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Solving split equality common fixed point problem for
infinite families of demicontractive mappings

ADISAK HANJING1 and SUTHEP SUANTAI2

ABSTRACT. In this paper, we consider the split equality common fixed point problem of infinite families of
demicontractive mappings in Hilbert spaces. We introduce a simultaneous iterative algorithm for solving the
split equality common fixed point problem of infinite families of demicontractive mappings and prove a strong
convergence of the proposed algorithm under some control conditions.

1. INTRODUCTION

The split feasibility problem (SFP) can also be applied in various disciplines such as
image restoration, in radiation therapy treatment planning, in antenna design, in imma-
terial science and in computerized tomography, etc. (see [2, 4, 5, 6]). The split equality
common fixed point problem (SECFP) is a generalization of the split common fixed point
problem (SCFP) and the split feasibility problem. Various algorithms were invented to
solve problems above (see [3, 7, 8, 9, 17, 21]).

Let Xi, i = 1, 2, 3, be a real Hilbert spaces with inner product ⟨·.·⟩ and norm ∥ · ∥. Let I
be the identity mapping. The split equality fixed point problem (SEFP) for mappings S and
T which was first introduced by Moudafi and Al-Shemas [18] is to find

(1.1) u∗ ∈ Fix(S), v∗ ∈ Fix(T ) such that Au∗ = Bv∗,

where A : X1 → X3, B : X2 → X3 are two bounded linear operators, S : X1 → X1 and
T : X2 → X2 are two mappings satisfying Fix(S) ̸= ∅ and Fix(T ) ̸= ∅, respectively. Note
that, if X2 = X3 and B = I, then the SEFPP generalizes the SFPP. To solve problem (1.1)
they [18] proposed and proved a weak convergence under some control conditions of the
following algorithm:

(1.2)

{
xn+1 = S(xn − γA∗(Axn −Byn)),

yn+1 = T (yn + γB∗(Axn −Byn)), n ∈ N,

where S and T are firmly quasi-nonexpansive mappings.
Recently, Eslamian [12] considered the following the split equality common fixed point

problem (SECFP) :

(1.3) Find u∗ ∈ ∩∞
i=1Fix(Si), v

∗ ∈ ∩∞
i=1Fix(Ti) such that Au∗ = Bv∗,

where A : X1 → X3, B : X2 → X3 are two bounded linear operators, and {Si : X1 →
X1 : i ∈ N} and {Ti : X2 → X2 : i ∈ N} are infinite families of k1, k2-demicontractive
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mappings, respectively. They also proposed the following algorithm for solving (1.3) for
the class of demicontractive mappings:

(1.4)



zn = xn − γnA
∗(Axn −Byn),

un = zn +

∞∑
i=1

αn,i
1− k1

2
(Si − I)zn,

xn+1 = θnu+ (1− θn)un,

wn = yn + γnB
∗(Axn −Byn),

vn = wn +

∞∑
i=1

αn,i
1− k2

2
(Ti − I)wn,

yn+1 = θnv + (1− θn)vn, n ∈ N.

Using the iterative scheme (1.4), Eslamian obtained a strong convergence results for prob-
lem (1.3).

Note that computation of un and vn by algorithm (1.4) are not so easy in practice be-
cause they concern the sum of the series in X.

Question. Can we modify algorithm (1.4) to the algorithm which is easy to compute
and still obtain its strong convergence to a solution of problem (1.3)?

Throughout this paper, we adopt the following notations.
(i) “→ ”and “⇀”denote the strong and weak convergence, respectively.

(ii) ωω(xn, yn) denote the set of the cluster point of {(xn, yn)} in the weak topology, that
is, there is a subsequence {(xni , yni)} of {(xn, yn)} such that (xni , yni) ⇀ (x, y).

2. PRELIMINARIES

Let C be a nonempty closed convex subset of a real Hilbert space X. A mapping PC :
X → C is said to be metric projection of X onto C, if for every x ∈ X, there exists a unique
nearest point in C denoted by PCx such that

∥x− PCx∥ ≤ ∥x− z∥, ∀z ∈ C.

It is known that PC is a firmly nonexpansive mapping. Moreover, PC is characterized by
the following properties : ⟨x − PCx, y − PCx⟩ ≤ 0, ∀x ∈ X, y ∈ C. In order to establish
our convergence theorems, we need the following concepts for single-valued mappings.

Definition 2.1. Let C be a nonempty closed convex subset of a real Hilbert space X . A
mapping T : C → C is said to be

(i) α-contraction if there exists α ∈ [0, 1) such that

∥Tu− Tv∥ ≤ α∥u− v∥ for all u, v ∈ C;

(ii) quasi-nonexpansive if Fix(T ) ̸= ∅ and

∥Tu− v∥ ≤ ∥u− v∥ for all u ∈ C, v ∈ Fix(T );

(iii) k-strictly pseudo-nonspreading[19], if there exists k ∈ [0, 1) such that

∥Tu− Tv∥2 ≤ ∥u− v∥2 + k∥u− Tu− (v − Tv)∥2 + 2⟨u− Tu, v − Tv⟩ for all u, v ∈ C;

(iv) k-demicontractive [10], if Fix(T ) ̸= ∅ and there exists k ∈ [0, 1) such that

∥Tu− v∥2 ≤ ∥u− v∥2 + k∥u− Tu∥2 for all u ∈ C, v ∈ Fix(T ).

Remark 2.1. It follows from Definition 2.1 that
(1) If T is quasi-nonexpansive, then T is k-demicontractive for any k ∈ [0, 1).
(2) If T is k-strictly pseudo-nonspreading with Fix(T ) ̸= ∅, then T is k-demicontractive.
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In 2014, Chang, Kim, Cho and Sim [8] studied the weak ans strong convergence the-
orems of solution to SCFP for a family ki-strictly pseudo-nonspreading mapping in a
Hilbert space.

Remark 2.2. For negative values of k the class of demicontractive mappings is diminished
to a great extent; in [1] such a class (with negative value of k) was considered under the
name of strongly attracting map. In particular, the mapping T which satisfies Definition 2.1
(iv) with k = −1 is called pseudo-contractive in [24]. Note also that a mapping T satisfying
Definition 2.1 (iv) with k = 1 is usually called hemicontractive and it was considered
by some authors in connection with the strong convergence of the implicit Mann-type
iteration (see, for example, [20, 22]).

Definition 2.2. Let C be a nonempty closed convex subset of a real Hilbert space X . Let
T : C → C be a mapping. The mapping T − I is said to be demiclosed at zero if for any
sequence {xn} in C which xn ⇀ x and Txn − xn → 0, then x ∈ Fix(T ).

Lemma 2.1. ([23]) Let X be a real Hilbert space. Then the following results hold:

(i) for all t ∈ [0, 1] and u, v ∈ X, ∥tu+ (1− t)v∥2 = t∥u∥2 + (1− t)∥v∥2 − t(1− t)∥u− v∥2;
(ii) ∥u+ v∥2 = ∥u∥2 + 2⟨u, v⟩+ ∥v∥2 ∀u, v ∈ X;

(iii) ∥u+ v∥2 ≤ ∥u∥2 + 2⟨v, u+ v⟩ ∀u, v ∈ X.

Lemma 2.2. ([11]) Let X be a real Hilbert space. Let {xi, i = 1, 2, ..., n} ⊂ X. For αi ∈
(0, 1), i = 1, 2, ..., n such that

∑n
i=1 αi = 1. Then the following identity holds :∥∥∥∥∥

n∑
i=1

αixi

∥∥∥∥∥
2

=

n∑
i=1

αi∥xi∥2 −
n∑

i,j=1,i̸=j

αiαj∥xi − xj∥2.

Lemma 2.3. ([25]) Let {an} be a sequence of nonnegative real numbers satisfying the following
relation :

an+1 ≤ (1− γn)an + δn, n ∈ N,

where

(i) {γn} ⊂ (0, 1),
∑∞

n=1 γn = ∞;

(ii) lim supn→∞
δn
γn

≤ 0 or
∑∞

n=1 |δn| < ∞.

Then limn→∞ an = 0.

Lemma 2.4 ([13]). Let {κn} be a sequence of real numbers that dose not decrease at infinity, that
is there exists at a subsequence {κni

} of {κn} which satisfies κni
< κni+1 for all i ∈ N. For every

n ≥ no, define an integer sequence {µ(n)} as follow :

µ(n) = max{l ∈ N : l ≤ n, κl < κl+1},

where no ∈ N such that {l ≤ no : κl < κl+1} ≠ ∅. Then the following hold:

(i) µ(no) ≤ µ(no + 1) ≤ ... and µ(n) → ∞;
(ii) for all n ≥ no,max{κn, κµ(n)} ≤ κµ(n)+1.

3. MAIN RESULTS

In this section, we propose a new algorithm which is a modification of (1.4) and prove
its strong convergence under some suitable conditions. We start with the following im-
portant lemma :
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Lemma 3.5. For real Hilbert spaces X, let {Ti : X → X : i ∈ N} be infinite family of k-
demicontractive mappings. Let {zn} and {wn} be sequences in X and let

un = zn +

n∑
i=1

αn,iαn(Ti − I)zn,

vn = βn,0wn +

n∑
i=1

βn,iTiwn, ∀n ∈ N,

where {αn,i}, {βn,i}, {αn} are real sequences in [0, 1] satisfying
∑n

i=1 αn,i = 1 and
∑n

i=0 βn,i =
1 for all n ∈ N. Then

∥un − x∗∥2 ≤ ∥zn − x∗∥2 −
n∑

i=1

αn,iαn(1− k − αn)∥(Ti − I)zn∥2,(3.5)

∥vn − x∗∥2 ≤ ∥wn − x∗∥2 −
n∑

i=1

βn,i(βn,0 − k)∥(Ti − I)wn∥2,(3.6)

for any x∗ ∈
⋂∞

i=1 Fix(Ti).

Proof. Let x∗ ∈
⋂∞

i=1 Fix(Ti). Since Ti is k-demicontractive, we obtain

∥un − x∗∥2 ≤
n∑

i=1

αn,i[∥zn − x∗∥2 + α2
n∥Tizn − zn∥2 + 2αn⟨zn − x∗, Tizn − zn⟩]

=

n∑
i=1

αn,i[∥zn − x∗∥2 + α2
n∥Tizn − zn∥2 − 2αn∥Tizn − zn∥2

+ 2αn⟨Tizn − x∗, Tizn − zn⟩]

=

n∑
i=1

αn,i[∥zn − x∗∥2 + α2
n∥Tizn − zn∥2 − 2αn∥Tizn − zn∥2

+ αn∥Tizn − zn∥2 + αn∥Tizn − x∗∥2 − αn∥zn − x∗∥2]

≤
n∑

i=1

αn,i[∥zn − x∗∥2 − αn(1− αn)∥Tizn − zn∥2 + αnk∥Tizn − zn∥2]

= ∥zn − x∗∥2 −
n∑

i=1

αn,iαn(1− k − αn)∥Tizn − zn∥2.

Since Ti is k-demicontractive and by Lemma 2.2, we obtain

∥vn − x∗∥2 =

∥∥∥∥∥
n∑

i=0

βn,i(Tiwn − x∗)

∥∥∥∥∥
2

≤ βn,0∥wn − x∗∥2 +
n∑

i=1

βn,i∥Tiwn − x∗∥2 −
n∑

i=1

βn,0βn,i∥wn − Tiwn∥2

≤ βn,0∥wn − x∗∥2 +
n∑

i=1

βn,i[∥wn − x∗∥2 + k∥(Ti − I)wn∥2]

−
n∑

i=1

βn,0βn,i∥(Ti − I)wn∥2
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= ∥wn − x∗∥2 −
n∑

i=1

βn,i(βn,0 − k)∥(Ti − I)wn∥2.

This completes the proof. □

Now, we introduce a new algorithm for solving the split equality problem for infinite
families of demicontractive mappings and then prove its strong convergence.

Theorem 3.1. Let X1, X2 and X3 be real Hilbert spaces, let A : X1 → X3 and B : X2 →
X3 be two bounded linear operators with their adjoint operators A∗ and B∗, respectively. Let
f1 : X1 → X1 and f2 : X2 → X2 be two contraction mappings with constants ρ1, ρ2 ∈ [0, 1).
Let {Si : X1 → X1 : i ∈ N} and {Ti : X2 → X2 : i ∈ N} be infinite families of k1, k2-
demicontractive mappings such that Si − I and Ti − I, are demiclosed at zero. Suppose that
Ω = {(u∗, v∗) ∈

⋂∞
i=1 Fix(Si) ×

⋂∞
i=1 Fix(Ti) : Au∗ = Bv∗} ≠ ∅. Let (x1, y1) ∈ X1 × X2

arbitrarily, let {xn} and {yn} be the sequences generated by

(3.7)



zn = xn − γnA
∗(Axn −Byn),

un = zn +

n∑
i=1

αn,iαn(Si − I)zn,

xn+1 = θnf1(xn) + (1− θn)un,

wn = yn + γnB
∗(Axn −Byn),

vn = βn,0wn +

n∑
i=1

βn,iTiwn,

yn+1 = θnf2(yn) + (1− θn)vn, n ∈ N,

where {γn}, {αn}, {θn}, {αn,i} and {βn,i} are sequences in [0, 1] satisfying the following condi-
tions :

(C1)
∑n

i=1 αn,i =
∑n

i=0 βn,i = 1 and βn,0 > k2 for all n ∈ N;
(C2) lim infn→∞ αn,i > 0, and lim infn→∞(βn,0 − k2)βn,i > 0 for all i ∈ N;
(C3) limn→∞ θn = 0 and

∑∞
n=1 θn = ∞;

(C4) 0 < b1 ≤ γn ≤ b2 < 2
∥A∥2+∥B∥2 for all n ∈ N;

(C5) 0 < a1 ≤ αn ≤ a2 < 1− k1 for all n ∈ N,
for some positive real number b1, b2, a1 and a2. Then the sequence {(xn, yn)} converges strongly
to (x∗, y∗) ∈ Ω which solves the variational inequality problem

(3.8) ⟨(IX1×X2
− f)(x∗, y∗), (u, v)− (x∗, y∗)⟩X1×X2

≥ 0, (u, v) ∈ Ω,

where IX1×X2
is identity map on X1×X2 and f(x, y) = (f1(x), f2(y)) for all (x, y) ∈ X1×X2.

Proof. Since PΩ ◦ f is a contraction mapping on X1 × X2, there is a unique (x∗, y∗) ∈ Ω
Then (x∗, y∗) ∈ ∩∞

i=1Fix(Si)× ∩∞
i=1Fix(Ti) such that Ax∗ = By∗. By (3.7) we get

∥zn − x∗∥2 ≤ ∥xn − x∗∥2 − 2γn⟨xn − x∗, A∗(Axn −Byn)⟩+ γ2
n∥A∥2∥Axn −Byn∥2

= ∥xn − x∗∥2 − γn∥Axn −Ax∗∥2 − γn∥Axn −Byn∥2

+ γn∥Ax∗ −Byn∥2 + γ2
n∥A∥2∥Axn −Byn∥2

= ∥xn − x∗∥2 − γn∥Axn −Ax∗∥2 + γn∥Ax∗ −Byn∥2

− γn(1− γn∥A∥2)∥Axn −Byn∥2.(3.9)
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Similarly, we have

∥wn − y∗∥2 ≤ ∥yn − y∗∥2 − γn∥Byn −By∗∥2 + γn∥Axn −By∗∥2

− γn(1− γn∥B∥2)∥Axn −Byn∥2.(3.10)

From (3.9), (3.10), (C4) and by taking into account the fact that Ax∗ = By∗, we have

∥zn − x∗∥2 + ∥wn − y∗∥2 ≤ ∥xn − x∗∥2 + ∥yn − y∗∥2

− γn(2− γn(∥A∥2 + ∥B∥2))∥Axn −Byn∥2

≤ ∥xn − x∗∥2 + ∥yn − y∗∥2.(3.11)

By Lemma 3.5 we obtain

∥un − x∗∥2 ≤ ∥zn − x∗∥2 −
n∑

i=1

αn,iαn(1− k1 − αn)∥(Si − I)zn∥2,(3.12)

∥vn − y∗∥2 ≤ ∥wn − y∗∥2 −
n∑

i=1

βn,i(βn,0 − k2)∥(Ti − I)wn∥2.(3.13)

From (3.12) and Lemma 2.1(i), we have

∥xn+1 − x∗∥2 ≤ θn∥f1(xn)− x∗∥2 + (1− θn)∥un − x∗∥2

≤ θn[∥f1(xn)− f1(x
∗)∥2 + ∥f1(x∗)− x∗∥2]

+ 2θn∥f1(xn)− f1(x
∗)∥∥f1(x∗)− x∗∥+ (1− θn)∥un − x∗∥2

≤ θn[ρ1∥xn − x∗∥2 + ∥f1(x∗)− x∗∥2]
+ 2θnρ1∥xn − x∗∥∥f1(x∗)− x∗∥+ (1− θn)∥zn − x∗∥2

− (1− θn)

n∑
i=1

αn,iαn(1− k1 − αn)∥(Si − I)zn∥2.(3.14)

Using (3.13), we obtain

∥yn+1 − y∗∥2 ≤ θn[ρ1∥yn − y∗∥2 + ∥f2(y∗)− y∗∥2]
+ 2θnρ2∥yn − y∗∥∥f2(y∗)− y∗∥+ (1− θn)∥wn − y∗∥2

− (1− θn)

n∑
i=1

βn,i(βn,0 − k2)∥(Ti − I)wn∥2.(3.15)

Next, set ρ = max{ρ1, ρ2} and κn = ∥xn − x∗∥2 + ∥yn − y∗∥2. By (3.11), (3.14) and (3.15),
we obtain

κn+1 ≤ θnρκn + θn[∥f1(x∗)− x∗∥2 + ∥f2(y∗)− y∗∥2]

+ 2θnρ[∥xn − x∗∥∥f1(x∗)− x∗∥+ ∥yn − y∗∥∥f2(y∗)− y∗∥]
+ (1− θn)[∥zn − x∗∥2 + ∥wn − y∗∥2]

≤ θnρκn + θn[∥f1(x∗)− x∗∥2 + ∥f2(y∗)− y∗∥2]

+ 2θnρ[∥xn − x∗∥∥f1(x∗)− x∗∥+ ∥yn − y∗∥∥f2(y∗)− y∗∥] + (1− θn)κn
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= (1− θn(1− ρ))κn + θn[∥f1(x∗)− x∗∥2 + ∥f2(y∗)− y∗∥2]

+ 2θnρ[∥xn − x∗∥∥f1(x∗)− x∗∥+ ∥yn − y∗∥∥f2(y∗)− y∗∥]

≤ max

{
κn,

ϑn

1− ρ

}
,(3.16)

where ϑn = ∥f1(x∗)−x∗∥2+∥f2(y∗)−y∗∥2+2ρ[∥xn−x∗∥∥f1(x∗)−x∗∥+∥yn−y∗∥∥f2(y∗)−
y∗∥]. It follows from induction that

κn ≤ max

{
κ1,

ϑ1

1− ρ

}
, n ∈ N,

which implies that {κn} is bounded. Therefore {xn} and {yn} are bounded. Consequently,
{zn}, {wn}, {un} and {vn} are bounded. By (3.11), (3.12) and (3.13), we get

κn+1 ≤ κn + θn[∥f1(x∗)− x∗∥2 + ∥f2(y∗)− y∗∥2]

+ 2θnρ[∥xn − x∗∥∥f1(x∗)− x∗∥+ ∥yn − y∗∥∥f2(y∗)− y∗∥]

− γn(2− γn(∥A∥2 + ∥B∥2))∥Axn −Byn∥2

−
n∑

i=1

αn,iαn(1− k1 − αn)∥(Si − I)zn∥2 −
n∑

i=1

βn,i(βn,0 − k2)∥(Ti − I)wn∥2

≤ κn + θnM − γn(2− γn(∥A∥2 + ∥B∥2))∥Axn −Byn∥2

−
n∑

i=1

αn,iαn(1− k1 − αn)∥(Si − I)zn∥2 −
n∑

i=1

βn,i(βn,0 − k2)∥(Ti − I)wn∥2,(3.17)

where M = supn{ϑn}. This implies for j = 1, 2, ...n,

αn,jαn(1− k1 − αn)∥(Si − I)zn∥2 ≤ κn − κn+1 + θnM,(3.18)

and

βn,j(βn,0 − k2)∥(Ti − I)wn∥2 ≤ κn − κn+1 + θnM.(3.19)

Using (3.17), we obtain

γn(2− γn(∥A∥2 + ∥B∥2))∥Axn −Byn∥2 ≤ κn − κn+1 + θnM.(3.20)

To this end, we consider the following two cases.
Case 1. Suppose that {κn}n≥no

is non-increasing for some no ∈ N. Then we get limn→∞κn

exists. By (3.18), (3.19), (3.20) and (C2)-(C5), we have limn→∞ ∥(Si − I)zn∥ = 0 = limn→∞
∥(Ti − I)wn∥, and limn→∞ ∥Axn −Byn∥ = 0. It implies that

(3.21) lim
n→∞

∥zn − xn∥ = lim
n→∞

∥wn − yn∥ = 0.

Since the sequence {xn} and {yn} are bounded we have ωω(xn, yn) is nonempty. Let
(ū, v̄) ∈ ωω(xn, yn). From (3.21), we have (ū, v̄) ∈ ωω(zn, wn). By demiclosedness principle
of Si − I and Ti − I at zero, we obtain ū ∈ ∩∞

i=1Fix(Si) and v̄ ∈ ∩∞
i=1Fix(Ti). On the

other hand, we have Aū−Bv̄ ∈ ωω(Axn −Byn), so there is a subsequence {(xnk
, ynk

)} of
{(xn, yn)} such that Axnk

− Bynk
⇀ Aū − Bv̄. By lower semicontinuity of the norm, we

get

∥Aū−Bv̄∥ ≤ lim inf
k→∞

∥Axnk
−Bynk

∥ = 0.

Therefore (ū, v̄) ∈ Ω. So ωω(xn, yn) ⊂ Ω. Choose a subsequence {(xnp , ynp)} of {(xn, yn)}
such that lim supn→∞⟨f1(x∗) − x∗, xn − x∗⟩ + ⟨f2(y∗) − y∗, yn − y∗⟩ = limp→∞⟨f1(x∗) −
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x∗, xnp
− x∗⟩+ ⟨f2(y∗)− y∗, ynp

− y∗⟩. We may assume that (xnp
, ynp

) ⇀ (x̄, ȳ) as p → ∞.
Since ωω(xn, yn) ⊂ Ω and (x∗, y∗) be the solution of a variational inequality problem (3.8),
we get

(3.22) lim sup
n→∞

⟨f1(x∗)− x∗, xn − x∗⟩+ ⟨f2(y∗)− y∗, yn − y∗⟩ ≤ 0.

Using Lemma 2.1(iii) and (3.12), we obtain

∥xn+1 − x∗∥2 ≤ (1− θn)∥un − x∗∥2 + 2θn⟨f1(xn)− x∗, xn+1 − x∗⟩
≤ (1− θn)∥zn − x∗∥2 + ρ1θn[∥xn − x∗∥2 + ∥xn+1 − x∗∥2]
+ 2θn⟨f1(x∗)− x∗, xn+1 − x∗⟩.(3.23)

Similarly, we obtain

∥yn+1 − y∗∥2 ≤ (1− θn)∥wn − x∗∥2 + ρ2θn[∥yn − y∗∥2 + ∥yn+1 − y∗∥2]
+ 2θn⟨f2(y∗)− y∗, yn+1 − y∗⟩.(3.24)

From (3.11), (3.23) and (3.24), we obtain

κn+1 ≤ [1− θn(1− ρ)

1− θnρ
]κn

+
2θn

1− θnρ
[⟨f1(x∗)− x∗, xn+1 − x∗⟩+ ⟨f2(y∗)− y∗, yn+1 − y∗⟩].(3.25)

By (3.22), (3.25), (C3) and Lemma 2.3, we can conclude that xn → x∗ and yn → y∗ as
n → ∞. That is (xn, yn) → (x∗, y∗) as n → ∞.

Case 2. Suppose that there exists an integer mo such that

∥xmo
− x∗∥2 + ∥ymo

− y∗∥2 ≤ ∥xmo+1 − x∗∥2 + ∥ymo+1 − y∗∥2.
Then we have κmo

≤ κmo+1. Let {µ(n)} be a sequence defined by

µ(n) = max{l ∈ N : l ≤ n, κl ≤ κl+1},
for all n ≥ mo. By Lemma 2.4, we obtain that {µ(n)} is a nondecreasing sequence such
that

lim
n→∞

µ(n) = ∞ and κµ(n) ≤ κµ(n)+1, for all n ≥ mo.

By the same argument as in the case 1, we obtain

lim sup
n→∞

⟨f1(x∗)− x∗, xµ(n) − x∗⟩+ ⟨f2(y∗)− y∗, yµ(n) − y∗⟩ ≤ 0,

and

κµ(n)+1 ≤
[
1−

θµ(n)(1− ρ)

1− θµ(n)ρ

]
κµ(n)

+
2θµ(n)

1− θµ(n)ρ
[⟨f1(x∗)− x∗, xµ(n)+1 − x∗⟩+ ⟨f2(y∗)− y∗, yµ(n) − y∗⟩].

So, we get limn→∞ κµ(n) = 0. This implies limn→∞ κµ(n)+1 = 0. By Lemma 2.4, we have

0 ≤ κn ≤ max{κn, κµ(n)} ≤ κµ(n)+1,

so κn → 0, which implies xn → x∗ and yn → y∗ as n → ∞. That is (xn, yn) → (x∗, y∗) as
n → ∞.

Therefore, the sequence {(xn, yn)} converges strongly to (x∗, y∗) ∈ Ω which solves the
variational inequality problem (3.8). This completes the proof. □
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Remark 3.3.
(i) Theorem 3.1 can be used for infinite families of quasi-nonexpansive mappings be-

cause the class of quasi-nonexpansive mappings is included in that of demicontrac-
tive mappings.

(ii) Theorem 3.1 can be used for infinite families of strictly pseudo-nonspreading map-
pings because the class of strictly pseudo-nonspreading mappings is included in that
of demicontractive mappings.

(iii) Putting B = I and X2 = X3, in Theorem 3.1, we have a new algorithm for solv-
ing SCFP and we obtain that the sequence {(xn, yn)} generated by (3.7) converges
strongly to (x∗, y∗) ∈ Ω which solves the variational inequality problem (3.8).

4. NUMERICAL EXAMPLE FOR THE MAIN RESULT

We now give some numerical example to support our main result. Let X1 = X2 = R
with the usual norm. Define the mappings Si : R → R and Ti : R → R by

Si(x) =
−3x

i
, i ∈ N,

and

Ti(x) =


i

i+ 1

√
x if x ≥ 1,

−2i

i+ 1
x otherwise

i ∈ N,

for all x ∈ R. Then we have Si and Ti are
2

3
and

3

4
−demicontractive mappings for all

i ∈ N and
⋂∞

i=1 F (Si) = {0} =
⋂∞

i=1 F (Ti). Next, we define the mappings f1 : R → R and
f2 : R → R by

f1(x) =
x

4
and f2(x) =

x

8
for all x ∈ R.

Let bounded linear operators A : R → R and B : R → R be defined by Ax = 3x and
Bx = −x

5
for all x ∈ R. Define the real sequence {αn,i} and {βn,i} as follows:

αn,i =



1 if n = i = 1,

1

3i

(
n

n+ 1

)
if n > i,

1−
∑n−1

i=1

1

3i

(
n

n+ 1

)
if n = i > 1,

0 otherwise,

and

βn,i =



1

2i

(
n

n+ 1

)
if n > i− 1,

1−
(

n

n+ 1

)∑n
i=1

1

2i
if n = i− 1,

0 otherwise.

Setting γn = 0.001, αn = 0.002 and θn =
1

n0.01
for all n ∈ N. Now, we start with the initial

point (x1, y1) = (1,−1) and the criterion for stopping our testing method is taken as :
∥(xn, yn) − (xn−1, yn−1)∥2 < 10−5. Then the sequence {(xn, yn)} generated by (3.7) and
εn = ∥(xn, yn)− (xn−1, yn−1)∥2 are shown in the following table:
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Table 1: Numerical example of algorithm (3.7)

No. of Iterations xn yn εn

1 1.000000 -1.0000000 –
2 0.250000 0.1250000 1.35208173
3 0.063775 -0.0159483 0.23355155
4 0.016459 0.0020509 0.05062376
5 0.004282 -0.0002643 0.01239465
6 0.001121 0.0000341 0.00317511
7 0.000295 -0.0000044 0.00082699
8 0.000078 0.0000006 0.00021709
9 0.000021 -0.0000001 0.00005728
10 0.0000055 0.000000009 0.00001517
11 0.0000015 -0.000000001 0.00000403
12 0.00000039 0.0000000002 0.00000108

(A) (B)

We observe from Table 1 that (xn, yn) → (0, 0) ∈ Ω. We also note that the error bounded
of ∥(x12, y12)−(x11, y11)∥2 < 10−5 and we can use (x12, y12) = (0.00000039, 0.0000000002),
to approximate the solution of (1.3) with accuracy at least 5 D.P.
Acknowledgements. The authors would like to thank Chiang Mai University and Center
of Excellence in Mathematics, CHE, Bangkok 10400, Thailand for the financial support.
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