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Algorithmic and Analytical Approach for a System of
Generalized Multi-valued Resolvent Equations-Part I: Basic
Theory

JAVAD BALOOEE AND SULIMAN AL-HOMIDAN

ABSTRACT. The concept of resolvent operator associated with a P -η-accretive mapping is used in construct-
ing of a new iterative algorithm for solving a new system of generalized multi-valued resolvent equations in the
framework of Banach spaces. Some definitions along with some new concrete examples are provided. The main
result of this paper is to prove the Lipschitz continuity of the resolvent operator associated with a P -η-accretive
mapping and to compute an estimate of its Lipschitz constant under some new appropriate conditions imposed
on the parameters and mappings involved in it. In part II, the convergence analysis of the sequences generated
by our proposed iterative algorithm under some appropriate conditions is studied. The results presented in this
paper are new, and improve and generalize many known corresponding results.

1. INTRODUCTION

Since the beginning of the theory of variational inequalities in the 1960’s, originally
introduced for the study of partial differential equations by Hartman and Stampacchia
(1966), due to its wide applications in the study of a wide range of problems arising in
physics, mechanics, optimization and control, economics and transportation equilibrium,
nonlinear programming, elasticity and other branches of mathematical and engineering
sciences, see, for example [2, 3, 17, 21, 22, 25, 27, 28, 33], it has been intensively studied
and extended in various directions using novel and innovative techniques.

Among extensions of the variational inequality, the variational inclusion is among the
most interesting and in the past several years, a great deal of papers have been devoted
to the existence of solutions for various kinds of variational inclusion problems, see for
example [12, 13, 11, 5, 29, 1, 6, 7, 30] and the references therein. In order to provide
an efficient and implementable algorithm for solving different classes of variational in-
equality/inclusion problems, there has been considerable activity in the development of
numerical techniques. To achieve this purpose, during the last several decades, many
methods have been suggested and appeared in the literature to find solutions of various
kinds of variational inequality/inclusion problems. Among proposed methods and tech-
niques, it is well known that the resolvent operator technique is a useful and important
method such that in the last two decades, the technique of resolvent operators has be-
come more and more important and efficient and has attracted increasing attention. Due
to the above-mentioned facts, many considerable works concerning the development of
the methods based on different classes of resolvent operators to study the existence of
solution and to discuss convergence analysis of iterative algorithms of various kinds of
variational inclusions and their generalizations have been carried out, see, for example,
[12, 13, 11, 5, 29, 18, 34, 4, 23, 31, 32] and the references therein.
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Ding [10] and Huang and Fang [15] were the first to introduce classes of generalized
monotone operators, respectively, the so-called η-subdifferential operators and maximal
η-monotone operators. At the same time, the notion of generalized m-accretive mapping
(also referred to as η-m-accretive or η-m-accretive mapping in the literature), which is
a generalization of m-accretive mapping, was first introduced by Huang and Fang [16].
By defining the resolvent operator associated with a generalized m-accretive mapping,
they gave some properties regarding it in the framework of Banach spaces. Subsequently,
Fang and Huang [12], Fang et al. [13], Fang and Huang [11], and Kazmi and Khan [20]
have introduced the concepts of H-monotone operators and (H, η)-monotone operators
in Hilbert spaces, H-accretive operators and P -η-accretive operators in Banach spaces,
and their associated resolvent operators, respectively. They have also employed the re-
solvent operators associated with the generalized monotone operators mentioned above
to construct iterative algorithms for finding the approximate solution of various kinds of
variational inclusion problems. It is worth noting that in most of the resolvent operator
methods, the maximal monotonicity has played a key role, but recently introduced con-
cepts of H-monotonicity, H-accretivity, (H, η)-monotonicity and P -η-accretivity have not
only generalized, respectively, the maximal monotonicity and maximal η-monotonicity,
but provided a new edge of resolvent operator techniques.

It is well known that the projection method and its variant forms have represented
an important computation technique for computing the approximate solution and vari-
ous classes of variational inequalities and their generalizations. Another important and
significant generation of variational inequalities is the mixed variational inequality con-
taining a nonlinear term. Unfortunately, the projection method could not be applied to
construct iterative algorithms for solving mixed variational inequality problems due to
the existence of a nonlinear term in their formulations. As a matter of fact, since it is hard
to find the project except in very special cases, the applicability of the projection method
is limited. There is a technique due to Noor and Noor [26] for solving mixed variational
inequalities, in which based on the resolvent operator, the equivalence between the vari-
ational inequalities and the resolvent equations has first been established and then the
obtained equivalence has been used in the construct of iterative algorithms for solving
various classes of mixed variational inequalities, for more details, see for example [20]
and the references therein.

In the next section we begin by introducing some preliminary notions. We define η-
accretive, strictly η-accretive, r-strongly η-accretive, %-Lipschitz continuous, k-strongly η-
accretive and generalized m-accretive (or η-m-accretive) for vector-valued mapping and
multi-valued mapping. These definitions are illustrated by three examples. In Section
3, under some new appropriate conditions imposed on the parameters and mappings
involved in the resolvent operator associated with a P -η-accretive mapping, its Lipschitz
continuity is proved and an estimate of its Lipschitz constant is computed. This assertion
will play a key role in obtaining main results given in part II.

2. PRELIMINARY NOTIONS AND RESULTS

In order to make the paper self-contained we begin by introducing some preliminary
notions. Consider E a real Banach space and E∗ its topological dual space. For the sake
of simplicity, the norms in E and E∗ will be designated by the same symbol ‖.‖, and the
metric induced by the norm ‖.‖will be denoted by d. As usual, the notation x∗ stands for
the weak* topology in E∗, while by 〈x, x∗〉 we denote the value of the inner continuous
functional x∗ ∈ E∗ at x ∈ E. We also use the symbol CB(E) (resp. 2E) to represent the
set of all nonempty closed and bounded (resp., all nonempty) subsets of E. We define the
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graph and range of a given multi-valued mapping M : E → 2E by

Graph(M) := {(x, u) ∈ E × E : u ∈M(x)}

and

Range(M) := {y ∈ E : ∃x ∈ E : (x, y) ∈ Graph(M)} =
⋃
x∈E

M(x),

respectively. We shall denote by SE andBE respectively the unite sphere and the unit ball
in E.

Let us recall that a normed space E is called strictly convex if SE is strictly convex,
that is, the inequality ‖x + y‖ < 2 holds for all distinct unit vectors x and y in E. It
is said to be smooth if for every vector x in E there exists a unique x∗ ∈ E∗ such that
‖x∗‖ = 〈x, x∗〉 = 1.

It is known that E is smooth if E∗ is strictly convex, and that E is strictly convex if E∗

is smooth.

Definition 2.1. A normed space E is said to be uniformly convex if for any given ε > 0 there
exists δ > 0 such that for all x, y ∈ BE with ‖x−y‖ ≥ ε the inequality ‖x+y‖ ≤ 2(1−δ) holds.

The modulus of convexity of E is a function δE : [0, 2]→ [0, 1] defined in the following
way:

δE(ε) = inf{1− ‖x+ y‖
2

: x, y ∈ BE , ‖x− y‖ ≥ ε}.

It should be pointed out that in the definition of δE(ε) we can as well take the infimum
over all vectors x, y ∈ SE with ‖x − y‖ = ε, see for example [8]. The functional δE is
continuous and increasing on the interval [0, 2] and δE(0) = 0. Obviously, invoking the
definition of the function δE , a normed space E is uniformly convex if δE(ε) > 0 for every
ε ∈ (0, 2]. For any Banach space E, its modulus of convexity is bounded from above by

the modulus of convexity of a Hilbert spaceH, δE(ε) ≤ δH(ε) = 1−
√

1− ε2

4 . This means
that Hilbert spaces are the most convex among all Banach spaces.

Definition 2.2. A normed space E is called uniformly smooth if for any given ε > 0 there exists
τ > 0 such that for all x, y ∈ E with ‖x‖ ≤ 1 and ‖y‖ ≤ τ , the inequality ‖x+ y‖+ ‖x− y‖ ≤
2 + ε‖y‖ holds.

The function ρE : [0,+∞)→ [0,+∞) defined by the formula

ρE(τ) = sup{1

2
(‖x+ τy‖+ ‖x− τy‖)− 1 : x, y ∈ SE}

is called the modulus of smoothness of E. Note, in particular, that the function ρE is
convex, continuous and increasing on the interval [0,+∞) and ρE(0) = 0. In addition
ρE(τ) ≤ τ for all τ ≥ 0. In the light of the definition of the function ρE , a normed space is
uniformly smooth if lim

τ→0
τ−1ρE(τ) = 0.

Any uniformly convex and any uniformly smooth Banach space is reflexive. A Banach
space E is uniformly convex (resp., uniformly smooth) if and only if E∗ is uniformly
smooth (resp., uniformly convex). The spaces lp, Lp and W p

m, 1 < p < ∞, m ∈ N, are
uniformly convex as well as uniformly smooth, see [24, 9, 14]. At the same time, the
modulus of convexity and smoothness of a Hilbert space and the spaces lp, Lp and W p

m,
1 < p <∞, m ∈ N, can be found in [24, 9, 14].

Let us recall that the normalized duality mapping F : E → 2E
∗

is defined by

F(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖‖f‖, ‖x‖ = ‖f‖}, ∀x ∈ E.
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We observe immediately that if E = H, a Hilbert space, then F is the identity mapping on
H. Furthermore, it is an immediate consequence of the Hahn-Banach theorem that F(x) is
nonempty for each x ∈ E. In the sequel, the notation j will be used to represent a selection
of the normalized duality mapping F .

Definition 2.3. Let P : E → E and η : E × E → E be two vector-valued mappings and
F : E → 2E

∗
be the normalized duality mapping. Then P is said to be

(i) η-accretive if,

〈P (x)− P (y), j(η(x, y))〉 ≥ 0, ∀x, y ∈ E, j(η(x, y)) ∈ F(η(x, y));

(ii) strictly η-accretive if, P is η-accretive and equality holds if and only if x = y;
(iii) r-strongly η-accretive if there exists a constant r > 0 such that

〈P (x)− P (y), j(η(x, y))〉 ≥ r‖x− y‖2, ∀x, y ∈ E, j(η(x, y)) ∈ F(η(x, y));

(iv) %-Lipschitz continuous if there exists a constant % > 0 such that

‖P (x)− P (y)‖ ≤ %‖x− y‖, ∀x, y ∈ E.

It should be pointed that if η(x, y) = x− y, for all x, y ∈ E, then parts (i) to (iii) of Defi-
nition 2.3 reduce to the definitions of accretivity, strict accretivity and strong accretivity of
the mapping P , respectively.

Definition 2.4. Let η : E×E → E be a vector-valued mapping, M : E → 2E be a multi-valued
mapping, and let F : E → 2E

∗
be the normalized duality mapping. Then M is said to be

(i) η-accretive if

〈u− v, j(η(x, y))〉 ≥ 0, ∀(x, u), (y, v) ∈ Graph(M), j(η(x, y)) ∈ F(η(x, y));

(ii) strictly η-accretive if, M is η-accretive and equality holds if and only if x = y;
(iii) k-strongly η-accretive if there exists a constant k > 0 such that

〈u− v, j(η(x, y))〉 ≥ k‖x− y‖2, ∀(x, u), (y, v) ∈ Graph(M),

j(η(x, y)) ∈ F(η(x, y));

(iv) generalized m-accretive (or η-m-accretive) if M is η-accretive and (I + ρM)(E) = E
holds for every real constant ρ > 0, where I stands for identity mapping.

It should be remarked that if η(x, y) = x − y for all x, y ∈ E, then parts (i) to (iv) of
Definition 2.4 reduce to the definitions of accretivity, strict accretivity, strong accretivity
and m-accretivity of the mapping M , respectively.

We note that M is a generalized m-accretive (or η-m-accretive) mapping if and only if
M is η-accretive and there is no other η-accretive mapping whose graph contains strictly
Graph(M). The generalized m-accretivity is to be understood in terms of inclusion of
graphs. If M : E → 2E is a generalized m-accretive mapping, then adding anything to its
graph so as to obtain the graph of a new multi-valued mapping, destroys the η-accretivity.
In fact, the extended mapping is no longer η-accretive. In other words, for every pair
(x, u) ∈ E × E\Graph(M) there exist (y, v) ∈ Graph(M) and j(η(x, y)) ∈ F(η(x, y)) such
that 〈u − v, j(η(x, y))〉 < 0. In the light of the above-mentioned discussion, a necessary
and sufficient condition for a multi-valued mapping M : E → 2E to be generalized m-
accretive is that for any (x, u) ∈ E × E, the property

〈u− v, j(η(x, y))〉 ≥ 0, ∀(y, v) ∈ Graph(M), j(η(x, y)) ∈ F(η(x, y))

is equivalent to (x, u) ∈ Graph(M). The above characterization of generalizedm-accretive
mappings provides us a useful and manageable way for recognizing that an element u
belongs to M(x).
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Definition 2.5. Let P : E → E and η : E × E → E be vector-valued mappings, and M :
E → 2E be a multi-valued mapping. M is said to be P -η-accretive if M is η-accretive and
(P + ρM)(E) = E holds for every real constant ρ > 0.

Note, in particular, that for the case when η(x, y) = x−y for all x, y ∈ E, then Definition
2.5 reduces to the definition of P -accretivity of the mapping M . The following example
shows that for given mappings η : E × E → E and P : E → E, a P -η-accretive mapping
may be neither P -accretive nor generalized m-accretive (or η-m-accretive).

Example 2.1. Let φ : Z → (0,+∞) and consider the complex linear space l2φ(Z), the
weighted l2(Z) space, consisting of all bi-infinite complex sequences such that

l2φ(Z) = {z = {zn}∞n=−∞ :

∞∑
n=−∞

|zn|2φ(n) <∞, zn ∈ C}.

It is a well known that l2φ(Z) with respect to the inner product 〈., .〉 : l2φ(Z) × l2φ(Z) → C
defined by

〈z, w〉 =

∞∑
n=−∞

znw̄nφ(n), ∀z = {zn}∞n=−∞, w = {wn}∞n=−∞ ∈ l2φ(Z),

is a Hilbert space. The inner product defined above induces a norm on l2φ(Z) as follows:

‖z‖l2φ(Z) =
√
〈z, z〉 = (

∞∑
n=−∞

|zn|2φ(n))
1
2 , ∀z = {zn}∞n=−∞ ∈ l2φ(Z).

Any element z = {zn}∞n=−∞ = {xn + iyn}∞n=−∞ ∈ l2φ(Z) can be written as

z =
∑

s∈{±1,±3,... }

[
(. . . , 0, 0, . . . , 0, x2s−1 + iy2s−1, 0, x2s+1 + iy2s+1, 0, 0, . . . )

+ (. . . , 0, 0, . . . , 0, x2s + iy2s, 0, x2s+2 + iy2s+2, 0, 0, . . . )
]

=
∑

s∈{±1,±3,... }

[y2s−1 + y2s+1 − i(x2s−1 + x2s+1)

2
ω2s−1,2s+1

+
y2s−1 − y2s+1 − i(x2s−1 − x2s+1)

2
ω′2s−1,2s+1

+
y2s + y2s+2 − i(x2s + x2s+2)

2
ω2s,2s+2

+
y2s − y2s+2 − i(x2s − x2s+2)

2
ω′2s,2s+2

]
,

where for each s ∈ {±1,±3, . . . }, ω2s−1,2s+1 = (. . . , 0, 0, . . . , 0, i2s−1, 0, i2s+1, 0, 0, . . . ),
with i in the (2s−1)th and (2s+1)th positions and 0’s elsewhere, ω′2s−1,2s+1 = (. . . , 0, 0, . . . , 0, i2s−1, 0,−i2s+1, 0,
0, . . . ), i and −i at the (2s− 1)th and (2s+ 1)th coordinates, respectively, and all other co-
ordinates are zero, ω2s,2s+2 = (. . . , 0, 0, . . . , 0, i2s, 0, i2s+2, 0, 0, . . . ), with i in the (2s)th and
(2s+ 2)th positions and 0’s elsewhere, ω′2s,2s+2 = (. . . , 0, 0, . . . , 0, i2s, 0,−i2s+2, 0, 0, . . . ), i
and −i at the (2s)th and (2s+ 2)th coordinates, respectively, and all other coordinates are
zero. Hence, the set

B = {ω2s−1,2s+1, ω
′
2s−1,2s+1, ω2s,2s+2, ω

′
2s,2s+2 : s = ±1,±3, . . . }
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spans the Banach space l2φ(Z). It is easy to see that the set B is linearly independent and
so it is a basis for l2φ(Z). Taking

v2s−1,2s+1 = (. . . , 0, 0, . . . , 0,
1√

2φ(2s− 1)
i2s−1, 0,

1√
2φ(2s+ 1)

i2s+1, 0, 0, . . . )

v′2s−1,2s+1 = (. . . , 0, 0, . . . , 0,
1√

2φ(2s− 1)
i2s−1, 0,−

1√
2φ(2s+ 1)

i2s+1, 0, . . . )

v2s,2s+2 = (. . . , 0, 0, . . . , 0,
1√

2φ(2s)
i2s, 0,

1√
2φ(2s+ 2)

i2s+2, 0, 0, . . . )

and

v′2s,2s+2 = (. . . , 0, 0, . . . , 0,
1√

2φ(2s)
i2s, 0,−

1√
2φ(2s+ 2)

i2s+2, 0, 0, . . . )

for each s ∈ {±1,±3, . . . }, it can be easily seen that the set

{v2s−1,2s+1, v
′
2s−1,2s+1, v2s,2s+2, v

′
2s,2s+2 : s = ±1,±3, . . . }

is also linearly independent such that

‖v2s−1,2s+1‖l2
φ(Z)

= ‖v′2s−1,2s+1‖l2φ(Z) = ‖v2s,2s+2‖l2
φ(Z)

= ‖v′2s,2s+2‖l2φ(Z) = 1.

Let the mappings M : l2φ(Z) → 2l
2
φ(Z), η : l2φ(Z) × l2φ(Z) → l2φ(Z) and P : l2φ(Z) → l2φ(Z) be

defined, respectively, by

M(z) =

{
Ψ, z = v2t,2t+2,

−z +
{√

ln(n2+1)
4(2n4−1)φ(n) + i

√
ln(n2+1)

4(2n4−1)φ(n)

}∞
n=−∞

, z 6= v2t,2t+2,

η(z, w) =

{
α(w − z), z, w 6= v2t,2t+2,
0, otherwise,

and P (z) = βz + γ
{√

ln(n2+1)
4(2n4−1)φ(n) + i

√
ln(n2+1)

4(2n4−1)φ(n)

}∞
n=−∞

, for all z, w ∈ l2φ(Z), where

Ψ = {v2s−1,2s+1 − v2t,2t+2, v
′
2s−1,2s+1 − v2t,2t+2, v2s,2s+2 − v2t,2t+2,

v′2s,2s+2 − v2t,2t+2 : s = ±1,±3, . . . },

α, β, γ ∈ R are arbitrary constants such that β < 0 < α, t ∈ {±1,±3, . . . } is chosen

arbitrarily but fixed, and 0 is the zero vector of the space l2φ(Z). Since
∞∑

n=−∞

ln(n2+1)
2n4−1 =

2
∞∑
n=1

ln(n2+1)
2n4−1 and

∞∑
n=1

ln(n2+1)
2n4−1 is convergent, it follows that

∞∑
n=−∞

ln(n2+1)
2n4−1 <∞ and so

{√ ln(n2 + 1)

4(2n4 − 1)φ(n)
+ i

√
ln(n2 + 1)

4(2n4 − 1)φ(n)

}∞
n=−∞

∈ l2φ(Z).

Taking into account that E = l2φ(Z) is a Hilbert space, we conclude that the normalized
duality mapping F is the identity mapping on l2φ(Z). Then, for all z, w ∈ l2φ(Z), z 6= w 6=
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v2t,2t+2 and j(z − w) ∈ F(z − w), we have

〈M(z)−M(w), j(z − w)〉 = 〈M(z)−M(w), z − w〉

= 〈−z +
{√ ln(n2 + 1)

4(2n4 − 1)φ(n)
+ i

√
ln(n2 + 1)

4(2n4 − 1)φ(n)

}∞
n=−∞

+ w −
{√ ln(n2 + 1)

4(2n4 − 1)φ(n)
+ i

√
ln(n2 + 1)

4(2n4 − 1)φ(n)

}∞
n=−∞

, z − w〉

= 〈w − z, z − w〉 = −‖z − w‖2l2φ(Z) = −
∞∑

n=−∞
|zn − wn|2φ(n) < 0,

i.e., M is not accretive and so M is not P -accretive. For any given z, w ∈ l2φ(Z), z 6= w 6=
v2t,2t+2 and j(η(z, w)) ∈ F(η(z, w)), we yield

〈M(z)−M(w), j(η(z, w))〉 = 〈M(z)−M(w), η(z, w)〉

= 〈−z +
{√ ln(n2 + 1)

4(2n4 − 1)φ(n)
+ i

√
ln(n2 + 1)

4(2n4 − 1)φ(n)

}∞
n=−∞

+ w −
{√ ln(n2 + 1)

4(2n4 − 1)φ(n)
+ i

√
ln(n2 + 1)

4(2n4 − 1)φ(n)

}∞
n=−∞

, α(w − z)〉

= α〈w − z, w − z〉 = α‖w − z‖2l2φ(Z) = α

∞∑
n=−∞

|zn − wn|2φ(n) > 0.

For each of the cases when z 6= w = v2t,2t+2, w 6= z = v2t,2t+2 and z = w = v2t,2t+2, thanks
to the fact that η(z, w) = 0, for all j(η(z, w)) ∈ F(η(z, w)), we deduce that

〈u− v, j(η(z, w))〉 = 〈u− v, η(z, w)〉 = 0,

for all u ∈ M(z) and v ∈ M(w). Hence, M is an η-accretive mapping. For any z ∈ l2φ(Z),
z 6= v2t,2t+2, we have

‖(I +M)(z)‖2l2φ(Z) = ‖
{√ ln(n2 + 1)

4(2n4 − 1)φ(n)
+ i

√
ln(n2 + 1)

4(2n4 − 1)φ(n)

}∞
n=−∞

‖2l2φ(Z)

=

∞∑
n=−∞

ln(n2 + 1)

2(2n4 − 1)
> 0

and

(I +M)(v2t,2t+2) = {v2s−1,2s+1, v
′
2s−1,2s+1, v2s,2s+2, v

′
2s,2s+2 : s = ±1,±3, . . . },

where I is the identity mapping on E = l2φ(Z). Accordingly, 0 /∈ (I + M)(l2φ(Z)). Thus,
I + M is not surjective, consequently, M is not a generalized m-accretive mapping. For

any ρ > 0 and z ∈ l2φ(Z), taking w = 1
β−ρz + γ+ρ

ρ−β

{√
ln(n2+1)

4(2n4−1)φ(n) + i
√

ln(n2+1)
4(2n4−1)φ(n)

}∞
n=−∞

(ρ 6= β, because β < 0), we have

(P + ρM)(w) = (P + ρM)(
1

β − ρ
z +

γ + ρ

ρ− β

{√ ln(n2 + 1)

4(2n4 − 1)φ(n)

+ i

√
ln(n2 + 1)

4(2n4 − 1)φ(n)

}∞
n=−∞

) = z.
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Therefore, for any ρ > 0, the mapping P + ρM is surjective and so M is a P -η-accretive
mapping.

Denoting the set of all functions φ : Z→ (0, 1] by Φ and l2Φ = {l2φ(Z) : φ ∈ Φ}, it is easy
to see that l2(Z) ⊆ l2φ(Z) for each φ ∈ Φ so that for some φ0 ∈ Φ, we have l2(Z) ⊂ l2φ0

(Z),
that is, l2(Z) is strictly contained within l2φ0

(Z). We recall that

l2(Z) = {x = {xn}∞n=−∞ :

∞∑
n=−∞

|xn|2 <∞, xn ∈ F = R or C}

denotes the real or complex linear space consisting of all bi-infinite real or complex se-
quences x = {xn}∞n=−∞, for which ‖x‖l2(Z) < ∞. It goes without saying that if φ(n) = 1

for all n ∈ Z, then the weight space l2φ(Z) coincides exactly with the linear space l2(Z). It
should be pointed out that the two Hilbert spaces l2(Z) and l2φ(Z) need not be the same
for all φ ∈ Φ. In order to show this assertion, we consider the two cases when F = R or C.

If F = R, letting xn =
√
n2 +

3
√
n2 for all n ∈ Z, we have

∞∑
n=−∞

|xn|2 =
∞∑

n=−∞
(n2 +

3
√
n2) =

2
∞∑
n=1

(n2 +
3
√
n2) = ∞, i.e., x = {xn}∞n=−∞ /∈ l2(Z). Defining φ1 : Z → (0,+∞) by

φ1(n) = 1
2n8+1 for all n ∈ Z, we have φ1 ∈ Φ and

∞∑
n=−∞

|xn|2φ1(n) =

∞∑
n=−∞

n2 +
3
√
n2

2n8 + 1
= 2

∞∑
n=1

n2 +
3
√
n2

2n8 + 1
.

Since the series
∞∑
n=1

n2+
3√
n2

2n8+1 is convergent, it follows that x ∈ l2φ1
(Z). For the case when

F = C, letting zn =
√

nk!
2 + i

√
nk!
2 for all n ∈ Z, where k is an arbitrary but fixed even

natural number, we infer that
∞∑

n=−∞
|zn|2 =

∞∑
n=−∞

nk! =∞, that is, z = {zn}∞n=−∞ /∈ l2(Z).

Now, let us assume that the function φ2 : Z→ (0,+∞) is defined by φ2(n) = 1
nk!(np+q)

for
all n ∈ Z, where p ≥ 2 is an arbitrary but fixed even natural number and q is an arbitrary
positive real constant. Then, it can be easily observed that φ2 ∈ Φ and

∞∑
n=−∞

|zn|2φ2(n) =

∞∑
n=−∞

1

np + q
=

1

q
+ 2

∞∑
n=1

1

np + q
.

In virtue of the fact that
∞∑
n=1

1
np+q is convergent, we deduce that z = {zn}∞n=−∞ ∈ l2φ2

(Z).

Thereby, for some φ ∈ Φ, l2φ(Z) is a proper superset of the Hilbert space l2(Z).

Example 2.2. Let m,n ∈ N and Mm×n(F) be the space of all m × n matrices with real or
complex entries. Then

Mm×n(F) = {A =
(
aij

)
|aij ∈ F, i = 1, 2, . . . ,m; j = 1, 2, . . . , n;F = R or C}

is a Hilbert space with respect to the Hilbert-Schmidt norm

‖A‖ =
( m∑
i=1

n∑
j=1

|aij |2
) 1

2 , ∀A ∈Mm×n(F)

induced by the Hilbert-Schmidt inner product

〈A,B〉 = tr(A∗B) =

m∑
i=1

n∑
j=1

āijbij , ∀A,B ∈Mm×n(F),
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where tr denotes the trace, that is, the sum of the diagonal entries, and A∗ denotes the
Hermitian conjugate (or adjoint) of the matrix A, that is, A∗ = At, the complex conjugate
of the transpose A, and the bar denotes complex conjugation and superscript denotes the
transpose of the entries. Let us denote by Dn(R) the space of all diagonal n × n matrices
with real entries, that is, the (i, j)-entry is an arbitrary real number if i = j, and is zero if
i 6= j. Then

Dn(R) = {A =
(
aij

)
|aij ∈ R, aij = 0 if i 6= j; i, j = 1, 2, . . . , n}

is a subspace of Mn×n(R) = Mn(R) with respect to the operations of addition and scalar
multiplication defined on Mn(R), and the Hilbert-Schmidt inner product on Dn(R), and
the Hilbert-Schmidt norm induced by it become as

〈A,B〉 = tr(A∗B) = tr(AB)

and

‖A‖ =
√
〈A,A〉 =

√
tr(AA) =

( n∑
i=1

a2
ii

) 1
2 ,

respectively. Let us now define the mappingsP1, P2,M : Dn(R)→ Dn(R) and η : Dn(R)×
Dn(R) → Dn(R), respectively, as P1(A) = P1(

(
aij

)
) =

(
a′ij

)
, P2(A) = P2(

(
aij

)
) =(

a′′ij
)
, M(A) = M(

(
aij

)
) =

(
a′′′ij

)
and η(A,B) = η(

(
aij

)
,
(
bij

)
) =

(
cij

)
for

all A =
(
aij

)
, B =

(
bij

)
∈ Dn(R), where for each i, j ∈ {1, 2, . . . , n},

a′ij =

{
|aii − α| − |aii − β| − % k

√
sin aii, i = j,

0, i 6= j,

a′′ij =

{
aii + sin(γaii + µ), i = j,
0, i 6= j,

a′′′ij =

{
% k
√

sin aii, i = j,
0, i 6= j,

and

cij =

{
ςλσaiibii(sin aii − sin bii), i = j,
0, i 6= j,

α, β, σ, µ ∈ R, γ ∈ R\{0}, %, ς > 0 and λ > 1 are arbitrary real constants, and k is an
arbitrary but fixed odd natural number. Since Dn(R) is a Hilbert space, it follows that
the normalized duality mapping F is the identity mapping on Dn(R). Then, for any
A =

(
aij

)
, B =

(
bij

)
∈ Dn(R) and j(η(A,B)) ∈ F(η(A,B)), we yield

〈M(A)−M(B), j(η(A,B))〉 = 〈M(A)−M(B), η(A,B)〉

= tr
( (

a′′′ij − b′′′ij
) (

cij
) )

= %ς

n∑
i=1

( k
√

sin aii − k
√

sin bii)λ
σaiibii(sin aii − sin bii).

For any i ∈ {1, 2, . . . , n},
(i) if aii = bii = 0, then

( k
√

sin aii − k
√

sin bii)(sin aii − sin bii) = 0;

(ii) if aii 6= 0 and bii = 0, then

( k
√

sin aii − k
√

sin bii)(sin aii − sin bii) = sin aii
k
√

sin aii =
k

√
sink+1 aii;
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(iii) if aii = 0 and bii 6= 0, then

( k
√

sin aii − k
√

sin bii)(sin aii − sin bii) = sin bii
k
√

sin bii =
k

√
sink+1 bii;

(iv) if aii, bii 6= 0, then

k
√

sin aii − k
√

sin bii =
sin aii − sin bii

k∑
j=1

k
√

sink−j aii sinj−1 bii

.

Since k is an odd natural number, it follows that k
√

sink+1 aii,
k
√

sink+1 bii > 0 and
k∑
j=1

k
√

sink−j aii sinj−1 bii >

0. These facts imply that

( k
√

sin aii − k
√

sin bii)(sin aii − sin bii) > 0

and
n∑
i=1

( k
√

sin aii − k
√

sin bii)(sin aii − sin bii) =

n∑
i=1

(sin aii − sin bii)
2

k∑
j=1

k
√

sink−δ aii sinδ−1 bii

> 0.

Taking into account that %, ς > 0 and λ > 1, relying on the above-mentioned arguments,
we deduce that for all A =

(
aij

)
, B =

(
bij

)
∈ Dn(R) and j(η(A,B)) ∈ F(η(A,B)),

〈M(A)−M(B), j(η(A,B))〉

= %ς

n∑
i=1

( k
√

sin aii − k
√

sin bii)λ
σaiibii(sin aii − sin bii)

= %ς

n∑
i=1

λσaiibii(sin aii − sin bii)
2

k∑
j=1

k
√

sink−j aii sinj−1 bii

≥ 0,

which means that M is an η-accretive mapping.
Let f : R→ R be a function defined by f(x) := |x− α| − |x− β| for all x ∈ R. Then, for

any A =
(
aij

)
∈ Dn(R), yields

(P1 +M)(A) = (P1 +M)(
(
aij

)
) =

(
a′ij + a′′′ij

)
=
(
âij

)
,

where for each i, j ∈ {1, 2, . . . , n},

âij =

{
|aii − α| − |aii − β|, i = j,
0, i 6= j,

=

{
f(aii), i = j,
0, i 6= j.

Considering the fact that f(R) = [−|α − β|, |α − β|], it follows that (P1 + M)(Dn(R)) 6=
Dn(R), which ensures that the mapping P1 + M is not surjective, and so M is not a P1-
η-accretive mapping. Now, suppose that the real constant ρ > 0 is chosen arbitrarily but
fixed and let the function g : R→ R be defined by g(x) := x+ sin(γx+ µ) + ρ% k

√
sinx, for

all x ∈ R. Then, for any A =
(
aij

)
∈ Dn(R), we obtain

(P2 + ρM)(A) = (P2 + ρM)(
(
aij

)
) =

(
a′′ij + ρa′′′ij

)
=
(
ãij

)
,

where for each i, j ∈ {1, 2, . . . , n},

ãij =

{
aii + sin(γaii + µ) + ρ% k

√
sin aii, i = j,

0, i 6= j,
=

{
g(aii), i = j,
0, i 6= j.
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Thanks to the fact that g(R) = R, we conclude that (P2 + ρM)(Dn(R)) = Dn(R), that is,
P2 + ρM is a surjective mapping. Taking into account the arbitrariness in the choice of
ρ > 0, it follows that M is a P2-η-accretive mapping.

The following example illustrates that for given mappings P : E → E and η : E×E →
E, a generalized m-accretive mapping need not be P -η-accretive.

Example 2.3. Assume thatH2(C) is the set of all Hermitian matrices with complex entries.
Let us recall that a square matrix A is said to be Hermitian (or self-adjoint) if it is equal
to its own Hermitian conjugate, i.e., A∗ = At = A. In the light of the definition of a

Hermitian 2× 2 matrix, the condition A∗ = A implies that the 2× 2 matrix A =

(
a b
c d

)
is Hermitian iff a, d ∈ R and b = c̄. Consequently,

H2(C) =
{( z x− iy

x+ iy w

)
|x, y, z, w ∈ R

}
.

Then, H2(C) is a subspace of M2(C), the space of all 2× 2 matrices with complex entries,
with respect to the operations of addition and scalar multiplication defined on M2(C),
when M2(C) is considered as a real vector space. By considering the scalar product on
H2(C) as 〈A,B〉 := 1

2 tr(AB), for all A,B ∈ H2(C), it is not hard to see that 〈., .〉 is an inner
product, that is, (H2(C), 〈., .〉) is an inner product space. The inner product defined above
induces a norm on H2(C) as follows:

‖A‖ =

√
1

2
tr(AA) =

{1

2
tr
(( x2 + y2 + z2 (z + w)(x− iy)

(z + w)(x+ iy) x2 + y2 + w2

))} 1
2

=

√
x2 + y2 +

1

2
(z2 + w2), ∀A ∈ H2(C).

Taking into account that every finite dimensional normed space is a Banach space, it fol-
lows that (H2(C), ‖.‖) is a Hilbert space. Suppose that the mappings P,M : H2(C) →
H2(C) and η : H2(C)×H2(C)→ H2(C) are defined, respectively, by

P (A) = P
((

z x− iy
x+ iy w

))
=

(
αz2k x2 − iy2

x2 + iy2 σ + δ sinl w

)
,

M(A) = M
((

z x− iy
x+ iy w

))
=

(
αzk x− iy
x+ iy β

γ+θ sinq w

)
and

η(A,B) = η
((

z x− iy
x+ iy w

)
,

(
ẑ x̂− iŷ

x̂+ iŷ ŵ

))
=

(
%es(w+ŵ)(zp − ẑp) x− x̂− i(y − ŷ)
x− x̂+ i(y − ŷ) ξ cosm z cosm ẑ(sinq ŵ − sinq w)

)
,

for all A =

(
z x− iy

x+ iy w

)
, B =

(
ẑ x̂− iŷ

x̂+ iŷ ŵ

)
∈ H2(C), where s, σ ∈ R are

arbitrary constants, α, β, γ, θ, %, ξ, t and δ are positive real constants, k and p are two ar-
bitrary but fixed odd natural numbers, and m, q, l are arbitrary but fixed even natural
numbers.

Then, for any A =

(
z1 x1 − iy1

x1 + iy1 w

)
, B =

(
z2 x2 − iy2

x2 + iy2 w2

)
∈ H2(C), we

get
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〈M(A)−M(B), j(η(A,B))〉 = 〈M(A)−M(B), η(A,B)〉

=
1

2
tr
(( α(zk1 − zk2 ) x1 − x2 − i(y1 − y2)

x1 − x2 + i(y1 − y2) βθ(sinq w2−sinq w1)
(γ+θ sinq w1)(γ+θ sinq w2)

)
,(

%es(w1+w2)(zp1 − z
p
2) x1 − x2 − i(y1 − y2)

x1 − x2 + i(y1 − y2) ξ cosm z1 cosm z2(sinq w2 − sinq w1)

))
=

1

2
tr
((

Ω11 Ω12

Ω21 Ω22

))
=
α%

2
(z1 − z2)2es(w1+w2)(

k∑
r=1

zk−r1 zr−1
2 )(

p∑
t=1

zp−t1 zt−1
2 ) + (x1 − x2)2

+ (y1 − y2)2 +
βθξ cosm z1 cosm z2(sinq w2 − sinq w1)2

2(γ + θ sinq w1)(γ + θ sinq w2)
,

where

Ω11 = α%(z1 − z2)2es(w1+w2)(

k∑
r=1

zk−r1 zr−1
2 )(

p∑
t=1

zp−t1 zt−1
2 )

+ (x1 − x2)2 + (y1 − y2)2,

Ω12 = (x1 − x2 − i(y1 − y2))(α(zk1 − zk2 ) + ξ cosm z1 cosm z2(sinq w2 − sinq w1),

Ω21 = (x1 − x2 + i(y1 − y2))(%es(w1+w2)(zp1 − z
p
2)

+
βθ(sinq w2 − sinq w1)

(γ + θ sinq w1)(γ + θ sinq w2)
,

Ω22 = (x1 − x2)2 + (y1 − y2)2 +
βθξ cosm z1 cosm z2(sinq w2 − sinq w1)2

(γ + θ sinq w1)(γ + θ sinq w2)
.

Owing to the fact that k and p are odd natural numbers, it can be easily observed that
k∑
r=1

zk−r1 zr−1
2 ≥ 0 and

p∑
t=1

zp−t1 zt−1
2 ≥ 0. Since α, β, γ, θ, ξ, % > 0, m and q are even natural

numbers, and A 6= B, from the latter relation it follows that

〈M(A)−M(B), j(η(A,B))〉 ≥ 0, ∀A,B ∈ H2(C), j(η(A,B)) ∈ F(η(A,B)),

that is, M is an η-accretive mapping.
Let us now define the functions f, g, h : R → R as f(τ) = α(τ2k + τk) = ατk(τk + 1),

g(τ) = σ + δ sinl τ + β
γ+θ sinq τ and h(τ) = τ2 + τ for all τ ∈ R. Then, for any A =(

z x− iy
x+ iy w

)
∈ H2(C), we derive that

(P +M)(A) = (P +M)
(( z x− iy

x+ iy w

))

=

(
αzk(zk + 1) x2 + x− i(y2 + y)

x2 + x+ i(y2 + y) σ + δ sinl w + β
γ+θ sinq w

)
=

(
f(z) h(x)− ih(y)

h(x) + ih(y) g(w)

)
.
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Taking into account consideration the fact that k is an odd natural number, it is easy to see
that f(R) 6= R. Since

g(τ) = σ + δ sinl τ +
β

γ + θ sinq τ
≥ σ +

β

γ + θ

and

h(τ) = τ2 + τ = (τ +
1

2
)2 − 1

4
≥ −1

4
,

it follows that g(R) = [σ(γ+θ)+β
γ+θ ,+∞) 6= R and h(R) = [− 1

4 ,+∞) 6= R. The above-
mentioned arguments imply that (P+M)(H2(C)) 6= H2(C), that is, P+M is not surjective,
consequently, M is not P -η-accretive. Now, let ρ > 0 be an arbitrary positive real constant
and suppose that the mappings f̃ , g̃, h̃ : R → R are defined for all τ ∈ R by f̃(τ) :=

τ + ρατk, g̃(τ) := τ + ρβ
γ+θ sinq τ and h̃(τ) := (1 + ρ)τ , respectively. Then, for any A =(

z x− iy
x+ iy w

)
∈ H2(C), we have

(I + ρM)(A) = (I + ρM)
(( z x− iy

x+ iy w

))
=

(
z + ραzk (1 + ρ)x− i(1 + ρ)y

(1 + ρ)x+ i(1 + ρ)y w + ρβ
γ+θ sinq w

)
=

(
f̃(z) h̃(x)− ih̃(y)

h̃(x) + ih̃(y) g̃(w)

)
,

where I is the identity mapping onH2(C). By virtue of the fact that f̃(R) = g̃(R) = h̃(R) =
R, it follows that (I + ρM)(H2(C)) = H2(C), i.e., the mapping I + ρM is surjective. Since
ρ > 0 was arbitrary, we conclude that M is a generalized m-accretive mapping.

3. MAIN RESULTS

In the this section we prove two main theorems showing that if P is a δ-strongly η-
accretive mapping, η is a τ -Lipschitz continuous mapping and M is a P -η-accretive map-
ping this implies that P -η-proximal-point mapping JMρ is τ

δ -Lipschitz continuous.
All results in [19] have been derived based on Definition 2.1 and Definition 2.3 in [19],

it is to be noted that the normalized duality mapping in these definitions is denoted by
J . Employing these definitions, Kazmi and Khan [19] presented some properties of P -η-
accretive mappings in [19, Theorem 2.1].

In the proof of [19, Theorem 2.1(a)], the authors assumed that there exists (u0, x0) /∈
Graph(M) such that

〈u0 − v, j(η(x0, y))〉 ≥ 0, ∀(y, v) ∈ Graph(M).(3.1)

Then in virtue of the fact that M is P -η-accretive, they deduced the existence of (x1, u1) ∈
Graph(M) such that

P (x1) + ρu1 = P (x0) + ρu0.(3.2)

Setting (y, v) = (x, u1) in (3.1) and making use of (3.2), they claimed that there exists a
selection j(η(x0, x1)) ∈ F(η(x0, x1)) such that

0 ≤ ρ〈u0 − u1, j(η(x0, x1))〉 = 〈P (x1)− P (x0), j(η(x0, x1))〉(3.3)

and then they deduced that

〈P (x0)− P (x1), j(η(x0, x1))〉 ≤ 0.(3.4)
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But, the equality in (3.3) has some flaw. In fact, relying on the fact that P and M are η-
accretive, according to their definitions, there are j1(η(x0, x1)) ∈ F(η(x0, x1)) and j2(η(x0, x1)) ∈
F(η(x0, x1)) such that

〈P (x1)− P (x0), j1(η(x0, x1))〉 ≥ 0 and 〈u0 − u1, j2(η(x0, x1))〉 ≥ 0.

Since the two selections j1(η(x0, x1)) and j2(η(x0, x1)) are not the same necessarily, it fol-
lows that (3.2) doesn’t imply (3.3), and thereby (3.4) is not also true, necessarily. At the
same time, in the proof of [19, Theorem 2.1(b)], for any given z ∈ E and a constant ρ > 0,
and letting x, y ∈ (P + ρM)−1(z), the authors deduced that ρ−1(z − P (x)) ∈ M(x) and
ρ−1(z − P (y)) ∈M(y). Then, using η-accretiveness of M , they asserted that

0 = ρ〈ρ−1(z − P (x))− ρ−1(z − P (y)), j(η(x, y))〉
+ 〈P (x)− P (y), j(η(x, y))〉
≥ 〈P (x)− P (y), j(η(x, y))〉.

(3.5)

Finally, in the light of strict η-accretiveness of P , they deduced that x = y. But, thanks to
the definition of strict η-accretivity of the mapping P given in Definition 2.1 in [19], P is
strictly η-accretive if P is η-accretive, i.e., there exists j1(η(x, y)) ∈ F(η(x, y)) such that

〈P (x)− P (y), j1(η(x, y))〉 ≥ 0,(3.6)

and equality holds if and only if x = y. On the other hand, taking into account that M is
η-accretive, invoking Definition 2.3 in [19], there is j2(η(x, y)) ∈ F(η(x, y)) such that

〈ρ−1(z − P (x))− ρ−1(z − P (y)), j2(η(x, y))〉 ≥ 0,

which implies that

〈P (x)− P (y), j2(η(x, y))〉 ≤ 0.(3.7)

However, (3.6) and (3.7) do not guarantee the existence of a selection j(η(x, y)) ∈ F(η(x, y))
such that

〈P (x)− P (y), j(η(x, y))〉 = 0,

and so strict η-accretivity of P doesn’t imply x = y necessarily.
Applying Definitions 2.3 and 2.4 instead of [19, Definitions 2.1 and 2.3]), respectively,

we now present the new version of [19, Theorem 2.1] along with its proof as follows.

Theorem 3.1. Let η : E × E → E be a vector-valued mapping and P : E → E be a strictly
η-accretive mapping. Suppose further that F : E → 2E

∗
is the normalized duality mapping and

M : E → 2E is an η-accretive mapping. Then
(a) for any given point (x, u) ∈ E × E, if 〈u − v, j(η(x, y))〉 ≥ 0 holds for all (y, v) ∈

Graph(M) and j(η(x, y)) ∈ F(η(x, y)), then (x, u) Graph(M);
(b) the single-valued mapping (P + ρM)−1 : Range(P + ρM) → E is single-valued for

every real constant ρ > 0.

Proof. (a) On the contrary suppose that (x, u) /∈ Graph(M). Since M is P -η-accretive,
we have (P + ρM)(E) = E for every real constant ρ > 0. Then, there exists (x0, u0) ∈
Graph(M) such that

P (x0) + ρu0 = P (x) + ρu.(3.8)

Picking (y, v) = (x0, v0), from the assumption we conclude that

〈u− u0, j(η(x, x0))〉 ≥ 0, ∀j(η(x, x0)) ∈ F(η(x, x0)).(3.9)
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Using (3.8) and (3.9) and taking into account that P is η-accretive, it follows that for all
j(η(x, x0)) ∈ F(η(x, x0)),

0 ≤ ρ〈u− u0, j(η(x, x0))〉 = −〈P (x)− P (x0), j(η(x, x0))〉 ≤ 0,

which implies that

〈P (x)− P (x0), j(η(x, x0))〉 = 0.

Considering the fact that P is strictly η-accretive, we deduce that x = x0. Thereby, making
use of Eq. (3.8), it follows that u = u0. Clearly, this is in contradiction to our assumption.

(b) Let the real constant ρ > 0 be chosen arbitrarily. For any given point u ∈ Range(P +
ρM), let x, y ∈ (P + ρM)−1(u). Then, we have u = (P + ρM)(x) = (P + ρM)(y), which
implies that

ρ−1(u− P (x)) ∈M(x) and ρ−1(u− P (y)) ∈M(y).

Since M is η-accretive, it follows that for all j(η(x, y)) ∈ F(η(x, y)),

〈ρ−1(u− P (x))− ρ−1(u− P (y)), j(η(x, y))〉 ≥ 0,

from which we deduce that

〈P (x)− P (y), j(η(x, y))〉 ≤ 0, ∀j(η(x, y)) ∈ F(η(x, y)).(3.10)

On the other hand, taking into account that P is η-accretive, we have

〈P (x)− P (y), j(η(x, y))〉 ≥ 0, ∀j(η(x, y)) ∈ F(η(x, y)).(3.11)

Now, making use (3.3) and (3.4) and thanks to the strict η-accretiveness of the mapping P
it follows that x = y. This fact implies that the mapping P + ρM from Range(P + ρM)
into E is single-valued. This completes the proof. �

It is worth mentioning that if P = I , then the definition of I-η-accretive mappings is
that of generalizedm-accretive mappings. In fact, the class of P -η-accretive mappings has
close relation with that of generalized m-accretive mappings. This fact is illustrated in
Theorem 3.1(a).

As an immediate consequence of part (b) of the last result, we obtain the following
assertion.

Corollary 3.1. Suppose that η : E × E → E is a vector-valued mapping and P : E → E

is a strictly η-accretive mapping. Let F : E → 2E
∗

be the normalized duality mapping and
M : E → 2E be a P -η-accretive mapping. Then, the mapping (P + ρM)−1 : E → E is
single-valued for every real constant ρ > 0.

According to Theorem 3.1(b), Kazmi and Khan [20] introduced the P -η-proximal-point
mapping, denoted as JMρ , associated with a P -η-accretive mapping M . Here, ρ > 0 re-
mains a constant, η : E × E → E is a vector-valued mapping, and P : E → E represents
a strictly η-accretive mapping. This mapping is defined as follows:

JMρ (z) = (P + ρM)−1(z), ∀z ∈ E.(3.12)

Their investigation, presented in [20], concludes section 2 by establishing the Lipschitz
continuity of the P -η-proximal-point mapping JMρ and providing an estimation of its Lip-
schitz constant.

Theorem 3.2. [20, Theorem 2.2] Let P : E → E be a δ-strongly η-accretive mapping. Let
η : E × E → E be a τ -Lipschitz continuous mapping and M : E → 2E be a P -η-accretive
mapping. Then P -η-proximal-point mapping JMρ is τ

δ -Lipschitz continuous, i.e.,

‖JMρ (x)− JMρ (y)‖ ≤ τ

δ
‖x− y‖, ∀x, y ∈ E.
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In the rest of the paper, instead of JMρ , we denote the P -η-proximal-point mapping
associated with a P -η-accretive mappingM : E → 2E by JM,P

ρ,η , where ρ > 0 is an arbitrary
positive real constant, P : E → E is strictly η-accretive mapping and η : E × E → E is a
vector-valued mapping, and is defined based on Corollary 3.1 as (3.12).

We now close this section by presenting a revised version of the proof of [19, Theorem
2.2].

Proof. Taking into account that M is P -η-accretive, for any given points x, y ∈ E with
‖JM,P
ρ,η (x) − JM,P

ρ,η (y)‖ 6= 0, we have JM,P
ρ,η (x) = (P + ρM)−1(x) and JM,P

ρ,η (y) = (P +

ρM)−1(y), which implies that

ρ−1(x− P (JM,P
ρ,η (x)) ∈M(JM,P

ρ,η (x)) and ρ−1(y − P (JM,P
ρ,η (y)) ∈M(JM,P

ρ,η (y)).

Since M is η-accretive, we conclude that for all j(η(JM,P
ρ,η (x), JM,P

ρ,η (y))) ∈ F(η(JM,P
ρ,η (x),

JM,P
ρ,η (y))),

ρ−1〈x− P (JM,P
ρ,η (x))− (y − P (JM,P

ρ,η (y))), j(η(JM,P
ρ,η (x), JM,P

ρ,η (y)))〉 ≥ 0.

Considering the fact that ρ−1 > 0, from the preceding inequality, δ-strong η-accretiveness
of P , and τ -Lipschitz continuity of η, it follows that for all j(η(JM,P

ρ,η (x), JM,P
ρ,η (y))) ∈

F(η(JM,P
ρ,η (x), JM,P

ρ,η (y))),

τ‖x− y‖‖JM,P
ρ,η (x)− JM,P

ρ,η (y)‖ ≥ ‖x− y‖‖η(JM,P
ρ,η (x), JM,P

ρ,η (y))‖
= ‖x− y‖‖j(η(JM,P

ρ,η (x), JM,P
ρ,η (y)))‖

≥ 〈x− y, j(η(JM,P
ρ,η (x), JM,P

ρ,η (y)))〉
≥ 〈P (JM,P

ρ,η (x))− P (JM,P
ρ,η (y)),

j(η(JM,P
ρ,η (x), JM,P

ρ,η (y)))〉
≥ δ‖JM,P

ρ,η (x)− JM,P
ρ,η (y)‖2.

In view of the fact that ‖JM,P
ρ,η (x)− JM,P

ρ,η (y)‖ 6= ∅, the last inequality implies that

‖JM,P
ρ,η (x)− JM,P

ρ,η (y)‖ ≤ τ

δ
‖x− y‖.

This completes the proof. �

Conclusions:
In conclusion, this paper has introduced a novel iterative algorithm for solving a new
system of generalized multi-valued resolvent equations within the framework of Banach
spaces. Through the utilization of the resolvent operator associated with a P -η-accretive
mapping, the algorithm demonstrates promising potential in addressing complex prob-
lems. The main contribution of this work lies in establishing the Lipschitz continuity of
the resolvent operator linked with a P -η-accretive mapping. Additionally, an estimation
of its Lipschitz constant has been computed under newly defined conditions, thereby en-
hancing the understanding of the algorithm’s behavior. Furthermore, this paper has pro-
vided definitions and concrete examples to elucidate the concepts presented. Notably, the
presented results advance and generalize existing knowledge in the field, showcasing the
significance of this research endeavor. Moving forward, part II of this study delves into
the convergence analysis of the sequences generated by the proposed iterative algorithm.
By exploring appropriate conditions, this analysis aims to deepen our understanding of
the algorithm’s convergence properties and its practical applicability.
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