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Constructing DNA Codes using Double Cyclic Codes of
Odd and Even Lengths over F2 + uF2

ARUNOTHAI KANLAYA1 AND CHAKKRID KLIN-EAM1,∗

ABSTRACT. In this paper, we investigate the algebraic structure and theorems for constructing DNA codes of
double cyclic codes of length (α, β) over the finite commutative chain ring F2+uF2 with u2 = 0, where α and β

are odd and even positive integers, respectively. Our main objectives include studying the structural properties
of these codes, determining their generator polynomials and generating DNA codes from these codes. We inves-
tigate theorems for two types of double cyclic codes of length (α, β) over F2 + uF2, ideal for generating DNA
codes. These codes utilise non-separable structures and satisfy reverse and reverse-complement constraints.
Additionally, we propose DNA codes derived from our results.

1. INTRODUCTION

Deoxyribonucleic acid, or DNA, is a molecule that contains the necessary genetic ma-
terials for all living things to form and maintain an organism. DNA is a linear molecule
consisting of four different nucleotide bases: Adenine (A), Thymine (T ), Guanine (G) and
Cytosine (C). DNA strands can be viewed as sequences of these nucleotide bases. Each
strand of DNA is an ordered quaternary sequence of the letters A, T,G and C with two
distinct ends known as the 5′ and 3′ ends. According to the Watson-Crick complement
rule (WCC), the two strands are connected by chemical bonds between the bases, i.e. A
bonds with T and C bonds with G. The complement of a nucleotide base x will be de-
noted by x, that is, A = T, T = A,G = C and C = G. This pairing is done in reverse order
with opposite directions. For example, a DNA strand 5′ − TGAGCAA − 3′ pairs with a
DNA strand 3′ − T GAGC AA− 5′ and its pair can be written as 5′ − TTGCTCA− 3′.

The concept of DNA computing was started in 1994. In [3], the author used DNA
molecules to solve the directed Hamiltonian path problem. Since then, DNA codes have
been used to improve work and solve problems in computer science and mathematics.
Since the DNA alphabet consists of four letters, early studies of DNA computing that em-
ployed algebraic coding theory techniques worked on an error-correcting code over four-
element sets with an algebraic structure. The construction of DNA codes using additive
and linear codes over a finite field with four elements was studied in [6]. The authors pro-
vided four combinatorial constraints for a good DNA code: Hamming distance, reverse
constraint, reverse-complement constraint and fixed GC-constraint. The first three con-
straints are designed to reduce the possibility of unwanted hybridizations between DNA
strands and the last constraint aims to create similar melting temperatures. A code that
satisfies some or all of the constraints is called a DNA code. With these constraints, stud-
ies on DNA codes employing linear and cyclic codes over different algebraic structures
were investigated. For instance, in [1], the authors studied the theory of constructing lin-
ear and cyclic codes of odd length over GF (4) suited for DNA computing, with a focus on
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the reverse-complement constraint. Later, in [11], the authors investigated the construc-
tion of DNA codes using cyclic codes over F2[u]/⟨u2−1⟩ based on CG-constraint. Shortly
after, the investigation of constructing cyclic codes of odd length and even length over the
finite ring F2 + uF2, where u2 = 0 satisfy reverse and reverse-complement constrains was
studied in [7] and [9]. Constructing DNA codes in the works mentioned above has been
studied using a code over an alphabet derived from either fields or rings. Recently, in [5],
the authors introduced a new concept for constructing DNA codes using a new type of
linear codes. The new type of codes is called F4RS-cyclic codes of length (α, β, γ), where
R = F4 + uF4, with u2 = u and S = F4 + uF4 + vF4, with u2 = u, v2 = v, uv = vu = 0.
These codes are made up of 3 alphabet sets and are a generalisation of cyclic codes over
the rings F4, R and S. The authors gave necessary and sufficient conditions for F4RS-
cyclic codes to be reversible and reverse-complement codes. However, the concept of this
work is based on separable codes. In general, we will refer to this type of codes as cyclic
codes over mixed alphabets.

A new type of linear codes known as double cyclic codes was recently introduced in
[4] and these codes are a generalisation of cyclic codes. The authors studied the algebraic
structure of double cyclic codes over Z2. Furthermore, they showed that double cyclic
codes of length (α, β) over Z2 can be viewed as Z2[x]-submodules of Z2[x]

⟨xα−1⟩ × Z2[x]
⟨xβ−1⟩ ,

where α and β are positive integers. Shortly after, the study of the algebraic structure of
double cyclic codes and their dual codes over various finite fields and finite rings gained
the attention of many researchers. Since the structure of double cyclic codes is similar to
the structure of cyclic codes over mixed alphabets, in [8], we applied the idea of construc-
tion DNA codes from F4RS-cyclic codes to double cyclic codes. We proposed theorems
for generating DNA codes using non-separable codes of double cyclic codes of length
(α, β) over F2 + uF2. However, the values of α and β are odd positive integers. Based
on the recent work, in this paper, we are motivated to study the construction of DNA
codes using non-separable double cyclic codes over the ring F2 + uF2, where u2 = 0, but
we will concentrate on the various length values. The values of the lengths α and β are
positive integers with odd and even values, respectively. We begin by investigating the
structure of double cyclic codes of length (α, β) over F2 + uF2. Following that, we study
the necessary and sufficient conditions for the double cyclic codes to generate DNA codes.

This paper is organised as follows: In section 2, we give some definitions and the al-
gebraic structure of cyclic codes over F2 + uF2. In section 3, we discuss the structure of
double cyclic codes of length (α, β) over F2 + uF2 and determine their generator polyno-
mials, where α is an odd positive integer and β is an even positive integer. In section 4, we
investigate the necessary and sufficient conditions for non-separable double cyclic codes
to be reversible and reversible-complement codes. Furthermore, we provide examples of
DNA codes generated by our results.

2. PRELIMINARIES

Let (ℜ,+, ·) be a finite commutative ring with identity. An ideal I of ℜ is called prin-
cipal if it is generated by one element. A ring ℜ is a principal ideal ring if its ideals are
principal. The ring ℜ is called a local ring if ℜ has a unique maximal ideal. Furthermore,
the ring ℜ is called a chain ring if the set of all ideals of ℜ is linearly ordered under set-
theoretic inclusion. Let a, b ∈ ℜ and a ̸= 0. If there is an element c ∈ ℜ such that b = a · c,
we say that a divides b in ℜ and write a|b in ℜ. In this case, a is called a divisor of b. Let
ℜ[x] be a polynomial ring over the ring ℜ. For any a(x) ∈ ℜ[x], a(x) is regular if a(x) is
not a zero divisor.
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Proposition 2.1. [10] Suppose that ℜ is a finite local commutative ring with maximal ideal ⟨m⟩.
Let a(x) and b(x) be non-zero polynomials in ℜ[x]. If a(x) is regular, then there exist polynomials
q(x) and r(x) in ℜ[x] such that b(x) = a(x)q(x) + r(x) and deg(r(x)) ≤ deg(a(x))− 1.

Throughout the paper, R denotes the commutative ring F2+uF2 = {0, 1, u, 1+u} with
u2 = 0. The ring R is a finite commutative chain ring with the maximal ideal ⟨u⟩ and the
characteristic 2. Let f(x) = f0 + f1x + · · · + fkx

k be a polynomial over R with degree k.
Then, the reciprocal polynomial of f(x) is defined as

f∗(x) = xkf( 1x ) = fk + fk−1x+ · · ·+ f0x
k.

Then, if f0 ̸= 0, then deg(f∗(x)) = deg(f(x)) otherwise deg(f∗(x)) ≤ deg(f(x)). Further-
more, f(x) is called self-reciprocal if f∗(x) = f(x).

A non-empty subset C of Rn is called a linear code of length n over R if C is an R-
submodule of Rn. A linear code C of length n over R is called cyclic code if for any
(a0, a1, ..., an−1) ∈ C, (an−1, a0, ..., an−2) ∈ C. For any a = (a0, a1, ..., an−1) in Rn, we can
identify a with a polynomial a(x) = a0 + a1x+ · · ·+ an−1x

n−1 in R[x]
⟨xn−1⟩ . Let the quatient

ring R[x]
⟨xn−1⟩ be denoted by Rn. Then, a linear code C of length n over R is a cyclic code if

and only if C is an ideal of the ring Rn.
The structure of cyclic codes of length n over R is as follows:

Theorem 2.1. [2] Let C be a cyclic code of length n over R. Then,
(1) If n is an odd number, then Rn is a principal ideal ring and

C = ⟨f0(x), uf1(x)⟩ = ⟨f0(x) + uf1(x)⟩, where f0(x), f1(x) ∈ F2[x]
and f1(x)|f0(x)|(xn − 1).

(2) If n is an even number, then
(a) C = ⟨g(x) + up(x)⟩, where g(x), p(x) ∈ F2[x] with g(x)|(xn − 1),

(g(x) + up(x))|(xn − 1) and g(x)|p(x)(x
n−1
g(x) ). Or,

(b) C = ⟨g(x) + up(x), ua(x)⟩, where g(x), p(x), a(x) ∈ F2[x] with
a(x)|g(x)|(xn − 1), a(x)|p(x)(x

n−1
g(x) ) and deg(a(x)) > deg(p(x)).

3. DOUBLE CYCLIC CODES OVER R

In this section, we will consider the structure and generator polynomials of double
cyclic codes of length (α, β) over R, where α is an odd positive integer and β is an even
positive integer.

Now, we will present the concept of double cyclic codes over R. Let α and β be two
non-negative integers and n = α + β. Then, Rn is an R-submodule of Rα × Rβ and
any linear code C of length n over R is an R-submodule of Rα × Rβ . For any element
v = (a0, a1, ..., aα−1; b0, b1, ..., bβ−1) in Rα × Rβ , the double cyclic shift of v is defined as
follows:

τ(v) = (aα−1, a0, ..., aα−2; bβ−1, b0, ..., bβ−2).

Definition 3.1. [8] A linear code C of length n = α + β over R is called a double cyclic code of
length (α, β) over R if τ(v) ∈ C for all v ∈ C.

The code C is called separable if C = Cα ×Cβ , where Cα and Cβ are the canonical projections
of C on the first α and the last β coordinates , respectively.

Let v = (a0, a1, ..., aα−1; b0, b1, ..., bβ−1) ∈ Rα ×Rβ . This element can be identified with
an element in R[x]

⟨xα−1⟩ ×
R[x]

⟨xβ−1⟩ as follows:

v(x) = (a0 + a1x+ · · ·+ aα−1x
α−1; b0 + b1x+ · · ·+ bβ−1x

β−1) = (a(x); b(x)).
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We denote the set R[x]
⟨xα−1⟩×

R[x]
⟨xβ−1⟩ by Rα,β . This identification provides a one-to-one corre-

spondence between Rα×Rβd and Rα,β . For any polynomial k(x) in R[x] and polynomial
v(x) = (a(x); b(x)) in Rα,β , the multiplication of k(x) and v(x) is defined as follows:

k(x) ∗ v(x) = (k(x)a(x) (mod xα − 1); k(x)b(x) (mod xβ − 1)).

Therefore, the ring Rα,β is an R[x]-module with respect to the usual addition and multi-
plication ∗. Throughout the paper, we will use (k(x)a(x); k(x)b(x)) instead of (k(x)a(x)
(mod xα − 1); k(x)b(x) (mod xβ − 1)). Moreover, for any v(x) = (a0 + a1x + · · · +
aα−1x

α−1; b0 + b1x + · · · + bβ−1x
β−1) in Rα,β , we obtain that x ∗ v(x) represents the ele-

ment (aα−1, a0, ..., aα−2; bβ−1, b0, ..., bβ−2) in Rα ×Rβ . This implies that any double cyclic
code C of length (α, β) over R is an R[x]-submodule of Rα,β . This reasoning leads to the
following theorem.

Theorem 3.2. [8] A linear code C of length n = α + β over R is a double cyclic code of length
(α, β) over R if and only if C is an R[x]-submodule of Rα,β .

Let f(x) be a non-zero polynomial over R and n be a positive integer. Then, by Propo-
sition 2.1, there exist polynomials q(x), r(x) in R[x] such that f(x) = (xn − 1)q(x) + r(x),
where deg(r(x)) ≤ n− 1. We denote the remainder r(x) by [f(x)](xn−1).

Throughout the paper, α is an odd positive integer and β is an even positive integer.
The following theorem is the algebraic structure of double cyclic codes of length (α, β)
over R.

Theorem 3.3. Let C be a double cyclic code of length (α, β) over R. Then, we can classify C into
two types:
Type 1: C = ⟨(f0(x) + uf1(x); 0), (l(x); g(x) + up(x))⟩,

where f0(x), f1(x), g(x) and p(x) are polynomials in F2[x]
with f1(x)|f0(x)|(xα − 1), g(x)|(xβ − 1), (g(x) + up(x))|(xβ − 1),
g(x)|p(x)(x

β−1
g(x) ) and l(x) is a polynomial in R[x].

Type 2: C = ⟨(f0(x) + uf1(x); 0), (l1(x); g(x) + up(x)), (l2(x);ua(x))⟩,
where f0(x), f1(x), g(x), p(x), a(x) are polynomials in F2[x] with
f1(x)|f0(x)|(xα − 1), a(x)|g(x)|(xβ − 1), a(x)|p(x)(x

β−1
g(x) ) and

l1(x), l2(x) are polynomials in R[x].

Proof. Let C be a double cyclic code of length (α, β) over R. We define φβ : C → Rβ by
φβ(a(x); b(x)) = b(x) (mod xβ − 1) for all (a(x); b(x)) ∈ C. Then, φβ is an R[x]-module
homomorphism. It is obvious that φβ(C) is an ideal of Rβ . By Theorem 2.1(2), we obtain
that φβ(C) can be represented as 2 types:

1. φβ(C) = ⟨g(x) + up(x)⟩, where the polynomials g(x), p(x) are in F2[x] with
g(x)|(xβ − 1), (g(x) + up(x))|(xβ − 1) and g(x)|p(x)(x

β−1
g(x) ). Or,

2. φβ(C) = ⟨g(x) + up(x), ua(x)⟩, where the polynomials g(x), p(x), a(x) are in F2[x]

with a(x)|g(x)|(xβ − 1) and a(x)|p(x)(x
β−1
g(x) ).

Note that kerφβ = {(a(x); 0) : (a(x); 0) ∈ C}. Let I = {a(x) ∈ Rα : (a(x); 0) ∈ kerφβ}.
Then, I is an ideal of Rα. By Theorem 2.1(1), we obtain that I = ⟨f0(x) + uf1(x)⟩, where
f0(x), f1(x) ∈ F2[x] with f1(x)|f0(x)|(xα − 1). Hence, kerφβ = ⟨(f0(x) + uf1(x); 0)⟩. By
1st-isomorphism, C/ kerφβ

∼= φβ(C). Since φβ(C) has two types, we will divide the
consideration of the double cyclic code C into two parts.

Firstly, suppose that φβ(C) = ⟨g(x) + up(x), ua(x)⟩. Then, there exist polynomials
l1(x), l2(x) ∈ R[x] such that (l1(x); g(x) + up(x)), (l2(x);ua(x)) ∈ C. This implies that
⟨(f0(x) + uf1(x); 0), (l1(x); g(x) + up(x)), (l2(x);ua(x))⟩ ⊆ C. For any v(x) = (b(x); d(x))
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in C, we obtain that d(x) ∈ φβ(C). Hence, there exist polynomials k1(x), k2(x) ∈ R[x]
such that d(x) = k1(x)(g(x) + up(x)) + uk2(x)a(x). Consider,

(b(x); d(x))− [k1(x) ∗ (l1(x); g(x) + up(x))]− [k2(x) ∗ (l2(x);ua(x))]
= (b(x)− k1(x)l1(x)− k2(x)l2(x); d(x)− k1(x)(g(x) + up(x))− uk2(x)a(x))

= (b(x)− k1(x)l1(x)− k2(x)l2(x); 0) ∈ kerφβ .

Then, (b(x)− k1(x)l1(x)− k2(x)l2(x); 0) = k3(x) ∗ (f0(x) + uf1(x); 0), where k3(x) ∈ R[x].
So, [b(x)−k1(x)l1(x)−k2(x)l2(x)](xα−1) = [k3(x)(f0(x)+uf1(x))](xα−1). This implies that

(b(x); d(x)) = (k3(x)(f0(x) + uf1(x)) + k1(x)l1(x) + k2(x)l2(x);

k1(x)(g(x) + up(x)) + uk2(x)a(x))

= k3(x) ∗ (f0(x) + uf1(x); 0) + k1(x) ∗ (l1(x); g(x) + up(x))

+ k2(x) ∗ (l2(x);ua(x))
∈⟨(f0(x) + uf1(x); 0), (l1(x); g(x) + up(x)), (l2(x);ua(x))⟩.

Therefore, C = ⟨(f0(x) + uf1(x); 0), (l1(x); g(x) + up(x)), (l2(x);ua(x))⟩.
Lastly, suppose that φβ(C) = ⟨g(x)+up(x)⟩, there is a polynomial l(x) in R[x] such that

(l(x); g(x) + up(x)) ∈ C. Then, ⟨(f0(x) + uf1(x); 0), (l(x); g(x) + up(x))⟩ ⊆ C. Similarly to
the above case, we obtain that C = ⟨(f0(x) + uf1(x); 0), (l(x); g(x) + up(x))⟩. As a result,
there are two different ways to write the double cyclic code C, that is,

C = ⟨(f0(x) + uf1(x); 0), (l(x); g(x) + up(x))⟩ or

C = ⟨(f0(x) + uf1(x); 0), (l1(x); g(x) + up(x)), (l2(x);ua(x))⟩.
□

From Theorem 3.3, it is clear that the code C is separable if and only if l(x), l1(x) and
l2(x) are zero. Next, we will investigate the conditions of the polynomials l(x), l1(x) and
l2(x) derived from Theorem 3.3.

Proposition 3.2. Let C = ⟨(f0(x) + uf1(x); 0), (l1(x); g(x) + up(x)), (l2(x);ua(x))⟩ be a dou-
ble cyclic code of length (α, β) over R, where the polynomials f0(x), f1(x), l1(x), l2(x), g(x),
p(x), a(x) satisfy Theorem 3.3 (Type 2). Then, we can assume that the degrees of l1(x) and l2(x)
are less than the degree of f0(x) + uf1(x).

Furthermore, f0(x) + uf1(x) divides ul2(x), ul1(x)x
β−1
g(x) , l2(x)

xβ−1
a(x) , ul1(x) +

g(x)
a(x) l2(x) and

xβ−1
g(x) l1(x) + p(x) xβ−1

g(x)a(x) l2(x) in Rα.

Proof. Assume that deg(l1(x)) ≥ deg(f0(x)+uf1(x)) and deg(l2(x)) ≥ deg(f0(x)+uf1(x)).
Let i = deg(l1(x))−deg(f0(x)+uf1(x)) and j = deg(l2(x))−deg(f0(x)+uf1(x)). Suppose
that C ′ = ⟨(f0(x)+uf1(x); 0), (l1(x)−axi(f0(x)+uf1(x)); g(x)+up(x)), (l2(x)−a′xj(f0(x)+
uf1(x));ua(x))⟩ is a double cyclic code of length (α, β) over R, where a and a′ are the
leading coefficients of l1(x) and l2(x), respectively. Hence, we have C ′ ⊆ C. Consider

(l1(x); g(x) + up(x)) = (l1(x)− axi(f0(x) + uf1(x)); g(x) + up(x))

+ axi ∗ (f0(x) + uf1(x); 0) and

(l2(x);ua(x)) = (l2(x)− a′xj(f0(x) + uf1(x));ua(x))

+ a′xj ∗ (f0(x) + uf1(x); 0).

We obtain that (l1(x); g(x)+up(x)) and (l2(x);ua(x)) are in C ′. Thus, C ⊆ C ′. This implies
that C = C ′ and hence, the degree of l1(x) and l2(x) can be reduced in C and so we can
assume that deg(l1(x)) < deg(f0(x) + uf1(x)) and deg(l2(x)) < deg(f0(x) + uf1(x)).
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Furthermore, we consider u ∗ (l2(x);ua(x)) = (ul2(x); 0). Then, (ul2(x); 0) ∈ kerφβ .
This implies that f0(x) + uf1(x) divides ul2(x) in Rα. For the other polynomials, we can
apply the same technique. □

Proposition 3.3. Let C = ⟨(f0(x) + uf1(x); 0), (l(x); g(x) + up(x))⟩ be a double cyclic code
of length (α, β) over R, where the polynomials f0(x), f1(x), l(x), g(x), p(x) satisfy Theorem 3.3
(Type 1). Then, we can assume that the degree of l(x) is less than the degree of f0(x) + uf1(x).

Furthermore, f0(x) + uf1(x) divides l(x) xβ−1
g(x)+up(x) and ul(x)x

β−1
g(x) in Rα.

Proof. The proof is analogous to the proof of Proposition 3.2. □

4. DNA CODES

In this section, we will discuss the necessary and sufficient conditions for double cyclic
codes to be reversible and reversible-complement codes. Then, we will begin with the
fundamental notations of DNA codes.

Let SD4
= {A, T,G,C} be a set of DNA alphabets. For any y ∈ SD4

, we denote the
complement of y as y, i.e., A = T, T = A,G = C and C = G. A DNA code of length n is a
set of sequences (a0, a1, ..., an−1), where ai ∈ SD4

for i = 0, 1, ..., n − 1. In [7] and [9], the
authors gave a one-to-one correspondence ϕ between the elements of R and SD4 as

ϕ(0) = A, ϕ(1) = G,ϕ(u) = T and ϕ(1 + u) = C.

According to the linking in the DNA bases, we can see that 0 = u, 1 = 1 + u, u = 0 and
1 + u = 1. They expanded the map ϕ so that ϕ(C) can be viewed as a DNA code for some
code C of length n over R. Let a = (a0, a1, ..., an−1) be a codeword in a code C of length
n over R. The reverse (respectively, complement, reverse-complement) of a is denoted by
ar = (an−1, an−2, ..., a0) (respectively, ac = (ā0, ā1, ..., ān−1), a

rc = (ān−1, ān−2, ..., ā0)).
A code C of length n over R is called reversible (respectively, complement, reversible-
complement) if ar ∈ C (ac ∈ C, arc ∈ C) for all a ∈ C.

In [8], we have studied the construction of DNA codes by using double cyclic codes of
length (α, β) over R when α and β are odd positive integers. In our study, we employed
the mapping ϕ and extended it for some code C of length (α, β) over R. For codes of length
(α, β) over R, the definitions of reversible, complement and reversible-complement are as
follows:

Let α, β be positive integers and v = (a; b) = (a0, a1, ..., aα−1; b0, b1, ..., bβ−1) be a code-
word in a code C of length (α, β) over R. Then, the reverse (respectively, complement,
reverse-complement) of v is defined as vr = (aα−1, aα−2, ..., a0; bβ−1, bβ−2, ..., b0), (respec-
tively, vc = (a0, a1, ..., aα−1; b0, b1, ..., bβ−1),v

rc = (aα−1, aα−2, ..., a0; bβ−1, bβ−2, ..., b0)).
Hence, we can see that vr = (ar; br), vc = (ac; bc) and vrc = (arc; brc).

Definition 4.2. [8] A double cyclic code C of length (α, β) over R is called reversible (respectively,
complement and reversible-complement) if vr ∈ C (respectively, vc ∈ C and vrc ∈ C) for all
v ∈ C.

Furthermore, if α = 0, C is a reversible (complement, reversible-complement) cyclic code of
length β over R. If β = 0, C is a reversible (complement, reversible-complement) cyclic code of
length α over R.

Definition 4.3. [8] Let C be a linear code of length n = α+ β over R. Then, C is called a double
cyclic DNA code if C is a double cyclic code of length (α, β) over R and vrc ∈ C for all v ∈ C
and vrc ̸= v.

The study in this section will be separated into two subsections. In the first subsection,
we will investigate the necessary and sufficient conditions for double cyclic codes to be
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reversible codes. Additionally, the last subsection examines the necessary and sufficient
conditions for double cyclic codes to be reversible-complement codes. It also includes
examples of DNA codes generated from our results.

4.1. Reversible codes. Let v = (a0, a1, ..., aα−1; b0, b1, ..., bβ−1) ∈ Rα × Rβ . Then, we
obtain that vr = (aα−1, aα−2, ..., a0; bβ−1, bβ−2, ..., b0). Therefore, the reverse of v can be
identified with an element in Rα,β as follows:

vr(x) = (aα−1 + aα−2x+ · · ·+ a0x
α−1; bβ−1 + bβ−2x+ · · ·+ b0x

β−1)

= (xα−1−deg(a(x))a∗(x);xβ−1−deg(b(x))b∗(x)).

Furthermore, the reverse of the polynomial v(x) can be written as [v(x)]r = vr(x).
First, we will give propositions from [8] that are important for the study in this subsec-

tion.

Proposition 4.4. [8] Let v,w ∈ Rα ×Rβ and k ∈ R.
Suppose that v(x) and w(x) are polynomials in Rα,β that correspond to v and w, respectively.

Then,

(1) [v +w]r = vr +wr,
(2) [k ∗ v]r = k ∗ vr,
(3) [v(x) +w(x)]r = vr(x) +wr(x).

Proposition 4.5. [8] Let (a(x); b(x)) be an element in Rα,β and k be a positive integer. Then,

(xka(x);xkb(x))r = x(m+1)α−1−deg(xka(x)) ∗ (a∗(x); 0) + x(n+1)β−1−deg(xkb(x)) ∗ (0; b∗(x)),

where m = n = 0 or m,n are the smallest positive integers such that
mα−deg(xka(x))+deg([xka(x)](xα−1)) ≥ 0 and nβ−deg(xkb(x))+deg([xkb(x)](xβ−1)) ≥ 0.

Corollary 4.1. Let (a(x); b(x)) ∈ Rα,β and k ∈ Z+.
Suppose that β = 2γα and deg(b(x)) = (2γ − 1)α + deg(a(x)), where γ is a non-negative

integer. Then,

(xka(x);xkb(x))r = x(2Mγ+1)α−1−deg(xka(x)) ∗ (a∗(x); b∗(x)),

where M is 0 or the smallest positive integer such that
Mα−deg(xka(x))+deg([xka(x)](xα−1)) ≥ 0 and Mβ−deg(xkb(x))+deg([xkb(x)](xβ−1)) ≥
0.

Proof. Suppose that β = 2γα and deg(b(x)) = (2γ − 1)α + deg(a(x)). By Proposition 4.5,
we obtain that

(xka(x);xkb(x))r = x(m+1)α−1−deg(xka(x)) ∗ (a∗(x); 0) + x(n+1)β−1−deg(xkb(x)) ∗ (0; b∗(x)),

where m = n = 0 or m,n are the smallest positive integers such that
mα−deg(xka(x))+deg([xka(x)](xα−1)) ≥ 0 and nβ−deg(xkb(x))+deg([xkb(x)](xβ−1)) ≥ 0.
Let M = max{m,n}. Then, M is zero or the smallest positive integer such that

Mα− deg(xka(x)) + deg([xka(x)](xα−1)) ≥ 0 and

Mβ − deg(xkb(x)) + deg([xkb(x)](xβ−1)) ≥ 0.
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Without loss of generality, we suppose that M = m. Then, M = n + n′ for some non-
negative integer n′. Since deg(xkb(x)) = deg(xka(x)) + (2γ − 1)α,

(2Mγ + 1)α− 1− deg(xka(x)) = 2nγα+ 2n′γα+ α− 1− deg(xka(x)

= nβ + n′β + α− 1− deg(xka(x))

= nβ + n′β + α− 1− deg(xkb(x)) + 2γα

= (n+ 1)β − 1− deg(xkb(x)) + n′β.

Hence,

x(2Mγ+1)α−1−deg(xka(x)) ∗ (a∗(x); b∗(x))

= xm(2γ)α+α−1−deg(xka(x)) ∗ (a∗(x); 0) + x(n+1)β−1−deg(xka(x))+n′β ∗ (0; b∗(x))

= x(m+1)α−1−deg(xka(x))+m(2γ−1)α ∗ (a∗(x); 0) + x(n+1)β−1−deg(xka(x))+n′β ∗ (0; b∗(x))

= x(m+1)α−1−deg(xka(x)) ∗ (a∗(x); 0) + x(n+1)β−1−deg(xkb(x)) ∗ (0; b∗(x))

= (xka(x);xkb(x))r.

Therefore,

(xka(x);xkb(x))r = x(2Mγ+1)α−1−deg(xka(x)) ∗ (a∗(x); b∗(x)),
where M is 0 or the smallest positive integer such that
Mα−deg(xka(x))+deg([xka(x)](xα−1)) ≥ 0 and Mβ−deg(xkb(x))+deg([xkb(x)](xβ−1)) ≥
0. □

Next, we will investigate the necessary and sufficient conditions for reversible double
cyclic codes of length (α, β) over R. In [7] and [9], the authors have investigated the nec-
essary and sufficient conditions for reversible cyclic codes of length n over R as follows:

Theorem 4.4. Let C be a cyclic code of length n over R. Then,
(1) If n is an odd number, then

C = ⟨f0(x) + uf1(x)⟩ is reversible if and only if f0(x) and f1(x) are self-reciprocal.
(2) If n is an even number and i = deg(g(x))− deg(p(x)), then

(a) C = ⟨g(x) + up(x)⟩ is reversible if and only if
(i) g(x) is self-reciprocal,

(ii) xip∗(x) = p(x) or g(x) = xip∗(x) + p(x).
(b) C = ⟨g(x) + up(x), ua(x)⟩ is reversible if and only if

(i) g(x) and a(x) are self-reciprocal,
(ii) a(x)|(xip∗(x) + p(x)).

Lemma 4.1. Let C = ⟨(f0(x), f1(x); 0), (l(x); g(x) + up(x))⟩ be a double cyclic code of length
(α, β) over R, where the polynomials f0(x), f1(x), g(x), p(x), l(x) satisfy Theorem 3.3 (Type 1)
and Proposition 3.3. If C is a reversible code, then

(1) f0(x), f1(x) and g(x) are self-reciprocal;
(2) xip∗(x) = p(x) or g(x) = xip∗(x) + p(x), where i = deg(g(x))− deg(p(x)).

Proof. For any (a(x); b(x)) ∈ C, we define

φβ : C → Rβ by φβ(a(x); b(x)) = b(x) (mod xβ − 1).

Then, φβ is an R[x]-module homomorphism. Suppose that C is a reversible code. Then,
φβ(C) is a reversible cyclic code of length β over R. By Theorem 4.4, we obtain that

(1) g(x) is self-reciprocal,
(2) xip∗(x) = p(x) or g(x) = xip∗(x) + p(x), where i = deg(g(x))− deg(p(x)).
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Let I = ⟨(f0(x)+uf1(x); 0)⟩ ⊆ C. We claim that I is a reversible code. It is easy to see that
I is a double cyclic code of length (α, β) over R. Assume that I is not a reversible code.
Then, there exists a polynomial v(x) ∈ I such that vr(x) ∈ C − I . Hence,

v(x) = λ(x) ∗ (f0(x) + uf1(x); 0) for some λ(x) ∈ R[x] and

vr(x) = (xα−1−deg(h(x))h∗(x); 0), where h(x) = [λ(x)(f0(x) + uf1(x))](xα−1).

This implies that
vr(x) = (xα−1−deg(h(x))h∗(x); 0) = λ1(x) ∗ (f0(x) + uf1(x); 0) + λ2(x) ∗ (l(x); g(x) + up(x))
for some λ1(x), λ2(x) ∈ R[x] such that λ2(x) ̸= 0. Thus,

[λ1(x)(f0(x) + uf1(x)) + λ2(x)l(x)](xα−1) = xα−1−deg(h(x))h∗(x) and(4.1)

[λ2(x)(g(x) + up(x))](xβ−1) = 0.(4.2)

By (4.2), λ2(x) =
xβ−1

g(x)+up(x)k(x), where k(x) ∈ R[x]. By Proposition 3.3, we have

(f0(x) + uf1(x))|
(

xβ − 1

g(x) + up(x)
k(x)l(x)

)
in Rα.

Then, λ2(x)l(x) = λ3(x)(f0(x) + uf1(x)) + q1(x)(x
α − 1) for some λ3(x), q1(x) ∈ R[x]. By

(4.1), there exists q2(x) ∈ R[x] such that

(λ1(x) + λ3(x))(f0(x) + uf1(x)) = q2(x)(x
α − 1) + xα−1−deg(h(x))h∗(x).

This means that (xα−1−deg(h(x))h∗(x); 0) ∈ I , which is a contradiction. Hence, I is a re-
versible code. By Theorem 4.4, f0(x) and f1(x) are self-reciprocal. □

Lemma 4.2. Let γ be a non-negative integer and

C = ⟨(f0(x) + uf1(x); 0), (l(x); g(x) + up(x))⟩

be a double cyclic code of length (α, β = 2γα) over R, where the polynomials f0(x), f1(x), g(x),
p(x), l(x) satisfy Theorem 3.3 (Type 1) and Proposition 3.3.

Suppose that deg(g(x) + up(x)) = (2γ − 1)α+ deg(l(x)). If C is a reversible code, then
(1) (f0(x) + uf1(x))|

(
l∗(x)− l(x)

)
in Rα. Or

(2) (f0(x) + uf1(x))|
(
(1 + u)l(x)− l∗(x)

)
in Rα.

Proof. Suppose that C is a reversible code. Since (l(x); g(x) + up(x)) ∈ C, we obtain that

(l(x); g(x) + up(x))r = (xα−1−deg(l(x))l∗(x);xβ−1−deg(g(x)+up(x))(g(x) + up(x))∗) ∈ C.

This implies that

(l∗(x); (g(x) + up(x))∗) = x(2γ−1)α+deg(l(x))+1 ∗ (l(x); g(x) + up(x))r ∈ C.

Hence, there exist λ1(x), λ2(x) ∈ R[x] such that

(l∗(x); (g(x) + up(x))∗) = λ1(x) ∗ (f0(x) + uf1(x); 0) + λ2(x) ∗ (l(x); g(x) + up(x)).

This means that

[λ1(x)(f0(x) + uf1(x)) + λ2(x)l(x)](xα−1) = l∗(x) and(4.3)

[λ2(x)(g(x) + up(x))](xβ−1) = g(x) + uxip∗(x),(4.4)

where i = deg(g(x)) − deg(p(x)). By Lemma 4.1, we have xip∗(x) = p(x) or g(x) =
xip∗(x) + p(x).

Firstly, assume that xip∗(x) = p(x). From (4.4), we obtain that

(λ2(x) + 1)(g(x) + up(x)) ≡ 0 (mod xβ − 1).
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Hence, λ2(x) = 1 + xβ−1
g(x)+up(x)h1(x) for some h1(x) ∈ R[x]. By (4.3), there is q1(x) ∈ R[x]

such that

λ1(x)(f0(x) + uf1(x)) + l(x) +
xβ − 1

g(x) + up(x)
h1(x)l(x) = q1(x)(x

α − 1) + l∗(x).

By Proposition 3.3, we have (f0(x) + uf1(x))|l(x) xβ−1
g(x)+up(x) in Rα. This implies that

(f0(x) + uf1(x))|
(
l∗(x)− l(x)

)
in Rα.

Lastly, we will assume that g(x) = xip∗(x) + p(x). From (4.4), we obtain that

[λ2(x)(g(x) + up(x))](xβ−1) = (1 + u)(g(x) + up(x)).

This implies that (λ2(x) + 1 + u)(g(x) + up(x)) ≡ 0 (mod xβ − 1). Then, we obtain that
λ2(x) = (1+ u) + xβ−1

g(x)+up(x)h2(x) for some h2(x) ∈ R[x]. From (4.3), there exists a polyno-
mial q2(x) ∈ R[x] such that

λ1(x)(f0(x) + uf1(x)) +

(
(1 + u) +

xβ − 1

g(x) + up(x)
h2(x)

)
l(x) = q2(x)(x

α − 1) + l∗(x).

By Proposition 3.3, we have (f0(x) + uf1(x))|l(x) xβ−1
g(x)+up(x) in Rα. Therefore, we obtain

that (f0(x) + uf1(x))|
(
(1 + u)l(x)− l∗(x)

)
in Rα. □

By using Lemma 4.1 and Lemma 4.2, we can obtain the following Theorem.

Theorem 4.5. Let γ be a non-negative integer and

C = ⟨(f0(x) + uf1(x); 0), (l(x); g(x) + up(x))⟩

be a double cyclic code of length (α, β = 2γα) over R, where the polynomials f0(x), f1(x),
g(x), p(x), l(x) satisfy Theorem 3.3 (Type 1) and Proposition 3.3.

Suppose that deg(g(x) + up(x)) = (2γ − 1)α+ deg(l(x)). Then, C is a reversible code if and
only if

(1) f0(x), f1(x) and g(x) are self-reciprocal;
(2) (a) xip∗(x) = p(x) and (f0(x) + uf1(x))|

(
l∗(x)− l(x)

)
in Rα. Or

(b) g(x) = xip∗(x) + p(x) and (f0(x) + uf1(x))|
(
(1 + u)l(x)− l∗(x)

)
in Rα,

where i = deg(g(x))− deg(p(x)).

Proof. Suppose that C is a reversible code. We obtain conditions 1 and 2 from Lemmas 4.1
and 4.2.

On the other hand, we suppose that conditions 1 and 2 are true. We obtain that
(l∗(x); g∗(x) + uxip∗(x)) ∈ C. Since gcd(f0(x),

xα−1
f0(x)

) = 1, there exist a′(x), b′(x) ∈ F2[x]

such that a′(x)f0(x) + b′(x)x
α−1

f0(x)
= 1. Then, we obtain that[(

1 + (1 + xj)ua′(x)f1(x) + (1 + xj)b′(x)
xα − 1

f0(x)

)
(f0(x) + uf1(x))

]
(xα−1)

= f0(x) + uxjf1(x), where j = deg(f0(x))− deg(f1(x)).

Hence,

((f0(x) + uf1(x))
∗; 0)

= (f0(x) + uxjf1(x); 0)

=

(
1 + (1 + xj)ua′(x)f1(x) + (1 + xj)b′(x)

xα − 1

f0(x)

)
∗ (f0(x) + uf1(x); 0) ∈ C.
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This implies that ((f0(x) + uf1(x))
∗; 0) ∈ C. Next, we will prove that C is a reversible

code. Let v(x) ∈ C. Then, there exist λ1(x), λ2(x) ∈ R[x] such that

v(x) = λ1(x) ∗ (f0(x) + uf1(x); 0) + λ2(x) ∗ (l(x); g(x) + up(x)).

By Proposition 4.4, we get

vr(x) = (λ1(x)(f0(x) + uf1(x)); 0)
r + (λ2(x)l(x);λ2(x)(g(x) + up(x)))r.

Suppose that λ1(x) = b0 + b1x + · · · + btx
t ∈ R[x] for some non-negative integer t. We

consider

(λ1(x)(f0(x) + uf1(x)); 0)
r = (

t∑
i=0

bix
i(f0(x) + uf1(x)); 0)

r

=

t∑
i=0

bi ∗ (xi(f0(x) + uf1(x)); 0)
r.

By Proposition 4.5, there exists mi ∈ Z+ ∪ {0} such that

(xi(f0(x) + uf1(x)); 0)
r = x(mi+1)α−1−κ ∗ ((f0(x) + uf1(x))

∗; 0),

where κ = deg(xi(f0(x) + uf1(x))) and 0 ≤ i ≤ t. This implies that

(λ1(x)(f0(x) + uf1(x)); 0)
r ∈ C.

Suppose that λ2(x) = c0 + c1x+ · · ·+ csx
s ∈ R[x] for some non-negative integer s. We

consider

(λ2(x)l(x);λ2(x)(g(x) + up(x)))r = (

s∑
j=0

cjx
j l(x);

s∑
j=0

cjx
j(g(x) + up(x)))r

=

s∑
j=0

cj ∗ (xj l(x);xj(g(x) + up(x)))r.

By Corollary 4.1, there exists nj ∈ Z+ ∪ {0} such that

(xj l(x);xj(g(x) + up(x)))r = x((2njγ+1)α−1−deg(xj l(x)) ∗ (l∗(x); (g(x) + up(x))∗),

where 0 ≤ j ≤ s. Then, (λ2(x)l(x);λ2(x)(g(x)+up(x)))r ∈ C. This implies that vr(x) ∈ C.
Therefore, C is a reversible code. □

Lemma 4.3. Let C = ⟨(f0(x) + uf1(x); 0), (l1(x); g(x) + up(x)), (l2(x);ua(x))⟩ be a double
cyclic code of length (α, β) over R, where the polynomials f0(x), f1(x), g(x), p(x), a(x), l1(x),
l2(x) satisfy Theorem 3.3 (Type 2) and Proposition 3.2. If C is a reversible code, then

(1) f0(x), f1(x), g(x) and a(x) are self-reciprocal;
(2) a(x)|(xip∗(x) + p(x)), where i = deg(g(x))− deg(p(x)).

Proof. The proof is similar to the proof of Lemma 4.1. □

Lemma 4.4. Let γ be a non-negative integer and

C = ⟨(f0(x) + uf1(x); 0), (l1(x); g(x) + up(x)), (l2(x);ua(x))⟩

be a double cyclic code of length (α, β = 2γα) over R, where the polynomials f0(x), f1(x),
g(x), p(x), a(x), l1(x), l2(x) satisfy Theorem 3.3 (Type 2) and Proposition 3.2.
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Suppose that deg(g(x) + up(x)) = (2γ − 1)α + deg(l1(x)) and i = deg(g(x))− deg(p(x)).
If C is a reversible code, then there exist ω1(x), ω2(x) ∈ R[x] such that f0(x) + uf1(x) divides

l∗1(x) +

(
1 + uω1(x) +

xβ − 1

g(x)
ω2(x)

)
l1(x) +

(
g(x)

a(x)
ω1(x) + κ(x)ω2(x) + κ′(x)

)
l2(x)

in Rα, where κ′(x) ∈ F2[x] such that a(x)κ′(x) = xip∗(x) + p(x) and κ(x) = xβ−1
g(x)a(x)p(x).

Proof. Suppose that C is a reversible code. Since (l1(x); g(x) + up(x)) ∈ C,

(l1(x); g(x) + up(x))r = (xα−1−deg(l1(x))l∗1(x);x
β−1−deg(g(x)+up(x))(g(x) + up(x))∗) ∈ C.

Thus,

(l∗1(x); (g(x) + up(x))∗) = x(2γ−1)α+deg(l1(x))+1 ∗ (l1(x); g(x) + up(x))r ∈ C.

Then, there exist λ1(x), λ2(x), λ3(x) ∈ R[x] such that

(l∗1(x); (g(x) + up(x))∗) = λ1(x) ∗ (f0(x) + uf1(x); 0) + λ2(x) ∗ (l1(x); g(x) + up(x))

+ λ3(x) ∗ (l2(x);ua(x)).

By Lemma 4.3, we get g(x) is self-reciprocal and there exists κ′(x) ∈ F2[x] such that
a(x)κ′(x) = xip∗(x) + p(x). Then,

[λ1(x)(f0(x) + uf1(x)) + λ2(x)l1(x) + λ3(x)l2(x)](xα−1) = l∗1(x) and(4.5)

[λ2(x)(g(x) + up(x)) + uλ3(x)a(x)](xβ−1) = g(x) + up(x) + ua(x)κ′(x).(4.6)

From (4.6), we get (λ2(x)−1)ug(x) ≡ 0 (mod xβ−1). Then, there exist ω1(x), ω2(x) ∈ R[x]

such that λ2(x) = 1 + uω1(x) +
xβ−1
g(x) ω2(x). By substituting λ2(x) in (4.6), we have

ug(x)ω1(x) +
xβ − 1

g(x)
p(x)ω2(x) + uλ3(x)a(x) + ua(x)κ′(x) ≡ 0 (mod xβ − 1).

Since a(x)|g(x) and a(x)|x
β−1
g(x) p(x), we obtain that(

g(x)

a(x)
ω1(x) +

xβ − 1

g(x)a(x)
p(x)ω2(x) + λ3(x) + κ′(x)

)
ua(x) ≡ 0 (mod xβ − 1).

Hence, λ3(x) = g(x)
a(x)ω1(x) +

xβ−1
g(x)a(x)p(x)ω2(x) + κ′(x) + uh1(x) +

xβ−1
a(x) h2(x) for some

h1(x), h2(x) ∈ R[x]. By substituting λ2(x) and λ3(x) in (4.5), we have

q(x)(xα − 1) + l∗1(x) = λ1(x)(f0(x) + uf1(x)) +

(
1 + uω1(x) +

xβ − 1

g(x)
ω2(x)

)
l1(x)

+

(
g(x)

a(x)
ω1(x) +

xβ − 1

g(x)a(x)
p(x)ω2(x) + κ′(x)

)
l2(x)

+ uh1(x)l2(x) +
xβ − 1

a(x)
h2(x)l2(x),

where q(x) ∈ R[x]. By Proposition 3.2, we obtain that

(f0(x) + uf1(x))|uh1(x)l2(x) and (f0(x) + uf1(x))|
(
xβ − 1

a(x)
h2(x)l2(x)

)
in Rα.

This implies that f0(x) + uf1(x) divides

l∗1(x) +

(
1 + uω1(x) +

xβ − 1

g(x)
ω2(x)

)
l1(x) +

(
g(x)

a(x)
ω1(x) + κ(x)ω2(x) + κ′(x)

)
l2(x)
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in Rα, where κ(x) = xβ−1
g(x)a(x)p(x). □

Lemma 4.5. Let γ be a non-negative integer and

C = ⟨(f0(x) + uf1(x); 0), (l1(x); g(x) + up(x)), (l2(x);ua(x))⟩
be a double cyclic code of length (α, β = 2γα) over R, where the polynomials f0(x), f1(x),
g(x), p(x), a(x), l1(x), l2(x) satisfy Theorem 3.3 (Type 2) and Proposition 3.2.

Suppose that deg(ua(x)) = (2γ − 1)α+ deg(l2(x)). If C is a reversible code, then there exist
η1(x), η2(x) ∈ R[x] such that f0(x) + uf1(x) divides

l∗2(x) +

(
1 +

g(x)

a(x)
η1(x) + κ(x)η2(x)

)
l2(x) +

(
uη1(x) +

xβ − 1

g(x)
η2(x)

)
l1(x)

in Rα, where κ(x) = xβ−1
g(x)a(x)p(x).

Proof. Suppose that C is a reversible code. Since (l2(x);ua(x)) ∈ C,

(l2(x);ua(x))
r = (xα−1−deg(l(x))l∗2(x);ux

β−1−deg(ua(x))a∗(x)) ∈ C.

Thus,

(l∗2(x);ua
∗(x)) = x(2γ−1)α+deg(l2(x))+1 ∗ (xα−1−deg(l2(x))l∗2(x);ux

β−1−deg(ua(x))a∗(x)) ∈ C.

Then, there exist λ1(x), λ2(x), λ3(x) ∈ R[x] such that

(l∗2(x);ua
∗(x)) =λ1(x) ∗ (f0(x) + uf1(x); 0) + λ2(x) ∗ (l1(x); g(x) + up(x))

+ λ3(x) ∗ (l2(x);ua(x)).
By Lemma 4.3, we get a(x) is self-resiprocal. Then,

[λ1(x)(f0(x) + uf1(x)) + λ2(x)l1(x) + λ3(x)l2(x)](xα−1) = l∗2(x) and(4.7)

[λ2(x)(g(x) + up(x)) + uλ3(x)a(x)](xβ−1) = ua(x).(4.8)

From (4.8), we get uλ2(x)g(x) ≡ 0 (mod xβ − 1). Hence, there exist η1(x), η2(x) ∈ R[x]

such that λ2(x) = uη1(x) +
xβ−1
g(x) η2(x). By substituting λ2(x) in (4.8), we have

ug(x)η1(x) + u
xβ − 1

g(x)
p(x)η2(x) + uλ3(x)a(x) + ua(x) ≡ 0 (mod xβ − 1).

Since a(x)|g(x) and a(x)|x
β−1
g(x) p(x), we obtain that(

g(x)

a(x)
η1(x) +

xβ − 1

g(x)a(x)
p(x)η2(x) + λ3(x) + 1

)
ua(x) ≡ 0 (mod xβ − 1).

Hence, λ3(x) = 1+ g(x)
a(x)η1(x)+

xβ−1
g(x)a(x)p(x)η2(x)+uh1(x)+

xβ−1
a(x) h2(x) for some h1(x), h2(x) ∈

R[x]. By substituting λ2(x) and λ3(x) in (4.7), we have

q(x)(xα − 1) + l∗2(x) = λ1(x)(f0(x) + uf1(x)) +

(
uη1(x) +

xβ − 1

g(x)
η2(x)

)
l1(x)

+

(
1 +

g(x)

a(x)
η1(x) +

xβ − 1

g(x)a(x)
p(x)η2(x)

)
l2(x)

+ uh1(x)l2(x) +
xβ − 1

a(x)
h2(x)l2(x), where q(x) ∈ R[x].

By Proposition 3.2, we obtain that

(f0(x) + uf1(x))|uh1(x)l2(x) and (f0(x) + uf1(x))|
(
xβ − 1

a(x)
h2(x)l2(x)

)
in Rα.
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This implies that f0(x) + uf1(x) divides

l∗2(x) +

(
1 +

g(x)

a(x)
η1(x) + κ(x)η2(x)

)
l2(x) +

(
uη1(x) +

xβ − 1

g(x)
η2(x)

)
l1(x)

in Rα, where κ(x) = xβ−1
g(x)a(x)p(x). □

By Lemmas 4.3, 4.4 and 4.5, we obtain the following Theorem.

Theorem 4.6. Let γ be a non-negative integer and

C = ⟨(f0(x) + uf1(x); 0), (l1(x); g(x) + up(x)), (l2(x);ua(x))⟩

be a double cyclic code of length (α, β = 2γα) over R, where the polynomials f0(x), f1(x),
g(x), p(x), a(x), l1(x), l2(x) satisfy Theorem 3.3 (Type 2) and Proposition 3.2.

Suppose that deg(g(x) + up(x)) = (2γ − 1)α + deg(l1(x)), deg(ua(x)) = (2γ − 1)α +

deg(l2(x)) and κ(x) = xβ−1
g(x)a(x)p(x). Then, C is a reversible code if and only if

(1) f0(x), f1(x), g(x) and a(x) are self-reciprocal;
(2) a(x)|(xip∗(x) + p(x)), where i = deg(g(x))− deg(p(x));
(3) there exist ω1(x), ω2(x) ∈ R[x] such that f0(x) + uf1(x) divides

l∗1(x) +
(
1 + uω1(x) +

xβ−1
g(x) ω2(x)

)
l1(x) +

(
g(x)
a(x)ω1(x) + κ(x)ω2(x) + κ′(x)

)
l2(x)

in Rα, where κ′(x) ∈ F2[x] such that a(x)κ′(x) = xip∗(x) + p(x);
(4) there exist η1(x), η2(x) ∈ R[x] such that f0(x) + uf1(x) divides

l∗2(x) +
(
1 + g(x)

a(x)η2(x) + κ(x)η2(x)
)
l2(x) +

(
uη1(x) +

xβ−1
g(x) η2(x)

)
l1(x) in Rα.

Proof. Suppose that C is a reversible code. By Lemmas 4.3, 4.4 and 4.5, we obtain the
conditions 1 – 4.

On the other hand, suppose that conditions 1 – 4 are true. We will show that ((f0(x) +
uf1(x))

∗; 0), (l∗1(x); (g(x) + up(x))∗) and (l∗2(x);ua
∗(x)) are in C. Since gcd(f0(x),

xα−1
f0(x)

) =

1, there exist a′(x), b′(x) ∈ F2[x] such that a′(x)f0(x)+b′(x)x
α−1

f0(x)
= 1. Then, we obtain that

[(
1 + (1 + xj)ua′(x)f1(x) + (1 + xj)b′(x)

xα − 1

f0(x)

)
(f0(x) + uf1(x))

]
(xα−1)

= f0(x) + uxjf1(x), where j = deg(f0(x))− deg(f1(x)).

Hence, ((f0(x) + uf1(x))
∗; 0) ∈ C.

Next, we will show that (l∗1(x); (g(x) + up(x))∗) ∈ C. Let i = deg(g(x)) − deg(p(x))
and a(x)κ′(x) = xip(x)+p(x). By condition 3, there exist polynomials ω1(x), ω2(x) in R[x]
such that

l∗1(x) = q1(x)(x
α − 1) + λ1(x)(f0(x) + uf1(x)) +

(
1 + uω1(x) +

xβ − 1

g(x)
ω2(x)

)
l1(x)

+

(
g(x)

a(x)
ω1(x) + κ(x)ω2(x) + κ′(x)

)
l2(x), where q1(x), λ1(x) ∈ R[x].
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Consider,

(l∗1(x); (g(x) + up(x))∗) = (l∗1(x); g(x) + uxip∗(x))

= (l∗1(x); g(x) + up(x) + ua(x)κ′(x))

= λ1(x) ∗ (f0(x) + uf1(x); 0)

+

(
1 + uω1(x) +

xβ − 1

g(x)
ω2(x)

)
∗ (l1(x); g(x) + up(x))

+

(
g(x)

a(x)
ω1(x) + κ(x)ω2(x) + κ′(x)

)
∗ (l2(x);ua(x)).

Hence, (l∗1(x); (g(x) + up(x))∗) ∈ C.
Finally, we will show that (l∗2(x);ua∗(x)) ∈ C. By condition 4, there exist polynomials

η1(x), η2(x) in R[x] such that

l∗2(x) = q2(x)(x
α − 1) + λ2(x)(f0(x) + uf1(x))

+

(
1 +

g(x)

a(x)
η2(x) + κ(x)η2(x)

)
l2(x) +

(
uη1(x) +

xβ − 1

g(x)
η2(x)

)
l1(x)

for some q2(x), λ2(x) ∈ R[x]. Consider,

(l∗2(x);ua(x)) = λ2(x) ∗ (f0(x) + uf1(x); 0)

+

(
uη1(x) +

xβ − 1

g(x)
η2(x)

)
∗ (l1(x); g(x) + up(x))

+

(
1 +

g(x)

a(x)
η2(x) + κ(x)η2(x)

)
∗ (l2(x);ua(x)).

Hence, (l∗2(x);ua∗(x)) ∈ C. Similar to the proof of Theory 4.5, we obtain that vr(x) ∈ C
for all v(x) ∈ C. Therefore, C is a reversible code. □

4.2. Reversible-complement codes.

Theorem 4.7. [8] Let C be a double cyclic code of length (α, β) over R. Then, C is a reversible-
complement code if and only if

(1) C is a reversible code and
(2) (u, u, ..., u︸ ︷︷ ︸

α

;u, u, ..., u︸ ︷︷ ︸
β

) ∈ C.

We now discuss the reversible-complement for double cyclic codes of length (α, β) over
R using the results obtained in the above subsections. The proofs for the theorems follow-
ing are straightforward.

Theorem 4.8. Let γ be a non-negative integer and

C = ⟨(f0(x) + uf1(x); 0), (l(x); g(x) + up(x))⟩

be a double cyclic code of length (α, β = 2γα) over R, where the polynomials f0(x), f1(x), g(x),
p(x), l(x) satisfy Theorem 3.3 (Type 1) and Proposition 3.3.

Suppose that deg(g(x)+up(x)) = (2γ−1)α+deg(l(x)). Then, C is a reversible-complement
code if and only if

(1) C is a reversible code and
(2) uI(x) = (u+ ux+ · · ·+ uxα−1;u+ ux+ · · ·+ uxβ−1) ∈ C.
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Theorem 4.9. Let γ be a non-negative integer and

C = ⟨(f0(x) + uf1(x); 0), (l1(x); g(x) + up(x)), (l2(x);ua(x))⟩

be a double cyclic code of length (α, β = 2γα) over R, where the polynomials f0(x), f1(x),
g(x), p(x), a(x), l1(x), l2(x) satisfy Theorem 3.3 (Type 2) and Proposition 3.2.

Suppose that deg(g(x) + up(x)) = (2γ − 1)α + deg(l1(x)) and deg(ua(x)) = (2γ − 1)α +
deg(l2(x)). Then, C is a reversible-complement code if and only if

(1) C is a reversible code and
(2) uI(x) = (u+ ux+ · · ·+ uxα−1;u+ ux+ · · ·+ uxβ−1) ∈ C.

4.2.1. Examples. Now, we will construct some concrete examples to illustrate the above
results. Recall that the Hamming distance between two codewords of the same length is
defined as the number of coordinates in which two codewords differ and the minimum
Hamming distance of a code is the smallest Hamming distance between any two distinct
codewords in the code. Let C be a code of length (α, β) over R and SD4

= {A, T,G,C}.
Recall that ϕ(0) = A, ϕ(1) = G,ϕ(u) = T and ϕ(1 + u) = C. Define Φ : C → Sα+β

D4
by

Φ(a0, a1, ..., aα−1; b0, b1, ..., bβ−1) = (ϕ(a0), ϕ(a1), ..., ϕ(aα−1), ϕ(b0), ϕ(b1), ..., ϕ(bβ−1)),

where (a0, a1, ..., aα−1; b0, b1, ..., bβ−1) ∈ C. For any double cyclic code C of length (α, β)

over R, we let Ĉ be a set which is
Ĉ = {(b; a) ∈ Rβ,α : (a; b) ∈ C} ⊆ Rβ,α.

Then, we can generate a DNA code D from C ∪ Ĉ, where C is a double cyclic DNA code
of length (α, β) over R.

By using Theorems 4.8 and 4.9, we can construct a double cyclic DNA code C of length
(α, β) over R and generate DNA codes as follows:

Example 4.1. Let x3 − 1 = (x+ 1)(x2 + x+ 1) = m1(x)m2(x) and x6 − 1 = m1(x)
2m2(x)

2

over F2.
(1) Let C = ⟨(f0(x)+uf1(x); 0), (l(x); g(x)+up(x))⟩ be a double cyclic code of length (3, 6)

over R, where f0(x) + uf1(x) = (1 + u)m1(x)m2(x), l(x) = 1, g(x) = m1(x)m2(x)
and p(x) = 0. It is easy to check that C is a reversible code. Consider,

uI(x) = u(x2 + x+ 1) ∗ (l(x); g(x) + up(x)) ∈ C.
By Theorem 4.8, we obtain that C is a reversible-complement code. Then, a DNA code D
of length 9 with minimum Hamming distance 3 from C ∪ Ĉ has 64 codewords, which are
given in Table 1.

TABLE 1. DNA code D of length 9 obtained from C ∪ Ĉ in Exam-
ple 4.1 (1)

TGTTGTTGT TTGTTGTTG CGGCGGCGG GAGGAGGAG ATCATCATC
GCAGCAGCA TGCTGCTGC AAAAAAAAA TGGTGGTGG GCTGCTGCT
GTCGTCGTC GGCGGCGGC ACTACTACT AACAACAAC ACGACGACG
CTTCTTCTT ATTATTATT CGTCGTCGT AGTAGTAGT CGACGACGA
CCACCACCA ACAACAACA AATAATAAT GTTGTTGTT CAACAACAA
GACGACGAC GTAGTAGTA CATCATCAT GGTGGTGGT TACTACTAC
GAAGAAGAA TAGTAGTAG GTGGTGGTG GATGATGAT TAATAATAA
ATAATAATA CGCCGCCGC TGATGATGA TCTTCTTCT TCCTCCTCC
GCGGCGGCG GGGGGGGGG CCGCCGCCG CAGCAGCAG CCTCCTCCT
ACCACCACC TTCTTCTTC CTACTACTA CACCACCAC TCGTCGTCG
GCCGCCGCC TCATCATCA AAGAAGAAG AGCAGCAGC TTTTTTTTT
CTGCTGCTG CCCCCCCCC TTATTATTA AGGAGGAGG ATGATGATG
GGAGGAGGA CTCCTCCTC AGAAGAAGA TATTATTAT
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(2) Let C = ⟨(f0(x) + uf1(x); 0), (l(x); g(x) + up(x))⟩ be a double cyclic code of length
(3, 6) over R, where f0(x) = m1(x)m2(x), f1(x) = m1(x), l(x) = 1 + u, g(x) =
m1(x)m2(x)

2 and p(x) = 0. It is easy to check that C is a reversible code. Consider,
uI(x) = x ∗ (f0(x) + uf1(x); 0) + u ∗ (l(x); g(x) + up(x)) ∈ C.

By Theorem 4.8, we obtain that C is a reversible-complement code. Then, a DNA code D
of length 9 with minimum Hamming distance 2 from C ∪ Ĉ has 126 codewords, which
are given in Table 2.

TABLE 2. DNA code D of length 9 obtained from C ∪ Ĉ in Exam-
ple 4.1 (2)

TGAGGGGGG TTAAAAAAA ATATTTTTT ACGTTTTTT AAAAAAGCT
AAAAAATTA AAAAAAGTC TGCAAAAAA CTTGGGGGG CCCCCCACT
CCCCCCATC CCCCCCTTG TAGGGGGGG TCACCCCCC CTCTTTTTT
GGGGGGCGG CCCCCCGCC TTTTTTGAC CCCCCCCGC TTGCCCCCC
AAAAAATCG CCGCCCCCC CCCCCCGAA AAAAAAGAG CGCCCCCCC
GTTCCCCCC TTTTTTGCA CCCCCCTGT CCCCCCAAG ACTCCCCCC
GCTAAAAAA TTTTTTGGT AGACCCCCC CCTTTTTTT ATGGGGGGG
GGGGGGGCG AAAAAAATT TTTTTTCTC TGGTTTTTT GGGGGGGGC
GGCGGGGGG AAAAAAGGA AAAAAACTG ACAGGGGGG GGGCCCCCC
CCCCCCAGA TCCTTTTTT GTCAAAAAA TTTTTTCAG CCCCCCGGG
CCCCCCCAT GGTTTTTTT CCCGGGGGG AGTGGGGGG TCGAAAAAA
CACAAAAAA GCCCCCCCC AACGGGGGG GGGGGGAAC TTTTTTATA
CCCCCCCTA CGGGGGGGG AAAAAAACC GGGGGGATG GGAAAAAAA
AAAAAAAAA GGGGGGTCT GGGGGGACA CCCCCCTAC CCCCCCGTT
TAATTTTTT GCGGGGGGG CTACCCCCC TTTTTTTCC TCTGGGGGG
TTTTTTCGA TTTTTTTAA CCCCCCTCA GGGGGGAGT CGATTTTTT
CCCCCCCCG TACCCCCCC ACCAAAAAA TTTTTTACG GACTTTTTT
CGTAAAAAA GGGGGGGTA CATCCCCCC ATTAAAAAA GGGGGGTAG
GGGGGGCTT AAAAAATGC AATTTTTTT GCATTTTTT TTTTTTAGC
TGTCCCCCC GATGGGGGG TTTTTTGTG GAGAAAAAA GGGGGGTGA
AAAAAACAC AAAAAAAGG TTCGGGGGG ATCCCCCCC TATAAAAAA
TTTTTTCCT AGCTTTTTT CTGAAAAAA CCAAAAAAA TTTTTTAAT
AGGAAAAAA AAGCCCCCC GGGGGGCCC CAGTTTTTT GGGGGGCAA
AAAAAACCA CAAGGGGGG GAACCCCCC TTTTTTTGG GTAGGGGGG
TTTTTTTTT GTGTTTTTT AAAAAACGT AAAAAATAT GGGGGGTTC
GGGGGGGAT

The example 4.1 (1) shows that the double cyclic DNA code C can produce reversible-
complement codes of lengths 3 and 6 over R. These codes are C1 = ⟨1⟩ and C2 =
⟨m1(x)m2(x)⟩, respectively. Similarly, in the example 4.1 (2), the double cyclic DNA code
C can produce reversible and reversible-complement codes of lengths 3 and 6 over R.
These include the reversible code C3 = ⟨um1(x)⟩ of length 3 over R and the reversible-
complement codes C4 = ⟨1 + u⟩ and C5 = ⟨m1(x)m2(x)⟩ of lengths 3 and 6 over R,
respectively.

On the other hand, the codes C1, C2, C3, C4 and C5 can construct a double cyclic DNA
code of length (3, 6) over R by using Theorems 3.3, 4.8 and 4.9 (may not be the same as the
code C in examples 4.1 (1) and (2)). Similarly, we can obtain the same results for double
cyclic DNA codes using double cyclic code type 2.

Example 4.2. Let x3 − 1 = (x+ 1)(x2 + x+ 1) = m1(x)m2(x) and x6 − 1 = m1(x)
2m2(x)

2

over F2.
(1) Let C = ⟨(f0(x) + uf1(x); 0), (l1(x); g(x) + up(x)), (l2(x);ua(x))⟩ be a double cyclic

code of length (3, 6) over R, where f0(x) = m1(x)m2(x), f1(x) = m2(x), l1(x) =
m2(x), l2(x) = 0, g(x) = m1(x)m2(x)

2, p(x) = m2(x) and a(x) = m1(x)m2(x).
It is easy to check that C is a reversible code. Consider,

uI(x) = u ∗ (l1(x); g(x) + up(x)) ∈ C.
By Theorem 4.9, we obtain that C is a reversible-complement code. Then, a DNA code D
of length 9 with minimum Hamming distance 2 from C ∪ Ĉ has 60 codewords, which are
given in Table 3.
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TABLE 3. DNA code D of length 9 obtained from C ∪ Ĉ in Exam-
ple 4.2 (1)

CCCGGGGGG GGGCCCCCC CCCGCGCGC TTTATAATA CCCCCGGGC
CCCGGCCCG CCGGGCCCC TAATAAAAA AAAATAATA GGGGGGCCC
TATTATAAA TATTATTTT TTTTAATAA CGGGCCCCC TAATAATTT
TTTTTATTA AAATTATTA CCCCGGGCC TTATTAAAA GGGCGCGCG
AATAATTTT TTTTTTAAA GCGCGCGGG TTTTTTTTT AAAATTATT
GGGGCGCGC GGGCCGGGC CGCGCGCCC AATAATAAA GCCCGGCCC
GGGCCCGGG ATTATTTTT CCCGGGCCC GGGGGCCCG ATTATTAAA
ATAATAAAA ATAATATTT AAATATTAT TTTAAAAAA AAATTTTTT
CCCGCCCGG AAAAAAAAA TTTTATTAT CCCCGCGCG CGGGCCGGG
GCGCGCCCC AAAAAATTT GGCCCGGGG TTATTATTT GGCCCGCCC
CGCGCGGGG GGGGCCCGG TTTAATAAT GGGCGGGCC GCCCGGGGG
AAATAATAA CCGGGCGGG CCCCCCGGG TTTATTATT AAAAATAAT

(2) Let C = ⟨(f0(x) + uf1(x); 0), (l1(x); g(x) + up(x)), (l2(x);ua(x))⟩ be a double cyclic
code of length (3, 6) over R, where f0(x)+f1(x) = (1+u)m2(x), l1(x) = um1(x), l2(x) =
0, g(x) = m1(x)

2m2(x), p(x) = m1(x) and a(x) = m1(x)m2(x). It is easy to check
that C is a reversible code. Consider,

uI(x) = u ∗ (f0(x) + uf1(x); 0) + (x2 + x+ 1) ∗ (l2(x);ua(x)) ∈ C.
By Theorem 4.9, we obtain that C is a reversible-complement code. Then, a DNA code D
of length 9 with minimum Hamming distance 2 from C ∪ Ĉ has 254 codewords, which
are given in Table 4.

5. CONCLUSIONS

This work has studied the algebraic structure and properties of double cyclic codes of
length (α, β) over the finite commutative chain ring F2+uF2 with u2 = 0. The values of α
and β are positive odd and even integers, respectively. In terms of the algebraic structure
of these codes, we have obtained two types of codes called double cyclic codes type 1 and
type 2. In addition, we have constructed theorems for generating DNA codes using the
structure of non-separable codes of double cyclic codes types 1 and 2. A double cyclic
code of length (α, β) over F2 +uF2 that is suitable for DNA codes is called a double cyclic
DNA code. The double cyclic DNA codes from our results can produce reversible and
reversible-complement codes of lengths α and β, which are studied in [7, 9]. On the other
hand, we can construct a double cyclic DNA code from some codes in [7, 9] by using
Theorems 3.3, 4.8 and 4.9. Even though a double cyclic DNA code of length (α, β) over R
can give a DNA code D of odd length, if the β is not zero, the code D cannot be created
from a reversible-complement code of odd length over R. To demonstrate our results, we
provided illustrative examples of DNA codes generated by our research. These examples
show the potential applications of the codes. We hope our study will pave the way for
further improvements in coding theory and bioinformatics, opening up new avenues for
cutting-edge research and applications.
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TABLE 4. DNA code D of length 9 obtained from C ∪ Ĉ in Example 4.2 (2)

AAAATAATA GCTCGTGGC GGTCCTTTA CGAGCACCG TCGTGCCGG
ATTAGCACG GCCTGCTCG GGCGGACCA GCACGAAAT CGCGAGCAC
GCGGTGCTC CCCTAATAA GGACCAGGC ACCAGGCGG GTGCTCGCG
GCCTGGTCC CCGGCACGA ACGAGCCGG GCACGAGGC CACGAGGCG
CTCGTGCGC ACCAGGGCC AATGGACCA TCCTGGTAA ACGAGCGCC
ATTTCCTGG TATCTGGTC ATACTCGTG CGGTGCTCG ACGAGCTAA
CGGTCCTGG GACCAGATA TTTTTTCCC GCGGAGCAC GGGATAATA
TTTAAAAAA TAATCGTGC TATTATGGG GTGCTCATA GGACCACCG
GCCACGAGC TCGTGCGCC TGGTCCTAA AGCACGCGG AGCACGTAA
ATTACGAGC TTTTATTAT CGCCAGGAC CTCGTGTAT GAGCACATA
CACGAGTAT TTATTAGGG CCCAAAAAA GGCGGTCCT CGCCTCGTG
TGGTCCATT TTTATTATT TGCTCGCGG ATTATTCCC TTATTAAAA
GCCAGGACC GGACCAAAT CTGGTCTAT GACCAGGCG TGGTCCCGG
CGGTGGTCC CGAGCAAAT TTTTTTTTT TCCTGGGCC TCCTGGCGG
GCGCTCGTG AATAATGGG GCGGTCCTG ATAGTGCTC TTAGCTCGT
TAAAGGACC TAATCCTGG AGGACCGCC TGCTCGGCC CCGGGTCCT
ATTAGGACC CGAGCAGGC AAAATTATT TATGTGCTC GCGCACGAG
GGTCCTCCG CCAGGAGGC CCTGGTGGC AAATAATAA AAAAAAGGG
TAAACGAGC TAATAAGGG TTTTTTAAA TATGAGCAC TCGTGCATT
TATTATCCC AAAAAAAAA TAAACCAGG AATGCACGA GGCGCTCGT
TTACGAGCA ATAGTCCTG GTCCTGATA GGCGCACGA TATCTCGTG
TAATGCTCG TAATGGTCC AGGACCTAA GACCAGCGC CCCTTATTA
TATGTCCTG AATCCTGGT GTCCTGGCG GCTCGTTTA CGGTCGTGC
CTGGTCCGC TATCACGAG GGACCATTA GGTCCTGGC GCCTCCTGG
CGCCTGGTC ATAATACCC AAATTTTTT GTGCTCTAT TGCTCGTAA
GGGTATTAT TTATTATTT TGCTCGATT CGCGTCCTG GCACGATTA
CCGCCTGGT CGCGTGCTC CACGAGATA GAGCACGCG AGGACCCGG
TTAGGTCCT CCCATTATT CTGGTCGCG TATTATAAA GGGATTATT
GGCCGTGCT AATAATCCC CAGGACATA TCCTGGATT CCGCCAGGA
GCGCAGGAC GCCTCGTGC CAGGACGCG TTAGCACGA AGCACGATT
ATTATTAAA GGGAAAAAA CCCTATTAT CGTGCTCCG AGCACGGCC
CCGGCTCGT ATTTGCTCG TAATAACCC GGCCCTGGT CGGACCAGG
CCTGGTAAT GTCCTGCGC ATTATTGGG CCAGGATTA AATGGTCCT
TTACCTGGT CCTGGTCCG CACGAGCGC ATAATAAAA AATAATAAA
CAGGACTAT AATCGAGCA TATGACCAG ATTTGGTCC GGCCCAGGA
CGTGCTAAT AATCCAGGA ACGAGCATT GTGCTCCGC ACCAGGTAA
GTCCTGTAT CGGAGCACG TATCAGGAC CGGACGAGC AAATATTAT
ATACAGGAC CCCTTTTTT CGAGCATTA TAATAAAAA ATAATAGGG
GCTCGTCCG GGTCCTAAT TTTTAATAA TTACGTGCT CGCGACCAG
CCGCGTGCT TATTATTTT ATACACGAG ATACTGGTC TTTTTATTA
TAAAGCACG ACCAGGATT TTTAATAAT GGCCGAGCA GGGTAATAA
TTACCAGGA GGGTTTTTT AATCGTGCT CAGGACCGC AGGACCATT
CCGCGAGCA CTCGTGATA CCAGGACCG ATTATTTTT AATGCTCGT
GCGGACCAG GAGCACTAT AAAAAATTT GGGAATAAT GCCACCAGG
GACCAGTAT GGGTTATTA TAATAATTT CGTGCTGGC CCCATAATA
CCCAATAAT TTATTACCC CTGGTCATA AAAAATAAT ATTACCAGG
TCGTGCTAA CCAGGAAAT AATAATTTT GCCAGCACG ATAGACCAG
CTCGTGGCG CGTGCTTTA ATAGAGCAC TTTATAATA AAATTATTA
TTTTTTGGG AAAAAACCC GCTCGTAAT TGGTCCGCC ATAATATTT
CGCCACGAG TTAGGACCA GCGCTGGTC GCACGACCG CCTGGTTTA
GAGCACCGC CCGGGACCA CGGAGGACC ATTTCGTGC
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