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Consequences of the product rule in Stieltjes
differentiability
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ABSTRACT. This work revolves around the study of differentiability in the Stieltjes sense of a product of
functions. A formula for the first order derivative has been obtained in the past, which is similar to the usual
one with some extra terms in its expression. The aim of this paper is to take this behavior into account to study
under which conditions we can guarantee the existence of higher order derivatives, while obtaining some other
interesting results for the Stieltjes derivative along the way. We also investigate the regularity of the product of
two functions.

1. INTRODUCTION

The notion of differentiating with respect to a function (Stieltjes differentiation) is a
rather classical concept –see [3, 6, 17]– that has its roots at the genesis of calculus when, in
an intuitive way, it was usual to think of a quantity varying continuously with respect to
another (dependent or independent). More recently, a new important application of Stielt-
jes calculus was found: it serves as a powerful bridge between continuous and discrete
calculus and, importantly, differential equations. In particular, it was shown that other
methods of unifying discrete and differential calculus, such as time scales or equations
with impulses, can be thought of as particular instances of Stieltjes calculus [11]. This the-
ory has the advantage of building on the powerful results of measure theory but, at the
same time, allowing for classical solutions and explicit computations. From there, sev-
eral authors have revitalized the theory by providing a solid theoretical framework [5, 8]
and different applications of Stieltjes differential equations such as models of silk worm
populations [8], fishing models with open and closed seasons [7], culture and growth of
cyanobacteria [9, 10], solvent solution and water evaporation models [5], among others.

In those previous works there was no definition of the Stieltjes derivative which made
sense at every point of the domain. Instead, they provided a definition at almost every
point for a certain measure, being thus comparable to the Radon-Nikodym derivative.
Recently, in [4], the definition was extended in order to include all points of the domain,
which also had an important repercussion in previously known results such as the prod-
uct rule, which, in this more general context, reads

(f1f2)
′
g (t) = (f1)

′
g (t)f2(t

∗) + (f2)
′
g (t)f1(t

∗) + (f1)
′
g (t) (f2)

′
g (t)∆g(t∗),

where g is the function defining the Stieltjes derivative and t∗ is a point that depends on t.

This expression has immediate consequences that make Stieltjes Calculus different from
the usual setting. It is evident from the expression that the regularity of the functions f1
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and f2 in the expression is not enough to guarantee the same level of regularity to the
product as, once we differentiate for a first time, the terms f1(t

∗), f2(t∗) and ∆g(t∗) ap-
pear. This fact begs a few questions: given a map f that is Stieltjes differentiable at a point t,
is the map f∗(t) := f(t∗) also Stieltjes differentiable at t? Is there a relation between the deriva-
tives in the Stieltjes sense of the two functions? Similarly, we need to concern ourselves with
the study of the differentiability in the Stieltjes sense of the map ∆g∗ and its role in the
product rule. It would seem that, at least, ∆g ought to be always Stieltjes differentiable as
its regularity is intrinsically defined by the same function g with respect to which we are
differentiating, but this is far from reality, as previously known examples show –cf. [4, Re-
mark 3.16]. Hence, we need to ask ourselves, when is ∆g∗ differentiable in the Stieltjes sense?

Having a clear understanding of these issues is vital in order to deepen in the study of
the classes of continuously Stieltjes differentiable functions and, in particular, in order to
ascertain the role of the product of functions in these classes for, as it is already known,
we will not enjoy the usual algebra structure with the product of functions as algebra
operation.

With these objectives in mind, we set our course to better understand the differentia-
bility of ∆g and the role of t∗ throughout the following sections. In Section 2 we estab-
lish some basic definitions and results that will be necessary in order to understand and
develop further results. It is with Section 3 that we derive the Stieltjes differentiability
properties of ∆g and provide counterexamples that show the optimality of our results. In
Section 4 we show under which conditions the product of two functions is, at least, two
times g-differentiable. To that end, we study how evaluating a function at t∗ instead of
t affects a such function with regard to its differentiability in the Stieltjes sense and, in
particular, the function ∆g. Finally, in Section 5 we study the continuity of the Stieltjes
derivative of a product of two functions.

2. PRELIMINARIES

Let g : R → R be a nondecreasing and left-continuous function, which we call derivator,
and denote by F the field R or C. We shall write as µg the Lebesgue-Stieltjes measure
associated to g given by

µg([c, d)) = g(d)− g(c), c, d ∈ R, c < d,

see [2, 15, 16]. It is important to remark that µg is a Borel measure. We will use the term
“g-measurable” for a set or function to refer to µg-measurability in the corresponding
sense, and we denote by L1

g(X,F) the set of Lebesgue-Stieltjes µg-integrable functions on
a g-measurable set X with values in F, whose integral we write as∫

X

f(s) dµg(s), f ∈ L1
g(X,F).

Similarly, we will talk about properties holding g-almost everywhere in a set X (shortened
to g-a.e. in X), or holding for g-almost all (or, simply, g-a.a.) x ∈ X , as a simplified way to
express that they hold µg-almost everywhere in X or for µg-almost all x ∈ X , respectively.

Define the sets

Cg = {t ∈ R : g is constant on (t− ε, t+ ε) for some ε > 0},
Dg = {t ∈ R : ∆g(t) > 0},

where ∆g(t) := g(t+) − g(t), t ∈ R, and g(t+) denotes the right handside limit of g at t.
First, observe that Cg ∩Dg = ∅. Furthermore, as pointed out in [11], the set Cg is open in
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the usual topology of the real line, so it can be uniquely expressed as a countable union of
open disjoint intervals, say

(2.1) Cg =
⋃
n∈Λ

(an, bn).

where Λ ⊂ N. With this notation, we introduce the sets N−
g and N+

g in [9], defined as

N−
g = {an : n ∈ Λ}\Dg, N+

g = {bn : n ∈ Λ}\Dg, Ng = N−
g ∪N+

g .

Remark 2.1. It is important for the work ahead to remark that, by definition, for any
t ∈ R\Cg , at least one of the following conditions must hold:

g(s) < g(t), for all s < t,(2.2)

g(s) > g(t), for all s > t.(2.3)

In particular, for t ∈ N−
g only (2.2) holds; and, similarly, for t ∈ N+

g only (2.3) holds. On
the other hand, if t ∈ Dg , then (2.3) always holds and (2.2) fails only when t = bn, n ∈ N,
for some bn as in (2.1). For the remaining cases, i.e. when t ∈ R\(Cg ∪Ng ∪Dg), both (2.2)
and (2.3) hold.

Let us recall the following definition of Stieltjes derivative in [4, Definition 3.7]. To that
end, we consider a, b ∈ R, a < b, such that a ̸∈ N−

g and b ̸∈ Dg ∪ Cg ∪ N+
g . A careful

reader might observe that throughout the entirety of [4] it is also required that g(a) = 0
and a ̸∈ Dg . The first of these conditions can easily be avoided by redefining the map g
if necessary; whereas the condition a ̸∈ Dg can be imposed without loss of generality, as
pointed out by [4,5] and [12, Proposition 4.28], where the focus of the study is the existence
and uniqueness of solution of differential problems, which is not our case. Nevertheless,
this condition is not required for the following definition.

Definition 2.2 ([4, Definition 3.7]). We define the Stieltjes derivative, or g-derivative, of a
map f : [a, b] → F at a point t ∈ [a, b] as

f ′
g(t) =



lim
s→t

f(s)− f(t)

g(s)− g(t)
, t ̸∈ Dg ∪ Cg,

lim
s→t+

f(s)− f(t)

g(s)− g(t)
, t ∈ Dg,

lim
s→b+n

f(s)− f(bn)

g(s)− g(bn)
, t ∈ Cg, t ∈ (an, bn),

where an, bn are as in (2.1), provided the corresponding limits exist. In that case, we say
that f is g-differentiable at t.

Remark 2.3. For t ∈ Ng ∪ {a, b}, the corresponding limit in the definition of g-derivative
at t must be understood in the sense explained in [13, Remark 2.2], that is, the Stieltjes
derivative in such points is computed as

f ′
g(t) =


lim
s→t+

f(s)− f(t)

g(s)− g(t)
, t ∈ N+

g ∪ {a},

lim
s→t−

f(s)− f(t)

g(s)− g(t)
, t ∈ N−

g ∪ {b},

provided the corresponding limit exists.
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Remark 2.4. It follows from the definition that, for t ∈ Dg , f ′
g(t) exists if and only if f(t+)

exists and, in that case,

f ′
g(t) =

f(t+)− f(t)

∆g(t)
.

Similarly, if t ∈ (an, bn) ⊂ Cg for some an, bn as in (2.1), we have that f ′
g(t) exists if and

only if f ′
g(bn) exists and, in that case, f ′

g(t) = f ′
g(bn).

It is possible to further simplify the definition of the Stieltjes derivative at a point t ∈
[a, b] by defining

(2.4) t∗ =

{
t, t ̸∈ Cg,

bn, t ∈ (an, bn) ⊂ Cg,

with an, bn, n ∈ Λ, as in (2.1). With this notation, we have that

f ′
g(t) =


lim
s→t

f(s)− f(t)

g(s)− g(t)
, t ̸∈ Dg ∪ Cg,

lim
s→t∗+

f(s)− f(t∗)

g(s)− g(t∗)
, t ∈ Dg ∪ Cg,

provided the corresponding limit exists. Note that the information in Remark 2.3 should
still be taken into account.

For completeness, we include the following result containing some basic properties of
t∗ that follow directly from the definition and the assumptions on the point b.

Lemma 2.5. Let t ∈ [a, b] and let t∗ be the corresponding point in (2.4). Then, we have that
t∗ ∈ [t, b] and g(t) = g(t∗). Furthermore,

• if t ∈ Cg , then t∗ ̸∈ Cg (and so t∗ ̸= t);
• if t ∈ [a, b]\Cg , then t = t∗;
• if t∗ ∈ [a, b]\{bn : n ∈ Λ}, then t = t∗.

In particular, if we denote by t∗∗ the corresponding point in (2.4) for t∗, it holds that t∗∗ = t∗.

The following result can be found in [4, Proposition 3.9] and it includes some basic
properties of the Stieltjes derivative. Observe that this is a generalization of [12, Propo-
sition 3.13], which is only stated for real-valued functions which are g-differentiable at a
point of R\Cg .

Proposition 2.6. Let t ∈ [a, b]. If f1, f2 : [a, b] → F are g-differentiable at t, then:

• The function λ1f1 + λ2f2 is g-differentiable at t for any λ1, λ2 ∈ R and

(λ1f1 + λ2f2)
′
g (t) = λ1 (f1)

′
g (t) + λ2 (f2)

′
g (t).

• The product f1f2 is g-differentiable at t and

(2.5) (f1f2)
′
g (t) = (f1)

′
g (t)f2(t

∗) + (f2)
′
g (t)f1(t

∗) + (f1)
′
g (t) (f2)

′
g (t)∆g(t∗).

• If f2(t∗) (f2(t∗) + (f2)
′
g(t)∆g(t∗)) ̸= 0, the quotient f1/f2 is g-differentiable at t and(

f1
f2

)′

g

(t) =
(f1)

′
g (t)f2(t

∗)− (f2)
′
g (t)f1(t

∗)

f2(t∗) (f2(t∗) + (f2)′g(t)∆g(t∗))
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Naturally, it is possible to extend the product rule for a finite number of functions. To
that end, we introduce the following notation: for n, k ∈ N and (x1, . . . , xn) ∈ {0, 1}n
define

|(x1, . . . , xn)| := card{k ∈ {1, . . . , n} : xk = 1}, Fn,k := {σ ∈ {0, 1}n : |σ| = k}.

We also denote f
(0)
g ≡ f , f (1)

g ≡ f ′
g .

Proposition 2.7 (Product rule). Let n ∈ N, n ⩾ 2, and fj : [a, b] → F, j = 1, 2, . . . , n, be
g-differentiable at t ∈ [a, b]. Then, the product

∏n
j=1 fj is also g-differentiable at t and

(2.6)

 n∏
j=1

fj

′

g

(t) =
n−1∑
k=0

(∆g(t∗))k

 ∑
σ∈Fn,k+1

n∏
j=1

(fj)
(σj)
g (t∗)

 .

Remark 2.8. Observe that the term ∆g(t∗)k might not be properly defined when k = 0.
This is because (2.6) is just a concise way of writing n∏

j=1

fj

′

g

(t) =
∑

σ∈Fn,1

n∏
j=1

(fj)
(σj)
g (t∗) +

n−1∑
k=1

(∆g(t∗))k

 ∑
σ∈Fn,k+1

n∏
j=1

(fj)
(σj)
g (t∗)

 .

In other words, in (2.6) we implicitly treat ∆g(t∗)0 as 1. We adopt this notation for the rest
of the section.

Proof. We prove the result by induction on n ∈ N. For n = 2, Proposition 2.6 ensures that
f1 · f2 is g-differentiable at t and

(f1 · f2)′g (t) = (f1)
(1)
g (t)f

(0)
2 (t∗) + f

(0)
1 (t∗)(f2)

(1)
g (t) + (f1)

(1)
g (t)(f2)

(1)
g (t)∆g(t∗).

Now, by definition of t∗, we have that (fj)
(1)
g (t∗) = (fj)

(1)
g (t), j = 1, 2, so it follows

that (2.6) holds.

Assume that the result is true for n − 1. Then, Proposition 2.6 guarantees that
∏n

j=1 fj
is g-differentiable at t and, since (2.6) holds for n = 2, omitting the evaluation at t∗, we
have that n∏

j=1

fj

′

g

=

n−1∏
j=1

fj

(1)

g

· f (0)
n +

n−1∏
j=1

fj

(0)

· (fn)(1)g +

n−1∏
j=1

fj

(1)

g

· (fn)(1)g ·∆g

=

n−2∑
k=0

(∆g)k

 ∑
σ∈Fn−1,k+1

n−1∏
j=1

(fj)
(σj)
g

 · f (0)
n +

n−1∏
j=1

f
(0)
k

 · (fn)(1)g

+

n−2∑
k=0

(∆g)k

 ∑
σ∈Fn−1,k+1

n−1∏
j=1

(fj)
(σj)
g

 · (fn)(1)g ·∆g

=

n−2∑
k=0

(∆g)k

 ∑
σ∈Fn,k+1

σn=0

n∏
j=1

(fj)
(σj)
g

+

n−1∏
j=1

f
(0)
k

 · (fn)(1)g
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+

n−2∑
k=0

(∆g)k+1

 ∑
σ∈Fn,k+2

σn=1

n∏
j=1

(fj)
(σj)
g



=

n−2∑
k=0

(∆g)k

 ∑
σ∈Fn,k+1

σn=0

n∏
j=1

(fj)
(σj)
g

+

n−1∏
j=1

f
(0)
k

 · (fn)(1)g

+

n−1∑
k=1

(∆g)k

 ∑
σ∈Fn,k+1

σn=1

n∏
j=1

(fj)
(σj)
g



=

n−2∑
k=0

(∆g)k

 ∑
σ∈Fn,k+1

σn=0

n∏
j=1

(fj)
(σj)
g

+

n−1∑
k=0

(∆g)k

 ∑
σ∈Fn,k+1

σn=1

n∏
j=1

(fj)
(σj)
g


=

n−1∑
k=0

(∆g)k

 ∑
σ∈Fn,k+1

n∏
j=1

(fj)
(σj)
g

 ,

where in the last equality we have use the fact that Fn,n = {(1, . . . , 1)} and thus σn = 1
for σ ∈ Fn,n. □

Remark 2.9. Given that (fj)′g(t∗) = (fj)
′
g(t), j = 1, 2, . . . , n, t ∈ [a, b], we can write (2.6) as n∏

j=1

fj

′

g

(t) =

n−1∑
k=0

(∆g(t∗))k

 ∑
σ∈F∗

n,k+1

n∏
j=1

(fj)
(σj)
g (t)

 ,

where F ∗
n,k := {σ ∈ {∗, 1}n : |σ| = k} with |(σ1, . . . , σn)| := card{k ∈ {1, . . . , n} : σk =

1} and f
(∗)
g (t) ≡ f(t∗). Observe that, in this form, for n = 2, we recover (2.5).

In this last part of the section, we shall focus on the concept of g-continuity, as presented
in [5, Definition 3.1] which we include below.

Definition 2.10 (g-continuous function). A function f : X ⊂ R → F is g-continuous at a
point t ∈ X , or continuous with respect to g at t, if for every ε > 0, there exists δ > 0 such
that

|f(t)− f(s)| < ε, for every s ∈ X such that |g(t)− g(s)| < δ;

otherwise, we say that f is g-discontinuous at t. If f is g-continuous at every point t ∈ X ,
we say that f is g-continuous on X .

Remark 2.11. In [14, Remark 3.10], the authors presented the concept of lateral g-continu-
ity. We say that f is g-continuous from the left at t if for every ε > 0, there exists δ > 0 such
that

|f(t)− f(s)| < ε, for every s ∈ X , s ⩽ t, such that 0 ⩽ g(t)− g(s) < δ.

Similarly, f is g-continuous from the right at t if for every ε > 0, there exists δ > 0 such that

|f(t)− f(s)| < ε, for every s ∈ X , s ⩾ t, such that 0 ⩽ g(s)− g(t) < δ.

Naturally, f is g-continuous at t if and only if f is g-continuous from the left and right at
t.
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Remark 2.12. It is important to note that, as indicated in [5, Section 3], g-continuity can
be understood as continuity between pseudometric spaces, which are sequential spaces
(see [1]). Thus, we have that f is g-continuous at t ⊂ X if and only if

(2.7) f(tn) → f(t), for every sequence {tn}n∈N ⊂ X such that g(tn) → g(t).

The following result, [5, Proposition 3.2], describes some properties of g-continuous
functions that are revelant for the work ahead.

Proposition 2.13. If f : [a, b] → F is g-continuous on [a, b], then:

• f is continuous from the left at every t ∈ (a, b];
• if g is continuous at t ∈ [a, b), then so is f ;
• if g is constant on some [α, β] ⊂ [a, b], then so is f .

In [5] the reader can find more information on the properties of g-continuous func-
tions. In the following, we present some results that, to the best of our knowledge, are not
available in the current literature.

Lemma 2.14. Let f, h : X ⊂ R → F be g-continuous at t ∈ [a, b] and h(t) ̸= 0. Then f/h is
g-continuous at t.

Proof. Let t ∈ X and ε > 0. Since h is g-continuous at t, there exists δ1 ∈ R+ such that

|h(s)− h(t)| < |h(t)| /2, for s ∈ X such that |g(s)− g(t)| < δ1.

Hence, |h(t)| /2 < h(s) < 3 |h(t)| /2 for every s ∈ X such that |g(s)− g(t)| < δ1. Now,
since f, h are g-continuous and h(t) ̸= 0, we can find δ ∈ (0, δ1) such that

|f(s)− f(t)| , |h(s)− h(t)| < |h(t)|2

2(|h(t)|+ |f(t)|)
ε,

for s ∈ X such that |g(s)− g(t)| < δ. Thus,∣∣∣∣f(s)h(s)
− f(t)

h(t)

∣∣∣∣ = |f(s)h(t)− f(t)h(s)|
|h(t)h(s)|

⩽
|f(s)− f(t)| |h(t)|+ |f(t)| |h(s)− h(t)|

1
2 |h(t)|

2 ⩽ ε,

for every s ∈ X such that |g(s)− g(t)| < δ, that is, f/h is g-continuous at t. □

Lemma 2.15. Let f : X ⊂ R → F and t1, t2 ∈ X be such that g(t1) = g(t2). Then, f is
g-continuous at t1 if and only if f is g-continuous at t2. Furthermore, in that case, we have that
f(t1) = f(t2).

Proof. Let t1, t2 ∈ X be such that g(t1) = g(t2). Observe that it is enough to prove that if f
is g-continuous at t1 then f(t1) = f(t2) as, in that case, the equivalence for the g-continuity
follows from the definition.

Since f is g-continuous at t1, for every ε > 0, there exists δ > 0 such that if s ∈ X
satisfies |g(s)− g(t1)| < δ, then |f(s)− f(t1)| < ε. Hence, given that g(t1) = g(t2) we
have that |f(t2)− f(t1)| < ε for every ε > 0 so, necessarily, f(t1) = f(t2), which finishes
the proof. □

It is important to note that, as presented in [5, Example 3.3], g-continuous functions
need not be regulated or even locally bounded. With this idea in mind, given a, b ∈ R,
a < b, we define

BCg([a, b],F) = {f : [a, b] → F : f bounded and g-continuous on [a, b]} .



114 F. Javier Fernández, Ignacio Márquez Albés, F. Adrián F. Tojo

Similarly, [12, Example 3.23] shows that, unlike in the usual setting, g-differentiability
does not imply g-continuity, which lead to the following definition.

Definition 2.16 ([4, Definition 3.12]). Given a, b ∈ R, a < b, such that a /∈ N−
g ∪ Dg and

b /∈ Cg ∪N+
g ∪Dg , we define

BC1
g([a, b],F) := {f ∈ BCg([a, b],F) : f ′

g ∈ BCg([a, b],F)}.

3. SOME PROPERTIES OF ∆g

We now turn our attention to the study of the function ∆g : R → R. In what follows,
given a set X ⊂ R, we denote by X ′ the set of limit points of X .

We start with a simple result showing that ∆g is a regulated function, which is enough
to ensure measurability with respect to g.

Proposition 3.1. For each t ∈ R, we have that

(3.1) lim
s→t−

∆g(s) = lim
s→t+

∆g(s) = 0.

In particular, ∆g is a regulated function, Borel-measurable and g-measurable.

Proof. In order to show that (3.1) holds, let t ∈ R. We first show that ∆g(t+) = 0.

If t ̸∈ (Dg ∩ (t,+∞))′, then there exists r > 0 such that Dg ∩ (t,+∞) ∩ (t − r, t + r) =
Dg ∩ (t, t+ r) = ∅, so g is continuous on (t, t+ r), which implies that ∆g = 0 on that same
interval and the result follows. Otherwise, we have that t ∈ (Dg ∩ (t,+∞))′ and we need
to show that ∆g(t+) = 0. This happens if and only if

lim
s→t+

s∈Dg

∆g(t) = lim
s→t+

s̸∈Dg

∆g(t) = 0,

where the second limit can be taken because Dg is countable, so R\Dg is dense in R.
However, noting that ∆g = 0 on R\Dg , we have that the second of these limits is null, so
it is enough to show that

lim
s→t+

s∈Dg

∆g(t) = 0.

Let {tn}n∈N be a sequence in Dg ∩ (t,+∞) converging to t. Then, there exists N ∈ N
such that tn ∈ (t, t+ 1) for all n ∈ N such that n ⩾ N . Hence,

0 <

∞∑
n=N

∆g(tn) ⩽
∑

s∈(t,t+1)∩Dg

∆g(s) =

∫
(t,t+1)∩Dg

d g(s) ⩽
∫
[t,t+1)

d g(s) = µg([t, t+ 1)).

As a consequence, the series
∑

n∈N ∆g(tn) is convergent, which guarantees that the se-
quence {∆g(tn)}n∈N must converge to 0. Since {tn}n∈N was arbitrarily chosen, it follows
that ∆g(t+) = 0.

The reasoning for ∆g(t−) is analogous and we omit it. Observe that this is enough
to guarantee that ∆g is regulated, which in turn makes it Borel measurable and, thus,
g-measurable. □

Taking into account the previous result it is only natural to wonder what these limits
imply with regard to the g-continuity of ∆g. This is covered in the next result.



Consequences of the product rule in Stieltjes differentiability 115

Proposition 3.2. Consider the set

(3.2) Ag = {t ∈ R : sup{s ∈ [a, b] : g(s) = g(t)} ∈ Dg}.
The map ∆g is g-continuous at every point of R\Ag and g-discontinuous at every point of Ag .

Proof. Throughout this proof, given t ∈ R, we denote

(3.3) t̂ = sup{s ∈ [a, b] : g(s) = g(t)}.

First, we prove that ∆g is g-discontinuous at every point of Dg ⊂ Ag . To that end, let
t ∈ Dg . Then, either (2.2) holds or

(3.4) g(s) = g(t), for all s ∈ [t0, t] for some t0 < t.

Suppose (3.4) holds. Then ∆g(t0) = g(t+0 )− g(t0) = g(t)− g(t) = 0, while ∆g(t) > 0, so
for every δ ∈ R+ we have that |g(t0)− g(t)| < δ, but |∆g(t0)−∆g(t)| = ∆g(t) > ∆g(t)/2,
so ∆g is not g-continuous at t.

If (2.2) holds instead, since lims→t− ∆g(s) = 0, there exists ρ > 0 such that

∆g(s) <
∆g(t)

2
, s ∈ R, 0 < t− s < ρ.

Since (2.2) holds, so we can find t1 < t such that t − t1 < ρ and g(t1) < g(t). Let δ =
g(t)− g(t1). Observe that, if 0 < g(t)− g(s) < δ, since g is nondecreasing, then 0 < t− s <
t− t1 < ρ, and so ∆g(s) < ∆g(t)/2. But this implies that, if 0 < g(t)− g(s) < δ, then

|∆g(s)−∆g(t)| ⩾ ∆g(t)−∆g(s) > ∆g(t)− ∆g(t)

2
=

∆g(t)

2
,

and, therefore, ∆g is not continuous at t.

Now, let t ∈ Ag\Dg . Since g is left-continuous, we have that g(t) = g(t̂) so it follows
from Lemma 2.15 that ∆g cannot be g-continuous at t since it is g-discontinuous at t̂ as
t̂ ∈ Dg .

Now, we shall study the g-continuity of ∆g in the remaining points. Let t ∈ R\Ag . In
that case, t ̸∈ Dg so ∆g(t) = 0. We claim that

∆g is g-continuous from the left at t if (2.2) holds;(3.5)

∆g is g-continuous from the right at t if (2.3) holds.(3.6)

Suppose that (2.2) holds and let ε > 0. Since lims→t− ∆g(s) = 0 and ∆g(t) = 0, there
exists ρ > 0 such that ∆g(s) < ε, for all s ∈ (t − ρ, t]. Since (2.2) holds, we can take
δ = g(t)− g(t− ρ) > 0. If s ⩽ t is such that 0 ⩽ g(t)− g(s) < δ, since g is nondecreasing,
we necessarily have that s ∈ (t− ρ, t] so

|∆g(s)−∆g(t)| = ∆g(s) < ε,

which proves that ∆g is also g-continuous from the left at t.

The proof of (3.6) is analogous, and we omit it. Since (3.5)-(3.6) hold, it follows that ∆g
is g-continuous if t ̸∈ Cg∪Ng∪Ag . Similarly, (3.5) guarantees that ∆g is g-continuous from
the left if t ∈ N−

g \Ag , while (3.6) ensures the g-continuity from the right if t ∈ N+
g \Ag .

Let us investigate what happens in the remaining cases, namely, when t ∈ (Cg∪Ng)\Ag .

Suppose t ∈ (N−
g ∪ Cg)\Ag and let us show that ∆g is g-continuous from the right at

t. Let ε > 0 and consider t̂ as in (3.3). Observe that g(s) = g(t) for all s ∈ [t, t̂), which
means ∆g(s) = 0 for all s ∈ [t, t̂). Furthermore, since t ̸∈ Ag , we have that t̂ ̸∈ Dg , so we
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necessarily have that g(t̂) = g(t) and t̂ ∈ N+
g . In that case, ∆g is g-continuous from the

right at t̂, which means that there exists δ > 0 such that

|∆g(s)| =
∣∣∆g(t̂)−∆g(s)

∣∣ < ε, for each s ⩾ t̂ such that 0 ⩽ g(s)− g(t̂) < δ.

Now, if s ⩾ t is such that 0 ⩽ g(s) − g(t) < δ, then either s ∈ [t, t̂), or s ⩾ t̂ and 0 ⩽
g(s)− g(t̂) < δ. In either case, it follows that

|∆g(t)−∆g(s)| = |∆g(s)| < ε,

proving that ∆g is g-continuous from the right at t. In particular, this proves that ∆g is
g-continuous if t ∈ N−

g \Ag .

Finally, suppose t ∈ (N+
g ∪ Cg)\Ag and let us show that ∆g is g-continuous from the

left at t. Let ε > 0 and consider

t̃ = inf{s ∈ [a, b] : g(s) = g(t)}.

Observe that g(s) = g(t) for all s ∈ (t̃, t], which means ∆g(s) = 0 for all s ∈ (t̃, t]. Now, if
t̃ ̸∈ Dg , then g(t̃) = g(t) and t̃ ∈ N−

g . In that case, ∆g is g-continuous from the left at t̃ so
there exists δ > 0 such that

|∆g(s)| =
∣∣∆g(t̃)−∆g(s)

∣∣ < ε, for each s ⩽ t̂ such that 0 ⩽ g(t̃)− g(s) < δ.

Now, if s ⩽ t is such that 0 ⩽ g(t) − g(s) < δ, then either s ∈ (t̃, t], or s ⩽ t̃ and 0 ⩽
g(t̃)− g(s) < δ. In either case, it follows that

|∆g(t)−∆g(s)| = |∆g(s)| < ε.

Otherwise, t̃ ∈ Dg , so taking δ ∈ (0,∆g(t̃)), it follows that if s ⩽ t is such that 0 ⩽
g(t)− g(s) < δ, then s ∈ (t̃, t], so

|∆g(t)−∆g(s)| = 0 < ε,

which finishes the proof. □

Example 3.3. To illustrate the set Ag , consider the function represented in Figure 3.1.
Here Ag = {−1} ∪ [0, 2].

-2 -1 1 2 3

-3

-2

-1

1

2

FIGURE 3.1. The graph of function g in Example 3.3.
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We now consider the g-differentiability of ∆g. In order to do so, we present the fol-
lowing more general result from which we can deduce some information about the differ-
entiability in the Stieltjes sense of ∆g. To that end, we introduce the following notation:
given X ⊂ R, we denote by χX the characteristic function of the set X , namely,

χX(t) =

{
1, t ∈ X,

0, t ̸∈ X.

Proposition 3.4. Let f : [a, b] → F be a map and h : [a, b] → F be defined as h(t) = f(t)∆g(t).
Consider the sets

D1 = {t ∈ [a, b] ∩N−
g : t ∈ (Dg ∩ [a, t))′},(3.7)

D2 = {t ∈ [a, b] ∩N+
g : t ∈ (Dg ∩ (t, b])′},(3.8)

D3 = {t ∈ [a, b]\(Ng ∪Dg) : t ∈ (Dg ∩ [a, b])′}.(3.9)

For t ∈ [a, b], and denoting by t∗ the corresponding point in (2.4), we have the following properties:

1. If t∗ ∈ D1 ∪D2 ∪D3, then h is g-differentiable at t if and only if

(3.10) lim
s→t∗

s∈Dg

f(s)∆g(s)

g(s)− g(t)
= 0,

where we might be considering the corresponding lateral limit according to the definition
of Stieltjes derivative, see Remark 2.3.

2. If t∗ ∈ Dg ∩ (Dg ∩ (t, b])′, then h is g-differentiable at t if and only if

lim
s→t∗+

s∈Dg

f(s)∆g(s) = 0.

3. In any other case, h is g-differentiable at t.

Moreover, if h is g-differentiable at t, then

(3.11) h′
g(t) = −f(t∗)χDg

(t∗).

Proof. We will first prove 1-3 in order for t ∈ [a, b]\Cg while showing that (3.11) holds for
each case.

Let t ∈ [a, b]\Cg . Observe that, in that case, t∗ = t.

First, suppose t ∈ D1 ∪D2 ∪D3. Observe that, in that case, t ̸∈ Dg so ∆g(t) = 0. Now,
if h is g-differentiable at t, by definition,

h′
g(t) = lim

s→t

h(s)− h(t)

g(s)− g(t)
= lim

s→t

f(s)∆g(s)

g(s)− g(t)
.

Observe that, since such limit exists, the following limits exist and are equal and, since
∆g = 0 in [a, b]\Dg , we must have that

lim
s→t
s∈Dg

f(s)∆g(s)

g(s)− g(t)
= lim

s→t
s̸∈Dg

f(s)∆g(s)

g(s)− g(t)
= 0,

where the second limit can be taken because Dg is countable, so [a, b]\Dg is dense in [a, b].
This demonstrates that if h is g-differentiable at t then (3.10) holds. Furthermore, this also
shows that (3.11) holds in this case. Conversely, assume that (3.10) holds. It is clear now
that we need to show that

lim
s→t

f(s)∆g(s)

g(s)− g(t)
= 0.
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Once again, such limit exists provided that

lim
s→t
s∈Dg

f(s)∆g(s)

g(s)− g(t)
= lim

s→t
s ̸∈Dg

f(s)∆g(s)

g(s)− g(t)
= 0.

Note that this is the case thanks to condition (3.10) and the fact that ∆g = 0 in [a, b]\Dg .

Now, suppose t ∈ Dg ∩ (Dg ∩ (t, b])′. In that case, the hypotheses guarantee that t ̸= b
and h = 0 on (t, b]\Dg , which is dense on (t, b] as Dg is countable. Hence, we have that

lim
s→t+

s∈Dg

h(s) = 0.

Now, Remark 2.4 ensures that h is g-differentiable at t if and only if h(t+) exists which, at
the same time, exists if and only if

lim
s→t+

s̸∈Dg

h(s) = 0.

Observe that this proves 2 and, furthermore, equality (3.11) as, under these circumstances,
h(t+) = 0 and

h′
g(t) =

h(t+)− h(t)

∆g(t)
=

−f(t)∆g(t)

∆g(t)
= −f(t) = −f(t∗)χDg

(t∗).

Finally, for 3, we first consider the case when t ∈ [a, b]\(D′
g ∪ Cg). In that case, there is

ε > 0 such that ((t − ε, t + ε)\{t}) ∩Dg = ∅, which implies that the map g is continuous
on (t − ε, t + ε)\{t} and, in particular, ∆g = 0 on that set. This means that h = 0 on
(t− ε, t+ ε)\{t}. Therefore, if t ̸∈ Dg ,

lim
s→t

h(s)− h(t)

g(s)− g(t)
= lim

s→t

h(s)

g(s)− g(t)
= 0,

which means that h is g-differentiable at t and h′
g(t) = 0 = −f(t∗)χDg (t

∗). Otherwise, we
have that t ∈ Dg and, in that case, it follows that h(t+) = 0. Remark 2.4 guarantees that h
is g-differentiable at t and

h′
g(t) =

h(t+)− h(t)

∆g(t)
=

−f(t)∆g(t)

∆g(t)
= −f(t) = −f(t∗)χDg

(t∗).

Hence, all that is left to do to prove 3 for t ∈ [a, b]\Cg is to show that h is g-differentiable
if t ∈ D′

g but does not satisfy the conditions in 1 and 2, that is, if t ∈ Dg ∩ (Dg ∩ [a, b])′

and t ̸∈ Dg ∩ (Dg ∩ (t, b])′. In this setting, there exists r > 0 such that (t, t + r) ∩Dg = ∅,
which guarantees that ∆g = 0 on (t, t+ r). This implies that h = 0 on (t, t+ r) and, thus,
h(t+) = 0. As a consequence, h is g-differentiable at t and

h′
g(t) =

h(t+)− h(t)

∆g(t)
=

−f(t)∆g(t)

∆g(t)
= −f(t) = −f(t∗)χDg

(t∗).

Lastly, we prove the result for t ∈ [a, b]∩Cg . Let t ∈ (an, bn) ⊂ [a, b]∩Cg for some an, bn
in (2.1). In that case, t∗ = bn and, as pointed out in Remark 2.4, h is g-differentiable at t
if and only if h is g-differentiable at t∗. Hence, 1, 2 and 3 follow from the previous cases.
Furthermore, noting that t∗ ∈ Dg if and only if bn ∈ Dg and using (3.11), we have that

h′
g(t) = h′

g(bn) = −f(b∗n)χDg
(b∗n) = −f(bn)χDg

(bn) = −f(t∗)χDg
(t∗),

that is, (3.10) also holds for these cases. □

Remark 3.5. To visualize the sets D1, D2 and D3, we provide an illustration in Figure 3.2.
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FIGURE 3.2. From left to right, representation of derivators for which
zero belongs to D1, D2 and D3 respectively.

Combining Propositions 3.1 and 3.4 we can obtain the following result about the exis-
tence of the Stieltjes derivative of ∆g.

Corollary 3.6. Consider the sets D1, D2, D3 in (3.7)-(3.9) and the restriction ∆g|[a,b]. For t ∈
[a, b], and denoting by t∗ the corresponding point in (2.4), we have the following properties:

1. If t∗ ∈ D1 ∪D2 ∪D3 then ∆g|[a,b] is g-differentiable at t if and only if

(3.12) lim
s→t∗

s∈Dg

∆g|[a,b](s)
g(s)− g(t)

= 0,

where we might be considering the corresponding lateral limit according to the definition
of Stieltjes derivative, see Remark 2.3.

2. In any other case, ∆g|[a,b] is g-differentiable at t.

Furthermore, if ∆g|[a,b] is g-differentiable at t, then

(3.13)
(
∆g|[a,b]

)′
g
(t) = −χDg

(t∗).

In particular, ∆g|[a,b] is g-differentiable on [a, b] and (3.13) holds on [a, b] if

(3.14) lim
s→t
s∈Dg

∆g|[a,b](s)
g(s)− g(t)

= 0, for all t ∈ D1 ∪D2 ∪D3,

with the same consideration for the lateral limits, see Remark 2.3.

Remark 3.7. Note condition (3.14) becomes vacuous when [a, b] ∩Dg is closed, as in that
case ([a, b] ∩Dg)

′ ⊂ [a, b] ∩Dg , so D1 = D2 = D3 = ∅. Furthermore, condition (3.14) can
be satisfied when ([a, b] ∩Dg)

′\([a, b] ∩Dg) ̸= ∅. Indeed, the function

g(t) = t+

∞∑
n=1

2−nχ(1/n,+∞)(t), t ∈ R,

represented in Figure 3.3 is nondecreasing, left-continuous with Dg = {1/n : n ∈ N} and

∆g(t) =

{
2−n, t = 1/n for some n ∈ N,
0, otherwise.
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FIGURE 3.3. Graph of the function g in Remark 3.7.

Observe that −1 ̸∈ Dg , 2 ̸∈ Dg ∪Cg ∪N+
g and ([−1, 2]∩Dg)

′\Dg = {0}. Hence, we have
that D1 = D2 = ∅ and D3 = {0} and, furthermore,

lim
s→0
s∈Dg

∆g|[−1,2](s)

g(s)− g(0)
= lim

n→+∞

∆g|[−1,2](1/n)

g(1/n)

= lim
n→+∞

2−n

1/n+
∑∞

k=1 2
−kχ(1/k,+∞)(1/n)

= lim
n→+∞

2−n

1/n+
∑∞

k=n+1 2
−k

= lim
n→+∞

2−n

1/n+ 2−n

= lim
n→+∞

1

2n/n+ 1
= 0,

that is, (3.14) is satisfied on [−1, 2]. As a consequence, we have that ∆g|[−1,2] is g-differen-
tiable and, in this case, (∆g|[−1,2])

′
g(t) = χDg

(t), t ∈ [−1, 2]. This example also shows that
(∆g|[−1,2])

′
g needs not be g-differentiable as (∆g|[−1,2])

′′
g (0) cannot exist since

lim
s→0
s∈Dg

(∆g|[−1,2])
′
g(s)− (∆g|[−1,2])

′
g(0)

g(s)− g(0)
= lim

s→0
s∈Dg

1− 0

g(s)− g(0)
= +∞.

Nevertheless, we should highlight that there are nondecreasing and left-continuous
functions satisfying all the conditions but (3.14). Indeed, it is enough to consider a small
modification of the previous example, namely,

(3.15) g̃(t) = tχ(1,+∞)(t) +

∞∑
n=1

2−nχ(1/n,+∞)(t), t ∈ R,

represented in Figure 3.4.

Once again, this is a nondecreasing and left-continuous map such that Dg̃ = Dg and
∆g̃ = ∆g + χ{1}. Furthermore,

(3.16) Cg̃ = (−∞, 0) ∪
∞⋃

n=1

(
1

n+ 1
,
1

n

)
,
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FIGURE 3.4. Graph of the function g̃ in Remark 3.7.

so it follows that −1 ̸∈ Dg̃ ∪N−
g̃ , 2 ̸∈ Dg̃ ∪ Cg̃ ∪N+

g̃ . However, condition (3.14) cannot be
satisfied as, in this case, D1 = D3 = ∅, D2 = {0}, g̃(0) = 0 and

lim
n→+∞

∆g̃|[−1,2](1/n)

g̃(1/n)
= lim

n→+∞

2−n∑∞
k=1 2

−kχ(1/k,+∞)(1/n)
= lim

n→+∞

2−n

2−n
= 1.

4. DIFFERENTIATING THE PRODUCT RULE

The aim of this section is to study the differentiability of the product of two differen-
tiable functions beyond the first derivative, as this case is already covered by Proposi-
tion 2.6.

Observe that Proposition 2.6 provides a good starting point for our research. Indeed,
given that in (2.5) some of the maps involved are evaluated at t∗, we need to consider
how this affects the Stieltjes differentiability of functions. With this idea in mind, we
present the following result establishing some relations between a differentiable map and
its corresponding counterpart evaluated at t∗.

Proposition 4.1. Let f : [a, b] → F and define f∗ : [a, b] → F as f∗(t) = f(t∗) with t∗ as
in (2.4).

Consider the sets

C1 = {t ∈ [a, b] ∩N−
g : t ∈ (Cg ∩ [a, t))′},

C2 = {t ∈ [a, b] ∩ (N+
g ∪Dg) : t ∈ (Cg ∩ (t, b])′},

C3 = {t ∈ [a, b]\(Cg ∪Ng ∪Dg) : t ∈ (Cg ∩ [a, b])′}.

Then, for t ∈ [a, b]:

1. If t∗ ∈ C1 ∪C2 ∪C3, then f is g-differentiable at t if and only if f∗ is g-differentiable at t
and

(4.1) lim
s→t∗

s∈Cg

f(s)− f(t∗)

g(s)− g(t∗)
= (f∗)′g(t),

where we might be considering the corresponding lateral limit according to the definition
of Stieltjes derivative, see Remark 2.3.
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2. If t∗ ̸∈ C1 ∪ C2 ∪ C3, f is g-differentiable at t if and only if f∗ is g-differentiable at t.

Furthermore, if f and f∗ are g-differentiable at t ∈ [a, b], then (f∗)′g(t) = f ′
g(t) = f ′

g(t
∗).

Proof. First, observe that given the definition of the Stieltjes derivative at the points of Cg ,
it is enough to prove the result for t ∈ [a, b]\Cg , for which we will use the information in
Remark 2.1.

Let t ∈ [a, b]\Cg . We define At = {s ∈ [a, b] : g(s) ̸= g(t)} and Ft, F
∗
t : At → F as

Ft(s) =
f(s)− f(t)

g(s)− g(t)
, F ∗

t (s) =
f∗(s)− f∗(t)

g(s)− g(t)
=

f∗(s)− f(t)

g(s)− g(t)
,

where the last equality holds since t∗ = t for such point. Now, since t ∈ [a, b]\Cg , Re-
mark 2.1 guarantees that (2.2) and/or (2.3) must hold.

Let us assume that (2.2) holds.

We shall assume that t ̸= a as the g-derivatives in such point are computed as the right
handside limit so it is irrelevant if (2.2) holds in that case. In these conditions, we have
that [a, t) ⊂ At. We claim that

lim
s→t−

F ∗
t (s) = f ′

g(t), if f ′
g(t) exists,(4.2)

lim
s→t−

Ft(s) = (f∗)′g(t), if (f∗)′g(t) exists and,(4.3)

if t ∈ ([a, t) ∩ Cg)
′, then lim

s→t−

s∈Cg

Ft(s) = (f∗)′g(t).

If t ̸∈ ([a, t) ∩ Cg)
′, there exists r ∈ (0, t − a) such that (t − r, t) ∩ Cg = ∅. Hence, by

definition of f∗, we have that f∗ = f on (t − r, t) which, in turn, implies that F ∗
t = Ft on

that set, from which (4.2) and (4.3) follow.

Otherwise, we have that t ∈ ([a, t) ∩ Cg)
′. In that case, t ∈ ([a, t)\Cg)

′ as well as, if this
was not the case, there would be ε ∈ (0, t − a) such that (t − ε, t)\Cg = ∅, which would
imply that (t − ε, t) ⊂ Cg and would contradict (2.2). Now, it is clear that (4.2) and (4.3)
hold if the following statements are true:

lim
s→t−

s ̸∈Cg

F ∗
t (s) = lim

s→t−

s∈Cg

F ∗
t (s) = f ′

g(t), if f ′
g(t) exists,

lim
s→t−

s̸∈Cg

Ft(s) = (f∗)′g(t), if (f∗)′g(t) exists and lim
s→t−

s∈Cg

Ft(s) = (f∗)′g(t),

where we can consider all the limits above because t ∈ ([a, t)∩Cg)
′∩ ([a, t)\Cg)

′. Observe
that F ∗

t = Ft on At\Cg , so it is clear that lims→t− F ∗
t |At\Cg

(s) = lims→t− Ft|At\Cg
(s). Thus,

it suffices to show that

(4.4) lim
s→t−

s∈Cg

F ∗
t (s) = f ′

g(t), if f ′
g(t) exists.

Let {sn}n∈N be a sequence in [a, t) ∩ Cg converging to t. For each n ∈ N, denote by
s∗n the corresponding number assigned to sn by (2.4). Observe that, for each n ∈ N, we
have that s∗n ∈ (sn, t), which implies that the sequence {s∗n}n∈N is contained in [a, t) and
converges to t. Furthermore, we have that, by definition and the left-continuity of g,

g(sn) = g(s∗n), f∗(sn) = f(s∗n), n ∈ N.
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Hence,

lim
n→+∞

F ∗
t (sn) = lim

n→+∞

f∗(sn)− f∗(t)

g(sn)− g(t)
= lim

n→+∞

f(s∗n)− f(t)

g(s∗n)− g(t)
= f ′

g(t),

where the last equality follows from the fact that f ′
g(t) exists. Since {sn}n∈N was arbitrarily

chosen, we have that (4.4) holds. Hence, we have that (4.2) and (4.3) hold. Observe that,
in particular, this proves the result if t ∈ C1.

We now assume that (2.3) holds. Once again, we can assume that t ̸= b as the g-deriva-
tives at such point are computed as the left handside limit so it is irrelevant if (2.3) holds
in that case. In these conditions, (t, b] ⊂ At and we claim that

lim
s→t+

F ∗
t (s) = f ′

g(t), if f ′
g(t) exists,(4.5)

lim
s→t+

Ft(s) = (f∗)′g(t), if (f∗)′g(t) exists and,(4.6)

if t ∈ ((t, b] ∩ Cg)
′, lim

s→t+

s∈Cg

Ft(s) = (f∗)′g(t).

If t ̸∈ ((t, b] ∩ Cg)
′, there exists r ∈ (0, b − t) such that (t, t + r) ∩ Cg = ∅, which

once again implies that F ∗
t = Ft on that set, from which (4.5) and (4.6) follow. Otherwise,

t ∈ ((t, b]∩Cg)
′ and, following a similar reasoning as before, we can see that t ∈ ((t, b]\Cg)

′

and lims→t+ F ∗
t |At\Cg

(s) = lims→t+ Ft|At\Cg
(s) so it is enough to show that

(4.7) lim
s→t+

s∈Cg

F ∗
t (s) = f ′

g(t), if f ′
g(t) exists.

Let {sn}n∈N be a sequence in (t, b] ∩ Cg converging to t. For each n ∈ N, denote by s∗n
the corresponding number assigned to sn by (2.4). Note that s∗n ∈ (sn, b], n ∈ N. We claim
that

(4.8) for each ε > 0, there exists N ∈ N such that 0 < s∗n − sn < ε for all n ⩾ N.

Suppose that (4.8) is not true. In that case, we can find ε0 > 0 such that s∗n − sn ⩾ ε0 for
all n ∈ N. Since {sn}n∈N ⊂ (t, b] converges to t, we can find p ∈ N such that if n ⩾ p, then
sn < sp and

0 < sn − t <
ε0
2
.

Hence, for any n ⩾ p, we have that

s∗n − sp = s∗n − sn + sn − t+ t− sp ⩾ s∗n − sn + t− sp ⩾ ε0 −
ε0
2

=
ε0
2

> 0,

so sn < sp < s∗n. This implies that, for every n ⩾ p, sn and sp are in the same connected
component of Cg and, as a consequence, s∗n = s∗p. Hence,

⋃
n⩾p(sn, s

∗
p) = (t, s∗p) ⊂ Cg ,

which contradicts that t ∈ ((t, b]\Cg)
′. Thus, (4.8) must be true.

We can now show that {s∗n}n∈N converges to t. Indeed, let ε > 0. On the one hand, (4.8)
guarantees that there exists n1 ∈ N such that

0 < s∗n − sn <
ε

2
for all n ∈ N, n ⩾ n1.

On the other hand, since {sn} ⊂ (t, b] converges to t, there exists n2 ∈ N such that

0 < sn − t <
ε

2
for all n ∈ N, n ⩾ n2.
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Hence, if we take M = max{n1, n2}, for any n ∈ N such that n ⩾ M , we have that

0 < s∗n − t = s∗n − sn + sn − t ⩽
ε

2
+

ε

2
= ε,

that is, {s∗n} converges to t. Furthermore, by definition,

g(sn) = g(s∗n), f∗(sn) = f(s∗n), n ∈ N,

from which we have that

lim
n→+∞

F ∗
t (sn) = lim

n→+∞

f∗(sn)− f∗(t)

g(sn)− g(t)
= lim

n→+∞

f(s∗n)− f(t)

g(s∗n)− g(t)
= f ′

g(t),

where the last equality follows from the fact that f ′
g(t) exists. Since {sn}n∈N was arbitrarily

chosen, we have that (4.7) holds. Hence, we have that (4.5) and (4.6) hold. Observe that,
in particular, this proves the result if t ∈ C2.

The remaining cases for t ∈ [a, b]\Cg , namely when (2.2) and (2.3) hold simultaneously,
now follow since, in that case, (4.2)-(4.3) and (4.5)-(4.6) hold. □

Remark 4.2. To visualize the sets C1, C2 and C3, we provide an illustration in Figure 4.1.

FIGURE 4.1. From left to right, representation of derivators for which
zero belongs to C1, C2 and C3 respectively.

Remark 4.3. Observe that, in particular, we have that f∗ is g-differentiable at every point
that f is g-differentiable, regardless of which type of points it might be. The converse
is not necessarily true because, by considering the map f∗, we are losing information
on the behavior of f along the points of Cg . This is reflected in the extra condition that
is required for the converse implication, namely, condition (4.1). Without it, we cannot
ensure the differentiability of f . Indeed, consider, for example, the map g̃ in (3.15) and
f : [−1, 1] → R defined as

f(t) =


1, if t ∈

∞⋃
n=1

(
1

n+ 1
,
1

n

)
,

0, otherwise,

and shown in Figure 4.2.

Given (3.16), it is easy to see that f∗(t) = 0, t ∈ [−1, 1], so it follows that f is g-
differentiable on [−1, 1]. In particular, it is g-differentiable at 0 ∈ N+

g ∩ ((0, 1] ∩ Cg)
′,

which belongs to C2.
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FIGURE 4.2. Graph of the function f .

Now, consider the sequence {tn}n∈N =
{

1
2

(
1
n + 1

n+1

)}
n∈N

. It is easy to see that it

belongs to (0, 1] ∩ Cg , converges to 0 and, furthermore,

lim
n→+∞

f(tn)− f(0)

g(tn)− g(0)
= lim

n→+∞

1∑∞
k=1 2

−kχ(1/k,+∞)(tn)
= lim

n→+∞

1∑∞
k=n+1 2

−k
= +∞.

This implies that f is not g-differentiable at 0 and shows that (4.1) is not satisfied for t = 0.
Similar counterexamples can be constructed for the remaining conditions.

The following result can be directly deduced from Proposition 4.1 and Corollary 3.6
and it gives some conditions under which the map ∆g∗ is g-differentiable.

Corollary 4.4. Consider the sets D1, D2, D3 in (3.7)-(3.9) and define ∆g∗ : [a, b] → R as

∆g∗(t) = ∆g|[a,b](t∗).

Then, for t ∈ [a, b]:

1. If t∗ ∈ D1 ∪D2 ∪D3 and (3.12) holds, then ∆g∗ is g-differentiable at t.
2. If t∗ ̸∈ D1 ∪D2 ∪D3, ∆g∗ is g-differentiable at t.

In particular, ∆g∗ is g-differentiable on [a, b] if (3.14) holds. Furthermore, if (∆g∗)′g(t) exists, we
have that

(∆g∗)
′
g (t) = −χDg

(t∗).

Since we have some conditions guaranteeing the Stieltjes differentiability of all the
maps involved in (2.5), we can finally obtain a formula for the second Stieltjes deriva-
tive of the product of two functions, as presented in the following result.

Proposition 4.5. Consider the sets D1, D2, D3 in (3.7)-(3.9) and let t ∈ [a, b] and f1, f2 :
[a, b] → F be two times g-differentiable at t, then:

• If t∗ ∈ D1 ∪D2 ∪D3 and (3.12) holds, then f1f2 is two times g-differentiable at t and

(f1f2)
′′
g (t) = (f1)

′′
g (t)f2(t

∗) + f1(t
∗)(f2)

′′
g (t) + (2− χDg

(t∗))(f1)
′
g(t)(f2)

′
g(t)

+ ∆g(t∗)((f1)
′
g(t)(f2)

′′
g (t) + (f2)

′
g(t)(f1)

′′
g (t)).(4.9)

• If t∗ ̸∈ D1 ∪D2 ∪D3 then f1f2 is two times g-differentiable at t and (4.9) holds.
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Proof. First, note that Proposition 2.6 ensures that f1f2 is g-differentiable at t and

(f1f2)
′
g (t) = (f1)

′
g (t)f2(t

∗) + (f2)
′
g (t)f1(t

∗) + (f1)
′
g (t) (f2)

′
g (t)∆g(t∗)

= (f1)
′
g (t)f

∗
2 (t) + (f2)

′
g (t)f

∗
1 (t) + (f1)

′
g (t) (f2)

′
g (t)∆g∗(t).

Furthermore, since f1 and f2 are g-differentiable at t, Proposition 4.1 guarantees that f∗
1

and f∗
2 are also g-differentiable at t. Now, Corollary 4.4 ensures that ∆g∗ is g-differentiable

under the corresponding conditions. Hence, Proposition 2.6 guarantees that (f1f2)
′
g is

g-differentiable at t and, differentiating the expression in (2.5), and denoting χ∗
Dg

(t) =
χDg

(t∗), we have that

(f1f2)
′′
g (t) = (f1)

′′
g (t)f

∗
2 (t) + (f1)

′
g(t)(f

∗
2 )

′
g(t) + (f1)

′′
g (t)(f

∗
2 )

′
g(t)∆g∗(t)

+ (f∗
1 )

′
g(t)(f2)

′
g(t) + f∗

1 (t)(f2)
′′
g (t) + (f∗

1 )
′
g(t)(f2)

′′
g (t)∆g∗(t)

+ ((f1)
′′
g (t)(f2)

′
g(t) + (f1)

′
g(t)(f2)

′′
g (t) + (f1)

′′
g (t)(f2)

′′
g (t)∆g∗(t))∆g∗(t)

− ((f1)
′′
g (t)(f2)

′
g(t) + (f1)

′
g(t)(f2)

′′
g (t) + (f1)

′′
g (t)(f2)

′′
g (t)∆g∗(t))χ∗

Dg
(t)∆g∗(t)

− (f1)
′
g(t)(f2)

′
g(t)χ

∗
Dg

(t).

Now, noting that, χ∗
Dg

(t)∆g∗(t) = ∆g∗(t) and (f∗
i )

′
g(t) = (fi)

′
g(t), i = 1, 2, it follows that

(f1f2)
′′
g (t) = (f1)

′′
g (t)f

∗
2 (t) + (f1)

′
g(t)(f2)

′
g(t) + (f1)

′
g(t)(f2)

′′
g (t)∆g∗(t)

+ (f1)
′
g(t)(f2)

′
g(t) + f∗

1 (t)(f2)
′′
g (t) + (f1)

′
g(t)(f2)

′′
g (t)∆g∗(t)

− (f1)
′
g(t)(f2)

′
g(t)χ

∗
Dg

(t)

= (f1)
′′
g (t)f

∗
2 (t) + f∗

1 (t)(f2)
′′
g (t) + (2− χ∗

Dg
(t))(f1)

′
g(t)(f2)

′
g(t)

+ ∆g∗(t)((f1)
′
g(t)(f2)

′′
g (t) + (f1)

′
g(t)(f2)

′′
g (t)),

which finishes the proof. □

Remark 4.6. Observe that (4.9) yields the usual expression of the second derivative of a
product of two functions when Dg = ∅ as, in that case, χDg

(t∗) = ∆g(t∗) = 0 for all t ∈
[a, b]. In particular, this means that (4.9) is, in fact, a generalization of the corresponding
expression in the setting of the usual derivative, which corresponds to g = Id.

This result is enough to shed some light upon the question of higher order derivatives
of a product of two functions. Given the expression in (4.9), in order to have the product
of two three-times differentiable functions be three-times differentiable, we would need
the map χ∗

Dg
to be g-differentiable. Given Corollary 4.4, this would imply that ∆g∗ would

be two-times differentiable in the Stieltjes sense. However, this is not the case, as shown in
the first example in Remark 3.7 (observe that in that case Cg = ∅ so ∆g∗ = ∆g). This means
that, in order to have g-differentiability for χ∗

Dg
, condition (3.12) is not enough and, thus,

further conditions would be required to ensure the existence of higher order derivatives
of a product of functions. To that end, we include the following result from which we will
derive some information about the differentiability of χDg

and, as a consequence, of χ∗
Dg

.

Proposition 4.7. Consider the sets

D̃1 = {t ∈ [a, b] ∩N−
g : t ̸∈ (Dg ∩ [a, t))′},(4.10)

D̃2 = {t ∈ [a, b] ∩ (N+
g ∪Dg) : t ̸∈ (Dg ∩ (t, b])′},(4.11)

D̃3 = {t ∈ [a, b]\(Cg ∪Ng ∪Dg) : t ̸∈ (Dg ∩ [a, b])′},(4.12)



Consequences of the product rule in Stieltjes differentiability 127

and a map h : [a, b] → F. Given t ∈ [a, b], the map f : [a, b] → F defined as

f(t) = h(t)χDg (t), t ∈ [a, b],

is g-differentiable at t if t∗ ∈ D̃1 ∪ D̃2 ∪ D̃3 and

(4.13) f ′
g(t) =

0, if t∗ ̸∈ Dg,

− h(t∗)

∆g(t∗)
, if t∗ ∈ Dg.

Similarly, f∗ : [a, b] → F defined as

f∗(t) = h(t∗)χDg (t
∗), t ∈ [a, b],

is g-differentiable at every t ∈ [a, b] such that t∗ ∈ D̃1 ∪ D̃2 ∪ D̃3 and, in that case,

(f∗)′g(t) =

0, if t∗ ̸∈ Dg,

− h(t∗)

∆g(t∗)
, if t∗ ∈ Dg.

Proof. Observe that, thanks to Proposition 4.1, it is enough to prove the result for f to
obtain the desired property for f∗. Hence, we shall focus on showing that f can only be
g-differentiable at those t ∈ [a, b] such that t∗ ∈ D̃1 ∪ D̃2 ∪ D̃3. Furthermore, given the
definitions of t∗ and the Stieltjes derivative, it is enough to show that, given t ∈ [a, b]\Cg ,
f is g-differentiable at every t ∈ D̃1 ∪ D̃2 ∪ D̃3.

Let t ∈ [a, b]\Cg . We shall study some cases separately.

First, suppose t ∈ N−
g . In that case, t ̸= a and t ̸∈ Dg , so f(t) = 0 and the g-differentia-

bility of f depends on the existence of

lim
s→t−

f(s)

g(s)− g(t)
.

Hence, if t ∈ D̃1, we have that t ̸∈ (Dg∩[a, t))′, so there exists r > 0 such that Dg∩(t−r, t) =
∅, which means that f = 0 on (t − r, t). Thus, the previous limit is zero, and so f is
g-differentiable at t and (4.13) holds.

Suppose now that t ∈ N+
g . We have that t ̸= b and f(t) = 0, so f is g-differentiable at t

if and only if the following limit exists:

lim
s→t+

f(s)

g(s)− g(t)
.

If t ∈ D̃2, then t ̸∈ (Dg ∩ (t, b])′, so we find r > 0 such that Dg ∩ (t, t + r) = ∅, which
guarantees that f = 0 on (t, t+r) so the previous limit equals zero, i.e., f is g-differentiable
at t and (4.13) holds.

Next, suppose t ∈ [a, b]\(Dg ∪Ng). Then f(t) = 0 so the g-differentiability of f comes
from the existence of

lim
s→t

f(s)

g(s)− g(t)
.

If t ∈ D̃3, it follows that t ̸∈ (Dg∩[a, b])′, so there is r > 0 such that Dg∩(t−r, t+r)\{t} = ∅.
This means that f = 0 on (t, t + r)\{t}, so the previous limit equals zero, that is, f is g-
differentiable at t and (4.13) holds.

Finally, suppose t ∈ Dg . In this case, t ̸= b and f(t) = h(t). Observe that, as pointed out
in Remark 2.4, it is enough to check if f(t+) exists. If t ∈ D̃2, we have that t ̸∈ (Dg∩ (t, b])′,
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so we find r > 0 such that Dg ∩ (t, t+ r) = ∅, which guarantees that f = 0 on (t, t+ r) and
thus f(t+) = 0. It follows now that f is g-differentiable at t and

f ′
g(t) =

f(t+)− f(t)

∆g(t)
= − h(t)

∆g(t)
,

so (4.13) holds. □

Remark 4.8. To visualize the sets D̃1, D̃2 and D̃3, we provide an illustration in Figure 4.3.

FIGURE 4.3. From left to right, representation of derivators for which
zero belongs to D̃1, D̃2 and D̃3 respectively.

As a direct consequence, we have the following result characterizating in depth the
g-differentiability of χDg

and χ∗
Dg

.

Corollary 4.9. Consider the sets D̃1, D̃2, D̃3 in (4.10)-(4.12). The maps χDg
, χ∗

Dg
are g-differen-

tiable at every t ∈ [a, b] such that t∗ ∈ D̃1 ∪ D̃2 ∪ D̃3 and, for such points,

(χDg )
′
g(t) = (χ∗

Dg
)′g(t) =

{
0, if t∗ ̸∈ Dg,

−(∆g(t))−1, if t∗ ∈ Dg.

If t ∈ [a, b] is such that t∗ ̸∈ D̃1 ∪ D̃2 ∪ D̃3, then χDg is not g-differentiable at t.

Proof. The first part of the result follows directly from Proposition 4.7, so it only remains
to show that χDg fails to be g-differentiable for every t ∈ [a, b] such that t∗ ̸∈ D̃1∪ D̃2∪ D̃3.
To that end, it is enough to prove that it is not g-differentiable at every t ∈ [a, b]\Cg such
that t ̸∈ D̃1 ∪ D̃2 ∪ D̃3.

First, note that if t ∈ [a, b]\Cg such that t ̸∈ D̃1∪D̃2∪D̃3 belongs to Dg , then necessarily
t ∈ (Dg ∩ (t, b])′ (for otherwise, it would belong to D̃2) and, in that case, χDg cannot be
g-differentiable at t as χDg (t+) does not exist since

lim
s→t+

s∈Dg

χDg (s) = 1 ̸= 0 = lim
s→t+

s̸∈Dg

χDg (s).

Therefore, it remains to show that χDg
is not g-differentiable at every t ∈ [a, b]\(Cg ∪Dg)

such that t ̸∈ D̃1 ∪ D̃2 ∪ D̃3.

Let t ∈ [a, b]\(Cg∪Dg) be such that t ̸∈ D̃1∪D̃2∪D̃3. Note that, since t ∈ [a, b]\(Cg∪Dg),
we have that t ∈ [a, b] ∩ N−

g , t ∈ [a, b] ∩ N+
g or t ∈ [a, b]\(Cg ∪ Ng ∪ Dg). Furthermore,

χDg (t) = 0.
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First, suppose t ∈ [a, b] ∩ N−
g . In that case, t ∈ (Dg ∩ [a, t))′ (for otherwise, it would

belong to D̃1) and so χDg
is not g-differentiable at t since

(4.14) lim
s→t−

s∈Dg

χDg
(s)− χDg

(t)

g(s)− g(t)
= lim

s→t−

s∈Dg

χDg
(s)

g(s)− g(t)
= −∞.

Next, suppose t ∈ [a, b]∩N+
g . Similarly, t ∈ (Dg∩ (t, b])′ (for otherwise, it would belong

to D̃2) and so χDg
is not g-differentiable at t since

(4.15) lim
s→t+

s∈Dg

χDg (s)− χDg (t)

g(s)− g(t)
= lim

s→t+

s∈Dg

χDg (s)

g(s)− g(t)
= +∞.

Finally, suppose t ∈ [a, b]\(Cg∪Ng∪Dg). Then t ∈ (Dg∩ [a, b])′ (for otherwise, it would
belong to D̃3) and thus χDg

is not g-differentiable at t as (4.14) and/or (4.15) hold.

□

Remark 4.10. Observe that we do not discuss the g-differentiability of χ∗
Dg

beyond the set

D̃1 ∪ D̃2 ∪ D̃3. This is because if Cg = ∅, χ∗
Dg

= χDg
which is not g-differentiable outside

of the mentioned set. Thus, we limit ourselves to the set in which we can guarantee
differentiability for all possible nondecreasing and left-continuous functions g.

We are now in position to obtain the formula for the third derivative of a product of
two three-times g-differentiable functions. To that end, we first need to note that the set
D1, D2, D3 in (3.7)-(3.9), and the sets D̃1, D̃2, D̃3 in (4.10)-(4.12) satisfy that Di ∩ D̃i = ∅,
i = 1, 2, 3. With these relations, we can establish the following result.

Proposition 4.11. Let D̃1, D̃2, D̃3 be as in (4.10)-(4.12) and f1, f2 : [a, b] → F be three times
g-differentiable at t ∈ [a, b] such that t∗ ∈ D̃1∪ D̃2∪ D̃3. Then f1f2 is three times g-differentiable
at t and

(4.16)

(f1f2)
′′′
g (t) = (f1)

′′′
g (t)f2(t

∗) + f1(t
∗)(f2)

′′′
g (t) + (3− χDg

(t∗))((f1)
′
g(t)(f2)

′′
g (t)

+ (f2)
′
g(t)(f1)

′′
g (t)) + ∆g(t∗)((f1)

′′′
g (t)(f2)

′
g(t)

+ 2(f1)
′′
g (t)(f2)

′′
g (t) + (f1)

′
g(t)(f2)

′′′
g (t)) +Q(t∗)(f1)

′
g(t)(f2)

′
g(t)

with

(4.17) Q(t) =

{
0, if t ̸∈ Dg,

(∆g(t))−1, if t ∈ Dg.

Proof. Let t ∈ [a, b] be such that t∗ ∈ D̃1 ∪ D̃2 ∪ D̃3. Then, t∗ ̸∈ D1 ∪D2 ∪D3 for D1, D2, D3

as in (3.7)-(3.9), so Proposition 4.5 ensures that f1f2 is two times g-differentiable at t and
(f1f2)

′′
g (t) = α(t) + β(t) + γ(t) with

α(t) := (f1)
′′
g (t)f

∗
2 (t) + f∗

1 (t)(f2)
′′
g (t), t ∈ [a, b],

β(t) := (2− χ∗
Dg

(t))(f1)
′
g(t)(f2)

′
g(t), t ∈ [a, b],

γ(t) := ∆g∗(t)((f1)
′
g(t)(f2)

′′
g (t) + (f2)

′
g(t)(f1)

′′
g (t)), t ∈ [a, b].

Now, Proposition 4.1 ensures that f∗
1 and f∗

2 are g-differentiable at t; whereas Corollary 4.4
and Corollary 4.9 guarantee the same property for ∆g∗ and χ∗

Dg
, so it follows from Propo-

sition 2.6 that f1f2 is three times g-differentiable at t. Hence, we need to check that (4.16)
holds.
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First, using (2.5) it is easy to see that

α′
g(t) = (f1)

′′′
g (t)f2(t

∗) + f1(t
∗)(f2)

′′′
g (t) + (f1)

′′
g (t)(f2)

′
g(t) + (f1)

′
g(t)(f2)

′′
g (t)

+ ∆g(t∗)((f1)
′′′
g (t)(f2)

′
g(t) + (f1)

′
g(t)(f2)

′′′
g (t)).

Next, it follows from Propositions 3.4 and 4.1 that

γ′
g(t) = −χDg

(t∗)((f1)
′
g(t)(f2)

′′
g (t) + (f2)

′
g(t)(f1)

′′
g (t)).

Finally, Corollary 4.9 and (2.5) ensure that

β′
g(t) =Q(t∗)(f1)

′
g(t)(f2)

′
g(t)

+ (2− χDg
(t∗))((f1)

′′
g (t)(f2)

′
g(t) + (f1)

′
g(t)(f2)

′′
g (t) + (f1)

′′
g (t)(f2)

′′
g (t)∆g(t∗))

+Q(t∗)((f1)
′′
g (t)(f2)

′
g(t) + (f1)

′
g(t)(f2)

′′
g (t) + (f1)

′′
g (t)(f2)

′′
g (t)∆g(t∗))∆g(t∗)

= Q(t∗)(f1)
′
g(t)(f2)

′
g(t)

+ 2((f1)
′′
g (t)(f2)

′
g(t) + (f1)

′
g(t)(f2)

′′
g (t) + (f1)

′′
g (t)(f2)

′′
g (t)∆g(t∗)),

where the last equality follows from the fact that Q(t∗)∆g(t∗) = χ∗
Dg

(t), t ∈ [a, b]. Thus,
by the linearity of the Stieltjes derivative, (f1f2)′′′g (t) = α′

g(t) + β′
g(t) + γ′

g(t) so basic
computations yield (4.16). □

Given (4.16), it is easy to see that the existence of derivatives of a product of order
higher than three depends on the Stieltjes derivative of the map Q in (4.17). Note that
Proposition 4.7 shows that Q is g-differentiable at t whenever t∗ ∈ D̃1 ∪ D̃2 ∪ D̃3 and,
furthermore, its derivative is another function the same characteristics. Hence, restricting
ourselves to such points, it follows that the existence of higher order derivatives of the
product of two functions depends exclusively on the order of differentiability of the func-
tions in the product. Observe that this happens, in particular, if D′

g = ∅, which gives an
easy condition for the product rule to preserve the order of differentiability.

5. REGULARITY OF THE PRODUCT

In this final section, we shall focus on the issues with the regularity of the product of
two functions that arise as a consequence of the product rule, (2.5). Specifically, we aim
to find minimal conditions that ensure that the product of two functions in BC1

g([a, b],F)
remains in such set. As a consequence, throughout this section, we shall assume that
a, b ∈ R, a < b, are such that a /∈ N−

g ∪Dg and b /∈ Cg∪N+
g ∪Dg as these are the conditions

under which the set BC1
g([a, b],F) is defined.

Given f1, f2 ∈ BC1
g([a, b],F) and (2.5), it is clear that the term preventing their prod-

uct from being another function in BC1
g([a, b],F) is (f1)

′
g(f2)

′
g∆g∗. In particular, it is the

g-continuity of ∆g∗ that is interfering with the regularity. Thus, we start this section by
studying the set of points in which ∆g∗ is g-continuous, which we do through the fol-
lowing result that connects the g-continuity of a function, f , with the g-continuity of the
modified map f∗.

Proposition 5.1. If f : [a, b] → F is g-continuous at t ∈ [a, b], then f∗ is also g-continuous at t.

Proof. We prove the result in terms of the sequential formulation of the g-continuity, (2.7).

Let {tn}n∈N ⊂ [a, b] be such that g(tn) → g(t). Since g(s) = g(s∗) for all s ∈ R, it follows
that g(t∗n) → g(t∗). Now, Lemma 2.15 ensures that f is g-continuous at t∗, so it follows
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that f(t∗n) → f(t∗), i.e., f∗(tn) → f∗(t). Since the sequence was arbitrarily chosen, we
have that f∗ is g-continuous at t. □

Remark 5.2. The converse of Proposition 5.1 is not necessarily true. Indeed, consider the
map

g(t) =

{
t, if t ∈ (−∞, 0] ∪ (2,+∞),

1, if t ∈ (0, 2]

In that case, denoting f(t) = ∆g|[−1,3](t), we have that

f(t) =

{
1, if t ∈ {0, 2},
0, if t ∈ [−1, 3]\{0, 2},

f∗(t) =

{
1, if t ∈ [0, 2]

0, if t ∈ [−1, 0) ∪ (2, 3].

Observe that Proposition 3.2 ensures that f is not g-continuous at 1. However, f∗ is g-
continuous at 1 as, given ε > 0, taking δ ∈ (0, 1), we have that if s ∈ [−1, 3] is such that
|g(s)− g(1)| < δ then, necessarily, s ∈ (0, 2], in which case |f∗(s)− f∗(1)| = 0 < ε.

The following result provides a partial converse to Proposition 5.1.

Proposition 5.3. Let f : [a, b] → F and assume f∗ is g-continuous on [a, b]. Then f is g-contin-
uous on [a, b] if and only if f(t) = f(s) for every t, s ∈ [a, b] such that g(t) = g(s).

Proof. Observe that Lemma 2.15 ensures that if f is g-continuous at t and g(t) = g(s) then
f(t) = f(s), so if f is g-continuous on [a, b], we have that f(t) = f(s) for every t, s ∈ [a, b]
such that g(t) = g(s).

Conversely, suppose that f(t) = f(s) for every t, s ∈ [a, b] such that g(t) = g(s). We
claim that f = f∗. Indeed, let s ∈ [a, b]. If s ̸∈ Cg , we have that f(s) = f∗(s) as s = s∗.
Otherwise, s ∈ Cg and we have that g(s) = g(s∗) since g is left-continuous, which implies
that f(s) = f(s∗) = f∗(s). Since f = f∗ and f∗ is g-continuous, the result follows. □

Remark 5.4. It might be tempting to state Proposition 5.3 in a pointwise fashion, but this
does not work as the example in Remark 4.3 shows. The map f there satisfies that f(t) =
f(0) = 0 for every t ∈ R such that g̃(t) = g̃(0) (that is, t ⩽ 0), but it is not g̃-continuous
at 0 as the sequence {tn}n∈N =

{
1
2

(
1
n + 1

n+1

)}
n∈N

is such that g̃(tn) → 0 = g(0) but

f(tn) → 1 ̸= 0 = f(0). However, f∗ = 0 is clearly g̃-continuous at 0.

Note that, unfortunately, Proposition 5.3 does not apply in the context of ∆g and ∆g∗.
However, combining the information in Propositions 3.2 and 5.1, we can obtain the fol-
lowing result about the g-continuity of ∆g∗.

Proposition 5.5. Consider the set Ag in (3.2) and

Hg = {t ∈ R : t ∈ (s1, s2] for some s1, s2 ∈ Dg such that (s1, s2) ⊂ Cg}.

Then, the restriction ∆g∗|[a,b] is g-continuous at every point of ((a∗, b]\Ag) ∪ (Hg ∩ [a, b]) and
g-discontinuous at every point of ((a∗, b) ∩ Ag)\Hg . Furthermore, ∆g∗|[a,b] is g-continuous on
[a, a∗], where we are also considering the case where [a, a∗] is a degenerate interval, i.e., [a, a∗] =
{a}.

Proof. Given Propositions 3.2 and 5.1, it is clear that ∆g∗|[a,b] is g-continuous at every
t ∈ (a∗, b)\Ag . Now, given that b /∈ Cg∪N+

g ∪Dg , it follows that b ̸∈ Ag , so Propositions 3.2
and 5.1 are again enough to guarantee the g-continuity at b.
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Consider t ∈ (a∗, b) ∩Hg and let us show that ∆g∗|[a,b] is g-continuous at t. Let ε > 0.
Since t ∈ (a∗, b) ∩Hg and b ̸∈ Dg , there exist s1, s2 ∈ Dg ∩ [a∗, b) such that t ∈ (s1, s2] and
(s1, s2) ⊂ Cg . Taking δ = min{∆g(s1),∆g(s2)} > 0, we have that, if s ∈ R is such that
|g(s)− g(t)| < δ, then s ∈ (s1, s2], so

|∆g∗(s)−∆g∗(t)| = |∆g(s∗)−∆g(t∗)| = |∆g(s2)−∆g(s2)| = 0 < ε,

i.e. ∆g∗|[a,b] is g-continuous at t.

Next, we show that ∆g∗|[a,b] is g-discontinuous at every point of ((a∗, b) ∩ Ag)\Hg ,
distinguishing between the points that belong to Dg , from those which do not.

First, let t ∈ ((a∗, b) ∩ Ag)\Hg be such that t ∈ Dg . In this case, ∆g∗(t) = ∆g(t).
Proceeding in a similar fashion to the proof of Proposition 3.2, we can have that either (2.2)
or (3.4) holds.

If (2.2) holds, then, necessarily, s ⩽ s∗ < t = t∗ for every s < t. This implies that, given
a sequence {tn}n∈N converging to t such that tn < t, n ∈ N, the sequence {t∗n}n∈N also
converges to t and is such that t∗n < t, n ∈ N, so Proposition 3.1 guarantees that

lim
n→∞

∆g∗(tn) = lim
n→∞

∆g(t∗n) = 0.

Since the sequence {tn}n∈N was arbitrarily chosen, lims→t− ∆g∗(s) = 0, so we can find
ρ ∈ (0, t− a) such that

∆g∗(s) = ∆g(s∗) <
∆g(t)

2
, s ∈ R, 0 < t− s < ρ.

Since (2.2) holds, so we can find t1 < t such that t − t∗1 < ρ and g(t∗1) < g(t). Let δ =
g(t)− g(t∗1). Observe that, if 0 < g(t)− g(s) < δ, since g is nondecreasing, then 0 < t− s <
t− t∗1 < ρ, and so ∆g∗(s) < ∆g(t)/2. But this implies that, if 0 < g(t)− g(s) < δ, then

|∆g∗(s)−∆g∗(t)| ⩾ ∆g∗(t)−∆g∗(s) = ∆g(t)−∆g∗(s) > ∆g(t)− ∆g(t)

2
=

∆g(t)

2
,

and, therefore, ∆g∗ is not g-continuous at t.

On the other hand, if (3.4) holds, let us consider

t̃ = inf{s ∈ [a∗, b] : g(s) = g(t)}.

Observe that t̃ ̸∈ Dg , since t ̸∈ Hg , and t̃ > a∗, given that a∗ ∈ N+
g ∪ Dg by definition.

Furthermore, we also have that g(s) ⩽ g(t̃) ⩽ g(t) for every s < t and g(s) = g(t) for
every s ∈ [t̃, t]. Now, reasoning as in the previous case, we find δ ∈ (0, t− a) such that, if
0 < g(t̃)− g(s) < δ, then ∆g∗(s) < ∆g(t)/2, which, again, is enough to show that ∆g∗|[a,b]
is not g-continuous at t.

Consider now t ∈ ((a∗, b) ∩ Ag)\Hg such that t ̸∈ Dg and consider t̂ as in (3.3). Since
t ∈ Ag , we have that t̂ ∈ Dg so, given that t, b ̸∈ Dg , it follows that t < t̂ < b. In particular,
this implies that t̂ ∈ ((a∗, b) ∩ Ag)\Hg and t̂ ∈ Dg , so we already know ∆g∗|[a,b] is not
g-continuous at t̃. Observe that, since g is left-continuous, we have that g(t) = g(t̂), so
Lemma 2.15 is enough to ensure that ∆g∗|[a,b] is not g-continuous at t, which finishes the
proof of the first part of the result.

Let us focus now on the behaviour of ∆g∗|[a,b] on [a, a∗]. Observe that it is enough to
study the g-continuity at a∗. Indeed, this is trivial when a∗ = a. When a∗ > a, it is enough
to note that, in that case, a ∈ Cg , which means that

g(t) = g(a∗), ∆g∗(t) = ∆g∗(a) = ∆g∗(a∗), t ∈ [a, a∗],
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so the g-continuity at t ∈ [a, a∗] can always be deduced from the g-continuity at a∗ by
Lemma 2.15.

First, suppose that a∗ ∈ Dg . Given ε > 0, take δ ∈ (0,∆g(a∗)). In that case, if t ∈ [a, b]
is such that |g(t)− g(a∗)| < δ we necessarily have that t ∈ [a, a∗], so

|∆g∗(t)−∆g∗(a∗)| = 0 < ε.

This means that ∆g∗|[a,b] is g-continuous at a∗ and, thus, g-continuous on [a, a∗].

Finally, if a∗ ̸∈ Dg , then a∗ ̸∈ Ag so ∆g is g-continuous at a∗. Thus, by Proposition 5.1,
∆g∗|[a,b] is g-continuous at a∗ which, again, is enough to obtain that it is g-continuous on
[a, a∗]. □

Remark 5.6. To visualize the kind of points in Hg , observe that in Example 3.3, Ag =
{−1} ∪ [0, 2], Hg = (0, 2] and Ag\Hg = {−1, 0}.

We are now finally in position to determine under which conditions the product of two
functions in BC1

g([a, b],F) remains in this set. This is the information in the next result.

Theorem 5.7. Let f1, f2 ∈ BC1
g ([a, b],F). Then, f1f2 ∈ BC1

g ([a, b],F) if and only if

(5.1) (f1)
′
g(t)(f2)

′
g(t) = 0, for all t ∈ ((a∗, b) ∩Ag)\Hg.

Proof. First, observe that, since f1, f2 ∈ BC1
g ([a, b],F), Proposition 2.5 ensures that

(f1f2)
′
g (t) = (f1)

′
g (t)f2(t

∗) + (f2)
′
g (t)f1(t

∗) + (f1)
′
g (t) (f2)

′
g (t)∆g(t∗), t ∈ [a, b],

so, given the definition of t∗ and Proposition 2.13, we have that

(5.2) (f1f2)
′
g (t) = (f1)

′
g (t)f2(t) + (f2)

′
g (t)f1(t) + (f1)

′
g (t) (f2)

′
g (t)∆g(t∗), t ∈ [a, b].

Hence, since all the functions involved in this expression of (f1f2)
′
g are bounded, it is clear

that we only need to concern ourselves with its g-continuity. Furthermore, Proposition 5.5
guarantees that ∆g∗|[a,b] is g-continuous on [a, b] \ (((a∗, b) ∩ Ag)\Hg), so it follows that
(f1f2)

′
g is g-continuous on that set. As a consequence, it is enough to show that (5.1) holds

if and only if

(5.3) (f1f2)
′
g is g-continuous at every t ∈ ((a∗, b) ∩Ag)\Hg.

First, suppose (5.3) holds. Reasoning by contradiction, suppose (5.1) did not hold. In
that case, we would find t ∈ ((a∗, b) ∩Ag)\Hg such that

(f1)
′
g(t)(f2)

′
g(t) ̸= 0.

Since (f1)
′
g and (f2)

′
g are g-continuous by hypothesis, we can find δ > 0 such that

(f1)
′
g(s)(f2)

′
g(s) ̸= 0, s ∈ I := {r ∈ [a, b], |g(r)− g(t)| < δ}.

Thus, given (5.2), we have that

∆g∗(s) =
(f1f2)

′
g (s)− (f1)

′
g (s)f2(s)− (f2)

′
g (s)f1(s)

(f1)′g(s)(f2)
′
g(s)

, s ∈ I.

Everything on the right hand side of the equation is g-continuous at t, so, thanks to
Lemma 2.14, we conclude that ∆g∗|[a,b] is g-continuous at t, which contradicts Proposi-
tion 5.5.
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Conversely, suppose (5.1) holds. Consider t ∈ ((a∗, b) ∩ Ag)\Hg and let us show that
(f1f2)

′
g is g-continuous at t. Given (5.2), it is clear that it is enough to prove that h :=

(f1)
′
g (f2)

′
g ∆g∗ is g-continuous at t.

By hypothesis, h(t) = 0. Assume, by contradiction, that h is not g-continuous at
t. Then there exists ε0 > 0 and a sequence {tn}n∈N ⊂ [a, b] such that g(tn) → g(t)
and |h(tn)| ⩾ ε0 for every n ∈ N. Observe that this fact, together with (5.1), imply that
{tn}n∈N ⊂ [a, b]\(((a∗, b) ∩ Ag)\Hg). Furthermore, since t∗ ̸∈ Dg for any t ̸∈ Ag , we have
that ∆g∗|[a,b] = 0 on [a, b]\Ag , so

{tn}n∈N ⊂ Ag\(((a∗, b) ∩Ag)\Hg) = [a, a∗] ∪Hg.

Now, since t ∈ ((a∗, b) ∩Ag)\Hg , for any δ ∈ (0, g(t)− g(a∗)) we have that

|g(t)− g(s)| = g(t)− g(s) ⩾ g(t)− g(a∗) > δ, s ∈ [a, a∗].

Therefore, since g(tn) → g(t), we conclude that tn ∈ Hg for n sufficiently big, so we can
assume without loss of generality that {tn}n∈N ⊂ Hg . Furthermore, since h(tn) = h(t∗n)
and g(tn) = g(t∗n) for all n ∈ N, we can also assume that tn = t∗n and, thus, {tn}n∈N ⊂ Dg .
Now, we necessarily have that there are infinitely many distinct terms in {tn}n∈N for,
otherwise, the sequence would be eventually constant which would imply that t ∈ Hg ,
which we know is not the case. Finally, since f1, f2 ∈ BC1

g ([a, b],F), there exists M > 0

such that
∣∣(f1)′g(tn)∣∣ , ∣∣(f2)′g(tn)∣∣ ⩽ M , n ∈ N. Therefore,

ε0 ⩽ |h(tn)| =
∣∣(f1)′g(tn)(f2)′g(tn)∆g(tn)

∣∣ ⩽ M2∆g(tn), n ∈ N,

that is, ∆g(tn) ⩾ ε/M2 for every n ∈ N. This means that there are infinitely many points
s ∈ [a, b] ∩Dg such that ∆g(s) ⩾ ε/M2, which is impossible since

0 ⩽
∑

s∈[a,b]∩Dg

∆g(s) =

∫
[a,b]∩Dg

d g(s) ⩽
∫
[a,b]

d g(s) = µg([a, b]) = g(b)− g(a) < ∞. □

Remark 5.8. Observe that Theorem 5.7 generalizes, in some sense, [4, Proposition 3.17],
where a sufficient condition for the continuity of the derivative of the product was used:
that one of the functions involved was continuous in the usual sense. Observe that if f1
is continuous this automatically implies that (f1)′g(t) = 0 for all t ∈ [a, b] ∩ Dg , in which
case (5.2) becomes the usual product rule formula. Theorem 5.7, on the other hand, pro-
vides a necessary and sufficient condition for the product of two BC1

g([a, b],F) functions
to remain in that set without requiring a simpler version of the product rule.

Remark 5.9. Observe that, under the conditions of Theorem 5.7, we have that

(f1f2)
′
g (t) = (f1)

′
g (t)f2(t) + (f2)

′
g (t)f1(t),

for t ∈ ([a, a∗]\Ag) ∪ [(a∗, b)\Hg]. Furthermore, if f1 · f2 is two times g-differentiable at t
(that is, under the hypotheses of Proposition 4.5), then, by (4.9),

(f1f2)
′′
g (t) = (f1)

′′
g (t)f2(t

∗) + f1(t
∗)(f2)

′′
g (t) + ∆g(t∗)((f1)

′
g(t)(f2)

′′
g (t) + (f2)

′
g(t)(f1)

′′
g (t))

for t ∈ ((a∗, b)∩Ag)\Hg . This can serve as a basis to prove a characterization of a product
of two class two functions being in the same class similar to Theorem 5.7.
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[11] López Pouso, R.; Rodrı́guez, A. A new unification of continuous, discrete, and impulsive calculus through
Stieltjes derivatives. Real Anal. Exchange 40 (2014/15), no. 2, 319–353.

[12] Márquez Albés, I. Differential problems with Stieltjes derivatives and applications. Ph.D. thesis, Universi-
dade de Santiago de Compostela, 2021. https://minerva.usc.es/xmlui/handle/10347/24663.

[13] Márquez Albés, I. Notes on the linear equation with Stieltjes derivatives. Electron. J. Qual. Theory Differ. Equ.
42 (2021), 1–18.

[14] Márquez Albés, I.; Tojo, F. A. Displacement Calculus. Mathematics 8 (2020), 419.
[15] Rudin, W. Real and complex analysis. McGraw-Hill, Singapore, 1987.
[16] Schechter, E. Handbook of analysis and its foundations. Academic Press, San Diego, California, 1997.
[17] Young, W. On integrals and derivates with respect to a function. Proc. London Math. Soc. (3) 2 (1917), no. 1,

35–63.
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