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Convergence of inexact orbits of monotone nonexpansive
mappings
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ABSTRACT. We study monotone nonexpansive self-mappings of a closed and convex cone in an ordered
Banach space with particular emphasis on the asymptotic behavior of their inexact iterates.

1. INTRODUCTION AND MAIN RESULTS

During more than fifty years now, there has been a lot of activity regarding the fixed
point theory of nonexpansive (that is, 1-Lipschitz) mappings. See, for example, [13, 14,
15, 20, 21] and the references cited therein. This activity stems from Banach’s classical
theorem [4] regarding the existence of a unique fixed point for a strict contraction. Since
that seminal result, many developments have taken place in this area. We mention, for in-
stance, existence results for fixed points of nonexpansive mappings which are not strictly
contractive [13, 14, 18, 19]. Such results were obtained for general nonexpansive mappings
in special Banach spaces, while for self-mappings of general complete metric spaces ex-
istence results were established for, the so-called, contractive mappings [17]. For general
nonexpansive mappings in general Banach spaces the existence of a unique fixed point
was established in the generic sense by using the Baire category approach [6, 7, 20, 21].

Another important topic in metric fixed point theory is the convergence of (inexact)
iterates of a mapping to one of its fixed points.

For example, let (X, ρ) be a metric space and let A : X → X be nonexpansive. In [5]
(see also Section 2.21 of [21]), under the assumption that for every x ∈ X , the sequence
{Ai(x)}∞i=1 converges, it was shown that for each given sequence of computational errors
{ri}∞i=1 ⊂ (0,∞) satisfying

∞∑
i=1

ri < ∞,

each sequence {xi}∞i=0 ⊂ X such that

ρ(xi+1, A(xi)) ≤ ri+1, i = 1, 2, . . . ,

converges to a fixed point of A. This result has found several interesting applications. It is,
for instance, an important ingredient in the superiorization methodology and in the study
of perturbation resilience of algorithms. See, for example, [8, 9, 10, 11] and the references
mentioned therein.

In the present paper we study the asymptotic behavior of inexact iterates of monotone
nonexpansive mappings – a class of nonlinear mappings which is the subject of a rapidly
growing area of research [1, 12].
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Let (X, ∥·∥) be a Banach space ordered by a closed and convex cone X+ ⊂ X satisfying

X+ ∩ (−X+) = {0}.
Note that for all x, y ∈ X ,

x ≤ y if and only if y − x ∈ X+.

For each x ∈ X and each r > 0, set

B(x, r) := {y ∈ X : ∥x− y∥ ≤ r}.
Suppose that

(1.1) ∥x∥ ≤ ∥y∥ for all x, y ∈ X+ satisfying x ≤ y.

In this case the cone X+ is called normal.
We assume that the normal cone X+ has an interior point x∗ ∈ X+. Then there exists

r∗ > 0 such that

(1.2) B(x∗, r∗) ⊂ X+.

For each x ∈ X , set

(1.3) ∥x∥∗ := inf{λ ∈ [0,∞) : −λx∗ ≤ x ≤ λx∗}.
It is clear that for any x ∈ X , ∥x∥∗ is well defined and finite, ∥ · ∥∗ is a norm on X and

(1.4) {x ∈ X : ∥x∥∗ ≤ 1} = {x ∈ X : −x∗ ≤ x ≤ x∗}.
It is well known that the norms ∥ · ∥ and ∥ · ∥∗ are equivalent. Indeed, let x ∈ X . In view
of (1.1) and (1.3),

−∥x∥∗x∗ ≤ x ≤ ∥x∥∗x∗

and
∥x∥ ≤ ∥x+ ∥x∥∗x∗∥+ ∥∥x∥∗x∗∥ ≤ 2∥x∥∗∥x∗∥+ ∥x∥∗∥x∗∥ ≤ 3∥x∥∗∥x∗∥.

On the other hand, by (1.2),
B(0, r∗) + x∗ ⊂ X+,

B(0, r∗) ⊂ {z ∈ X : −x∗ ≤ z ≤ x∗} = {z ∈ X : ∥z∥∗ ≤ 1}
and for all z ∈ X \ {0},

∥r∗∥z∥−1z∥∗ ≤ 1, ∥z∥∗ ≤ r−1
∗ ∥z∥.

In the sequel we assume that
∥ · ∥ = ∥ · ∥∗.

Let a mapping T : X+ → X+ satisfy

(1.5) T (x) ≤ T (y) for all x, y ∈ X+ satisfying x ≤ y

and

(1.6) ∥T (x)− T (y)∥ ≤ ∥x− y∥
for all x, y ∈ X+ satisfying x ≤ y. Such a mapping T is said to be monotone nonexpansive.

In the present paper we establish the following two results.

Theorem 1.1. Assume that for each x ∈ X+, the sequence {T i(x)}∞i=1 converges and that a
sequence {γi}∞i=1 ⊂ (0,∞) satisfies

(1.7)
∞∑
i=1

γi < ∞.

Then each sequence {xi}∞i=0 ⊂ X+ such that

∥xi+1 − T (xi)∥ ≤ γi+1 for all integers i ≥ 0
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also converges.

Theorem 1.2. The mapping T is continuous.

Note that an analog of Theorem 1.1 for nonexpansive mappings was obtained in [5].
The convergence property established in Theorem 1.1 is close (but not equivalent) to the
shadowing property which is of interest in the qualitative study of dynamical systems
[2, 16]. Applications of monotone nonexpansive mappings to the study of certain classes
of matrix equations, differential equations and integral equations are discussed in [3].

2. PROOF OF THEOREM 1.1

Let a sequence {xi}∞i=0 ⊂ X+ satisfy

(2.8) ∥xi+1 − T (xi)∥ ≤ γi+1 for all integers i ≥ 0.

It is sufficient to show that {xi}∞i=0 is a Cauchy sequence.
Let ϵ > 0 be given. In view of (1.7), there exists a natural number n0 such that

(2.9)
∞∑

i=n0

γi < ϵ/4.

Set

(2.10) yn0 := xn0 .

By (1.4) and (2.8),

(2.11) −γn0+1x∗ ≤ xn0+1 − T (xn0) ≤ γn0+1x∗.

Set

(2.12) yn0+1 := T (xn0
) + γn0+1x∗.

It follows from (2.10) and (2.12) that

(2.13) yn0+1 = T (yn0
) + γn0+1x∗.

Equations (2.11) and (2.12) imply that

(2.14) xn0+1 ≤ yn0+1.

By (2.11) and (2.12), we have

(2.15) yn0+1 − xn0+1 ≤ T (xn0
) + γn0+1x∗ − T (xn0

) + γn0+1x∗ ≤ 2γn0+1x∗.

For each integer k ≥ n0 + 1, set

(2.16) yk+1 := T (yk) + γk+1x∗.

We claim that for each integer k ≥ n0 + 1,

(2.17) yk ≥ T k−n0(yn0)

and

(2.18) yk − T k−n0(yn0) ≤
k∑

i=n0+1

γix∗.

In view of (2.13), inequalities (2.17) and (2.18) are valid for k = n0 + 1. Assume now that
k ≥ n0 + 1 is an integer and that (2.17) and (2.18) are true. By (2.16) and (2.17),

(2.19) yk+1 = T (yk) + γk+1x∗ ≥ T (T k−n0(yn0)) = T k+1−n0(yn0).
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It follows from (1.3), (1.6), (2.17) and (2.18) that

∥T (yk)− T (T k−n0(yn0))∥ ≤ ∥yk − T k−n0(yn0)∥ ≤
k∑

i=n0+1

γi

and

(2.20) T (yk) ≤ T k+1−n0(yn0
) +

k∑
i=n0+1

γix∗.

Equations (2.16) and (2.20) imply that

yk+1 = T (yk) + γk+1x∗ ≤ T k+1−n0(yn0
) +

k∑
i=n0+1

γix∗ + γk+1x∗

= T k+1−n0(yn0
) +

k+1∑
i=n0+1

γix∗.(2.21)

In view of (2.19) and (2.21), inequalities (2.17) and (2.18) hold for k + 1 too. Thus we
have shown by induction that (2.17) and (2.18) indeed hold for all integers k ≥ n0 + 1.

By (1.3), (2.9), (2.17) and (2.18), for all integers k ≥ n0 + 1, we have

(2.22) ∥yk − T k−n0(yn0
)∥ ≤

∞∑
i=n0+1

γi < ϵ/4.

Next we claim that for each integer k ≥ n0 + 1, we have

(2.23) xk ≤ yk

and

(2.24) yk − xk ≤ 2

k∑
i=n0+1

γix∗.

In view of (2.11) and (2.12), inequalities (2.23) and (2.24) do hold for k = n0 + 1.
Assume that k ≥ n0 + 1 is an integer and that (2.23) and (2.24) hold. By (1.3) and (2.8),

(2.25) −γk+1x∗ ≤ xk+1 − T (xk) ≤ γk+1x∗.

It follows from (2.16), (2.23) and (2.25) that

(2.26) xk+1 ≤ T (xk) + γk+1x∗ ≤ T (yk) + γk+1x∗ = yk+1.

Equations (2.16) and (2.25) imply that

yk+1 − xk+1 = T (yk) + γk+1x∗ − xk+1

≤ T (yk) + γk+1x∗ − T (xk) + γk+1x∗.(2.27)

By (1.3), (1.6), (2.23) and (2.24),

∥T (yk)− T (xk)∥ ≤ ∥yk − xk∥ ≤ 2

k∑
i=n0+1

γi

and

(2.28) T (yk)− T (xk) ≤ 2

k∑
i=n0+1

γix∗.



Convergence of inexact orbits 409

It follows from (2.27) and (2.28) that

(2.29) yk+1 − xk+1 ≤ 2

k∑
i=n0+1

γix∗ + 2γk+1x∗.

In view of (2.26) and (2.29), inequalities (2.23) and (2.24) are valid for k + 1 too. Thus we
have shown by induction that (2.23) and (2.24) are indeed valid for all integers k ≥ n0+1.

By (1.3), (2.9), (2.23) and (2.24), for all integers k ≥ n0 + 1, we have

(2.30) ∥yk − xk∥ ≤ 2

k∑
i=n0+1

γi < ϵ/2.

It now follows from (2.22) and (2.30) that for all integers k ≥ n0 + 1,

(2.31) ∥xk − T k−n0(yn0
)∥ < 3ϵ/4.

The assumptions of the theorem imply that the limit

lim
k→∞

T k(yn0
)

exists. When combined with (2.31), this implies that for all sufficiently large natural num-
bers k,

∥xk − lim
i→∞

T i(yn0
)∥ < ϵ.

Since ϵ is an arbitrary positive number, we conclude that {xk}∞k=0 is a Cauchy sequence.
Thus the sequence {xk}∞k=0 indeed converges, as asserted. Theorem 1.1 is proved.

3. PROOF OF THEOREM 1.2

Let x0 ∈ X+ and ϵ > 0 be given. Assume that a point x ∈ X+ satisfies

(3.32) ∥x− x0∥ ≤ ϵ/4.

By (1.3) and (3.32), we have

−(ϵ/4)x∗ ≤ x− x0 ≤ (ϵ/4)x∗

and

(3.33) x0 − (ϵ/4)x∗ ≤ x ≤ x0 + (ϵ/4)x∗.

It follows from (1.3), (1.5), (1.6), (3.32) and (3.33) that

T (x) ≤ T (x0 + 4−1ϵx∗)

and

∥T (x)− T (x0 + 4−1ϵx∗)∥ ≤ ∥x0 + 4−1ϵx∗ − x∥
≤ 4−1ϵ+ ∥x0 − x∥ ≤ 2−1ϵ.(3.34)

By (1.3) and (1.6), we have

(3.35) ∥T (x0)− T (x0 + 4−1ϵx∗)∥ ≤ ∥4−1ϵx∗∥ = 4−1ϵ.

In view of (3.34) and (3.35), we conclude that

∥T (x)− T (x0)∥ ≤ ϵ.

This completes the proof of Theorem 1.2.
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