/Q). Hence one has an isomorphism of Z-algebras ¢ : Z[G,] — Z[T,] ®z Z|G1]
given by

¢ (Zai 'gi> = aih; ® n;,

where a; €7, g; € Gp, hiel,, n; € Gy and g; = h; - n;.
By a slight abuse of notation, we shall write w,, for the image of w,, = 1 =

(T+ 1)”m_1 —1in Z[I',)] and similarly for v,, 1, T, etc. For the rest of the proof wy,, v 1, T,
etc will always refer to elements in Z[I',,]. Let &y, = ¢~ (w, ® 1). Since e € K,,,, we have
e¥m = 1, thus

(2.3) pemt =1,

By (2.2), this implies that &, - 0 € Nk, oZ[Gy]. Let z € Z[G,] be such that &y, - § =
Nk, /o - z and let us write Nk ;o = Vn,1 - Ny, where N, is the norm map N, ;. Under
the isomorphism Z[G,,] = Z[I',,] ®z Z|G1], the element w,,, € Z[G,,] is mapped to w,, @ 1

p—1
and Nk, /g is mapped to v, 1 ® N,. Now let {e;},2, be a Z-basis for Z[G]. Then for all
1=1,2,..., ”2;1, there exist integers a;, ¢; and elements 6,, Z; € Z[I',,] such that

(p—1)/2 (p—1)/2
o(0) = Z a0, ®e; and ¢(z Z ciZ R e;.

i=1
Then

O(@m - 0) =) aiwnl ®e; and $(Ng, /g 2) = Y civnaZi ® Noei.

p—1
We now rewrite the expression Y c;vp, 12; ® Nye; along the basis {e;}, 2, so that one
i

has

¢ NKH/Q Zb Un,1%i @ €4,

for some b; € Z and z; € Z[I';,] which can be computed in terms of the ¢;’s and Z;’s,
respectively.

Due to the equality wy,,-0 = Nk, /-2 in Z[G,,], we must have that foralli = 1,2,.. ., p;zl,
the identity a;w,0; = by, 12; holds in Z[T,,].

We also know that wy,, = vj,,1 - T'. Plugging this into the equality a;w.,0; = b;vy 12i, we
obtain aiym,lTﬁi = bil/n’lzi.
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Letx : Z[T',] — Z[ix]l) be an explicit isomorphism with (7)) = X — 1. Then one

(xpmt =
m— pn—1 .
has x(wy,) = XP ' _1land K(Vn1) = X X—lil' From a;w,0; = b;vy, 12, we obtain
n—1
m—1 Xr -1 ) 7| X
GJZ'(XP — 1)/{(91) = blﬁ/ﬂ}(zz) m ()(p"[l]_l)

So there exists a polynomial f;(X) € Z[X] such that

m—1 n—1 XP -1
ai(XP = Dr(6;) + fi(X)(XP  —1)= biﬁ“(%) in Z[X].
Dividing both sides by prijl‘l we get
X1 X" -1
CLZ‘(X - 1),‘4}(91) + fZ<X)<X — 1) =b; ,‘Q(Zi)

Xpnl—l _ 1 Xpm,fl _ 1
pn—l A pn—l

From this, one deduces that 75— | a;(X —1)x(6;) and since ged((X —1), ¥ m==1) =

Xp'n,—l 1

xrmmt g

exists g;(X) € Z[X] such that x(6;) = k(Vy,m) - g:(X) as polynomials in

| k(6;), as polynomials in Z[X]. Hence there
Z[X]
it Thus
0; = Vpm - 8, Where s; = k™ (g;(X)) € Z[T',,]. Since this holds for all 4, it implies via
the isomorphism Z[G,,] = Z[I',] ®z Z[G1] that one can write § € Z[G,] as U, , - s, where

—

Unm = ¢ *(Unm @ 1) and s € Z[G,]. 1t is clear that na"™ = 1. Therefore, we obtain

Vn.m*S

e =1y = n3,, which shows that e € C,,,, as required. O

n—1
. XP —1 . .
1 with LT, Monic, we obtain

The above result implies in particular that for any n > m, ife € E,, \ C,, is a non-
cyclotomic unit, then e ¢ C), either. Notice also that E,,, C E,, foralln > m > 1. Therefore,
the sizes of the groups E,,,/C}, form an increasing sequence. The analytic class number
formula implies that this sequence also must stabilize beyond ng, so in view of (2.1), we
have

|En/Cnl| = [Eng/Cnol = |Asc|,  ¥n = no.
Since E,,C,, C E,, = E,C,, and E,,/C,, injects into (E,,C,,) /C,, for n > m, we conclude
that

(2.4) E,=FE,C,, foralln>m > ng.
This identity implies in particular that E¥™ C C,,, for n > m > ny.

3. PROOF OF THE MAIN THEOREM

We now prove that the analytic class number formula also holds, for p-parts, as an
isomorphism of A[G1]-modules, for all sufficiently large m:

Proposition 3.1. For any m > ny, there is an isomorphism of A[G1]-modules:

Proof. Recall that (E,,/C.,,), = En/Cp, and this is an isomorphism of A[G1]-modules, so
it suffices to prove that E,,/C,, = A,,, as A[G1]-modules. Let k be such that p* annihilates
Eny/Cn, and let n > ng be such that n — m > k. Recall from above that under the given
assumptions on m, n, k, we have P,, ,, := Ker (tm,n : Am — A,) = A, as A[G1]-modules,
and also that |E,,/Cy,| = |An|- Therefore, it suffices to prove that there is an injective
homomorphism of A[G;]-modules ¢ : E,,,/C\, < Pry .
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Leté € E,, \ Cy,; since the maps E,,/C,, — E, /C, are injective, as a consequence of
Lemma 2.2, it follows that J represents some class d := [¢] € E,,/C,, for arbitrary n > m.
Note that p" ™E,,/C,, = {1}, since n — m > k. Thus, there exists some z € C,, such that
P = g,

The norm N,, ,,, : C,, = C,, is surjective, so there exists y € C,, such that x = N,, ,(y).
Since § is fixed by Gal(K,,/K,,,), we have:

m

Nn,m(é) = 5[K7L:K,’”] _ 51)"_ .

Viewing now ¢ as an element of K,, via the embedding K, — KX, we see that v :=
d/y € E, has norm 1. Hilbert’s Theorem 90 implies that there is some o € K such that
v =a¥m.

We claim that o ¢ E,,. Let |E, /C,| = p° - a, with (a,p) = 1. Assuming o € E,,, we
would have (a“)ps € Cp, 50 a* € E,. Since m > ng, by (2.4) we have that v* = (a*)“m €
Cp- As y € C,, we obtain that 6* € ), and since (a,p) = 1, this gives further that 6 € C,.
But we chose ¢ € E,,, \ C,,, so by Lemma 2.2, we get a contradiction. Thus « is not a unit.

We consider the factorization of the non-trivial fractional ideal («) C K,, and will show
that (o) is the lift of some non-principal ideal class a,,, € A,,. By construction, o™ = v €
E,, so the ideal («) is invariant under Gal(K,, /K., ).

We first prove that we can discard 7 from the factorization of («) into prime ideals,
where 7 denotes the generator for the unique prime ideal of K,, lying above the rational
prime p. Indeed, 7¢ € C,,, so modifying (&) by some power of (7) does not change the
classd € E,,/C,, of §. We may thus assume that 7 is not among the primes occurring with
positive or negative exponents in the factorization of («).

Let Q be a prime dividing («) and let ¢ = Q N K,,,. We know that all the primes above
q in K,, are conjugate under the action of Gal(K,,/K,,), so we can write

(a) = [Tf .

J

where 9, are primes in K,, and f;(w,,) are elements of Z[Gal(K, /K,,)]. Since («) is
invariant under Gal(K,,/K,,), we have N, .(a) = ()’ " and thus for each j, also
P - filwm) = Tr(f;) - Npm, with Tr(f;) denoting the sum of the coefficients of f;.
This implies that all coefficients of f; are equal, so f; is a multiple of the norm N,, ,,, for
all j. This means precisely that («) = ¢y, »(a) for an ideal a whose class is in A,,.

We now prove that the ideal a cannot be principal in K,,, unless [§] = 1,50 0 € C,,.
Assume that a = (), for some «,,, € K,;;; then o, O(K,,) = («), hence o = a,, - u, for
some u € F,. But then a¥ = a¥m - u“m and since a,, € K,,, it follows that am =1,
hence v € C,,,, and d = 1, as claimed.

Now let a = [a] denote the class of a in A,, and let b € a be a further ideal, so b =
(8) - a for some g € K. Then O(K,)b = (a - ) is an ideal which contains «f; but
(af)¥m = a“m = ~. We obtained a map ¢ : E,,/C,, — P, given by ¢([d]) = [a].
The ideals in X € 1[d] share the property that the principal ideal O(K,,)X contains some
¢ € O(K,,)X such that ¢ € [§]. The class is well defined. Indeed, assume that there is
some further class Y € A,, and an ideal 9 € Y which capitulates in O(K,,), and there
is some y € O(K,,) - 9 with y*= € [§]. Then (a/y)“ € C, N Ker (Nym : C,, = Chy).
Recall that C,, = Z[G,]/ (Nk, /oZ[G,]) and Z[G,] = Z[I',] ®z Z|G1]. Thus, an element
n € Ker (Ny,m : Cp, = Cy,) can be written as
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p—2
‘Zo fi(T)®e; -
n=1nn and satisfies n"~™ =1,
where f; € Z[I',] and we keep the notations from Lemma 2.2.

From C,, = Z[G,]/ (Nx, /oZ[Gy]), we obtain that n”» must be in the ideal Nx, oZ[G.].
p—2
Therefore, there exists some A = > §;(7) ® e; € Z[I',] ® Z[G1] such that for each j, one

7=0
has
Vnm * fj(T) = gj(T) *VUn,1,

with g; explicitly computable in terms of ¢;. Applying the same ideas as in the proof of
Lemma 2.2, it follows that n € C%™ and hence Ker (N, ,, : C,, — C,,) = C¥. Conse-
quently, there is a unit w € C,, such that (a/wy)“™ = 1. Now Ker (v, : KX — KX) =
K, so we conclude that « = @ - y - 2,z € K. This shows that Y = a, so the map is well
defined. It is injective, since we have shown that its image a = [a] is 1 if and only if [§] = 1.

We finally show that 1 is also compatible with the action of A[G4]. It is linear, since for
c € Z, we have the formal sequence of associations

0= 0=y—==(a) = (@)= [a] — [a]"
Likewise, for g € G,, we have the sequence:
6 g(6) = v g(7) = (a) = (9(e) = [a] = g([(a]),
so v : Ey /Cpy — Ppy p is indeed an injective homomorphism of A[G;]-modules, and since

[Pl = |Am| = |Em/Chnl, the map is also surjective, so it is an isomorphism. Moreover,
Ppn = A, as A[G1] - modules too, so we obtained an isomorphism E,,/C,, = A,, as
A[G1]-modules, which completes the proof. O

Remark 3.1. One may note that the above result cannot be adapted to descend to levels
which are lower than ng. If we were able to do so, or if ng = 1, then we would obtain a
weaker version of a famous conjecture due to Iwasawa and Leopoldt, which asserts that
the p-part of the class group C(Q[¢,])~ is Z[Gal(Q[¢,]/Q)]-cyclic.
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