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Hybrid CG-Like Algorithm for Nonlinear Equations and
Image Restoration

KANIKAR MUANGCHOO! AND SUPAK PHIANGSUNGNOEN??3

ABSTRACT. This paper introduces a hybrid spectral-conjugate gradient (SCG) method to solve nonlinear
monotone operator equations efficiently. The proposed method incorporates a hybrid parameter that encom-
passes the Polak-Ribiere-Polyak (PRP), Liu-Storey (LS), Fletcher-Reeves (FR), and conjugate descent (CD) meth-
ods as particular instances. Additionally, we derive the spectral parameter to ensure that the search direction
adheres to the sufficient descent condition. The search direction is also designed to be bounded, and under spe-
cific conditions, we demonstrate that the sequence produced by our hybrid SCG algorithm converges toward a
solution. Furthermore, to underscore the effectiveness of our proposed method, we conducted extensive numer-
ical experiments comparing its performance against that of existing algorithms. These experiments were based
on a selection of benchmark nonlinear monotone operator equations, highlighting our proposed algorithm’s
superior efficiency and potential in practical applications.

1. INTRODUCTION

Let A C R" be a nonempty, closed and convex and H : A — R" be monotone and
Lipschitz continuous operator. This work considers the problem of searching a point y €
A such that

(L.1) H(y) =0.

Many real-world applications such as the economic equilibrium problems [16], the chem-
ical equilibrium systems [27] and compressive sensing [34] can be modelled in the form
of (1.1), this has led to an increasing interest of researchers in studying methods for solv-
ing (1.1). Given a good starting point, numerical methods such as Newton’s and Quasi-
Newton’s methods and their variants are quite interesting. However, due to the need for
computation of Jacobian of the underlying operator or approximation of it, these meth-
ods are not suitable for handling large-scale nonlinear problems see [13, 32, 29, 14] for an
overview of these methods.

Following the famous projection method of Solodov and Svaiter [30], the Conjugate
Gradient (CG) method for solving problems (1.1) is proposed as one of the first-order op-
timization method, which is known for its simplicity and low storage requirements. Sev-
eral CG methods have been introduced, studied, and extended over the years for solving
(1.1), as discussed in [1, 6, 5, 19, 21, 20] and references therein.

Generally, a CG method for solving (1.1) generates an iterative sequence {y;}, defined
by, fork =0,1,2,...

(1.2) Yk+1 = Yk + ardg,
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where o, > 0 is a line search and d, is a direction given by

_H, ifk=
1.3) dk:{ kAR =0,

—Hj + Brdp—1 ifk >0,

where Hj, is the function evaluation of H at y;, and fy, is a scalar called the CG parameter.
Different choices of the parameter /3, correspond to different CG methods. Several Hybrid
methods have been introduced recently as a combination of CG methods to take advan-
tage of some vital features of each of the combined methods, for example Mtagulwa in [26]
proposed a hybrid method consisting of Polak-Ribiere-Polyak (PRP) and Fletcher-Reeves
(FR). Under some suitable conditions, it was shown that their method not only possesses
the good computational effect as the PRP method but also holds all the nice convergence
properties of the FR method. Another hybrid method given as a convex combination of
Liu-Storey (LS) and FR methods was considered in [18]; the proposed method utilised the
strong convergence property of the FR method and the good numerical performance of
the LS method. The search direction was shown to satisfy the descent condition under
some suitable conditions.

Moreover, inspired by the work of Andrei [10], the fact that the LS method usually
performs better in practice than Dia-Liao (DY) method, and on the other hand, the DY
method has stronger convergence property than the LS method. Liu [24] established a
more efficient and robust hybrid CG method by utilising the advantages of LS and DY
methods for solving unconstrained optimization problems with suitable conditions. The
parameter J3;, in the proposed method is computed as a convex combination of the jj, pa-
rameters of LS and DY methods. Another kind of hybrid combination is the three-term
method known for its good theoretic properties which has been introduced and studied
in the literature. Notably, Amini et al. [9] proposed a modified HS method for solving
unconstrained optimization with a new direction that satisfies descent condition inde-
pendent of the choice of line search. It has been shown that the proposed method inherits
the good theoretical properties of the three terms combinations and in particular, the nu-
merical efficiency of Hestens-Stiefel (HS).

In the same vein, a three-term spectral conjugate gradient (CG) method based on the
conjugate descent (CD) CG parameter was proposed in [4], where two directions were
obtained by adding a term to the CD direction. Under some assumptions, it has been
shown that sufficient descent property is satisfied. Additionally, Narushima ef al. [28]
introduced a generalised three-term CG methods type. Like [9], it has been proved that
the sufficient descent condition is satisfied independent of the choice of ), parameter and
line search. Motivated and inspired by the strong convergence properties of FR and con-
jugate descent (CD) methods together with the good numerical performance of PRP and
LS method, this article to the best of our knowledge proposes for the first a generalised
CG-method for (1.1). The proposed method uses the PRP, LS, FR, and CG methods in
particular cases. Additionally, using some benchmark test problems, the numerical per-
formance of the proposed method in comparison with some existing CG methods in the
literature is presented.

The paper’s outline is given as follows: in section 2 we present some preliminaries
required for the formulation of the proposed method, and we present the convergence
analysis of the hybrid method in Section 4. In the last section, we report the proposed
method’s numerical experiments compared with some existing methods in the literature.

Notation. Unless otherwise stated, the symbol || - || stands for Euclidean norm on R".
H(yy) is abbreviated to Hy. Furthermore, P4]-] is the projection mapping from R™ onto
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Agiven by Py[y] = argmin{|ly — 2| : y € R", z € A}, for a nonempty closed and convex
set A € R™.

2. HYBRID PRP-LS-FR-CD

This section will propose a new hybrid three-term spectral-conjugate gradient algo-
rithm for finding approximate solutions to problem (1.1). The search direction com-
prises two parameters, namely, the hybrid conjugate gradient (CG) parameter denoted by
BPLFC and the parameter denoted by §7LFC derived to ensure the search direction sat-
isfies the sufficient descent condition. The parameter 3F2¥'C combines four well-known

CG parameters. It is defined as

w1 H} 21 + wa | Hy||?

(24) PLFC — ,
F ws||Hg—1]| — wad}_Hy—1

where z,._1 = H;, — Hi._1. Note that,

if W1 = W3 = 1 and Wy = Wy = 0, then BlfLFC = ﬁ}:RP.
if W1 =C4 = 1 and Wy = W3 = O, then ﬁf‘LFc = ,Blfs
if Wy = W3 = 1 and W1 =Wy = 0 P then ﬂ]f’LFC = ﬁlfR
if wo = wy = 1 and wy = w3 = 0, then BFEFC = gD,

Next, we propose the new hybrid three-term direction as

(2.5) do = —Hy, dy == df "0 = —Hy + B Cspoy — 0P O Hy, k> 1,
where s; = aydy, BEEFC is given by (2.4) and 9FEFC is defined in such a way that
(2.6) Hy di = —| Hy 1%,

holds.

It is easy to see that for £ = 0, (2.6) is satisfied. As for k > 1, multiplying both sides of
(2.5) by H', we have

T PLFC HkTSk—l PLFC 2
Hydy=—(1-5; — =z T 0k | Hll”
|| H ||

For (2.6) to be satisfied, we require

HT s
2.7 OrLre = pPrre —k kL
( ) k k ||HkH2

In what follows, we denote the solution set of (1.1) by Sol(A, H) and assume that:
Assumption 2.1. Sol(A, H) is nonempty.

Assumption 2.2. The operator H is monotone. That is for any y1,y2 € R,

(2.8) (H(y1) = H(y2)" (y1 — y2) > 0.

Assumption 2.3. The operator H is L-Lipschitz continuous on R™. That is for any y1,y2 € R”,
L>0,

(2.9) |15 (y1) — H(y2)ll < Lllyr — vl|-

Next, we present the algorithm for the method we proposed above.
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Algorithm 1: HYBRIDSCG

Input. Choose an initial guess yg € A, w1, w2, w3, wa, £ >0,0<0<2,0<pu<1,
oc>0,tol >0and k := 0.

Step 1. If || Hy|| < tol, terminate. Else move to Step 2.

Step 2. Compute dj, using (2.5).

Step 3. Compute

(2.10) Ve = Yk + ardk,

ap =tu', fori=0,1,--- , where i is the least nonnegative integer satisfying
(211) —H ()" di, > o di|.

Step 4. If v, € Aand | H ()| < tol, stop. Else, compute

(2.12) Yr+1 := Palyr — 0 H (1)),

where

H ()" (e — )
1 (i) 2
Step 5. Let k£ = k + 1 and repeat from Step 1.

(2.13) o =

3. THEORETICAL RESULTS

In this section, we will need the following results in order to establish the sequence of
iterates generated by Algorithm 1 converges to a solution of (1.1).

Lemma 3.1. The search direction defined by (2.5) satisfies the sufficient descent property (2.6).
Proof. It k=10,

Hg do = —||Ho|*.
If £ > 1, utilizing (2.4), (2.5) and (2.7), we get
Hidy = —|Hy|l* + B¢ 57O Hy si—r — 0727 || Ha||?
— I H.II? PLFC T _ PLFCHgSk—l H. |12
= —|Hyl? + BPEPC HE sy s — SEEFOZEEL |
|| H|
A
Therefore, (2.6) is satisfied. U

Lemma 3.2. Suppose Assumption 2.1, Assumption 2.2 and Assumption 2.3 are satisfied. If {d}},
{vi} and {yi} are sequences defined by (2.5), (2.10) and (2.12), respectively, then

(i) for all k, there is oy, = tu'® satisfying (2.11) for some i € NU {0} and Vk > 0.

(%) oy, obtained via (2.11) satisfy

Pl Hil?
(L + o) ]2

Proof. (i) Suppose on the contrary there exists £y > 0 such that (2.11) does not hold for
any non-negative integer i, i.e.,

_H(yko + tlu’idko)Tdko < Utﬂi”dko H2
By assumption 2.3 and allowing i — oo, we get

(3.15) —H (y,) " dy, < 0.

(3.14) ap >
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On the other hand, from (2.6),

_H(yko)Tdko = ||H(ka)H2 >0,

which contradicts (3.15). Hence, the step size is well defined. (i7) If a, # ¢, then oz;C = %
does not satisfy (2.11), that is

—H (yi + apdi) " dy, < oa||dy %
Using (2.6) and assumption 2.3, then
| H || = —Hj dy.
= (H(yx + aydy) — Hy)di — H(yy + ody)Tdy
< Lag[ldi|* + oy | ]|
= (L + o)aypp™t|de|?.

Hence,
pl| He |l

A > ———————.
"L o)]d]?

O

Lemma 3.3. [2] If Aassumption 2.1, 2.2 and 2.3 are satisfied, then the sequences {~i} and {y;}
defined by (2.10) and (2.12) in Algorithm 1 are bounded. In addition,

(3.16) lim ag||dkl| = 0.
k—o00

Lemma 3.4. Let {y;,} be the sequence generated by Algorithm 2 under assumption 2.1, 2.2 and
2.3, it holds that

(3.17) 1 = 711* < llyx —glI>.

Proof. The proof follows from [2, Lemma 4]. O

Remark 3.1. Since {y;,} is bounded from Lemma 3.3 and F' is continuous from Assumption 2.3,
{H}} is also bounded. That is, there exist c1, co > 0 such that for all k

(3.18) lyrll < c1, [[Hill < ca.

Theorem 3.4. Suppose Assumption 2.1, 2.2 and 2.3 are satisfied. If {y} is a sequence defined by
(2.12), then,

(3.19) liminf ||Hg|| = 0.
k—o0

Furthermore, the sequence {yy, } converges to a solution of problem (1.1).

Proof. Suppose likm inf || Hg|| # 0, then, there exists c¢3 > 0 such that forall £ > 0
—00

(3.20) | Hi| > cs.

Next, we will show that d;, defined by (2.5) is bounded.
For k=0,

lldol| = [[Hol| < ca.
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Now for k > 1, using (2.4),

wiHE 211 + wo || Hg |2
ws||Hg—1]] — wad}_Hy—1
< @il Hx[llzk-1]l + w2 | He||?
- —w4d£71Hk,1
wi [ Hg |21l + we || H|1?
wa|[Hg—1? '

B =

(3.21) -

Also using (2.7) and (3.21),

PLFCHk;TSk—l

i (| H||?

< (W1||Hk|||zk—1 + Cv2Hzc||2> [ 5l llsr—1l
wa | H—1]? | H[|?

N CLIIESETEL TS Yo
ol F [P |

wi [|zk—1]] +fJJ2||Hk||>
3.22 = Sk—1|l-
(3.22) ( il Hr 1|2 llsk—1ll

oL =

So, using (2.5), (3.18), (3.20) (3.21), (3.22) and assumption 2.2,

ldill = |~ Hi + BEEF sy — 07O Hy|

< Hell + 185 lsk-a [l + 10571 He

w1 || Hg || 26—l +W2||Hk2> wi || Hy |l 2~ || + wa| | Hg?

< ||Hg +< Sp—1|| + Sk—
I R s T sk

w Hk L El + k— + w Hk 2

Ay LA ST ERRLYR PP
wa | H—1]]
wicaL(2¢1) + wac?
<oy oL@ T W) ),
Wy Cs

By equality (3.16), we have for any c5 > 0, there exists kg € N for which ay_1||dix-1]| < c5,
Vk > ko. So, if we chose c¢5 = wsc? and ¢; = max{||dol|, ||d1]],- - ,||dk, ||, c6}, where cg =
c2(1 4+ 4Lwicr + 2wacs). Letting M = max{cq, c7}, we have

(3.23) llde|| < M, Vk € N.
Now, multiplying both side of (3.14) by ||dx||, we have

pIHR? o ped

T +o)dl =~ T +onr

alldi |l >

This contradicts (3.16) and hence likm inf || Hg|| = 0.
—00

Since H is continuous and (3.19) hold, then the sequence {y; } has some accumulation
point say § for which H(g) = 0, that is, § is a solution of (1.1). From (3.17), it holds that
{llyx — 7||} converges, and since 7 is an accumulation point of {y;}, Then we must have
that {yx } converges to . O
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TABLE 1. List of test problems with their references

S/N Problem & Reference

1  Modified exponential function 2 [22]
Logarithmic function [22]
Nonsmooth function [35]
Strictly convex function I [22]
Strictly convex function II [22]
Tridiagonal exponential function [11]
Nonsmooth function [33]
Problem 4 in [15]
Pursuit-evasion problem [7]

O O NIONUT = WN

4. NUMERICAL EXPERIMENTS

In this section, the numerical strength of the proposed hybrid algorithm called HY-
BRIDSCG is tested based on some standard metrics. All numerical simulations are im-
plemented in Matlab R2020b on an HP laptop with 8 GB RAM and 2.40 GHz processor.
The standard metrics are: the number of iterations (NOI), the number of function evalu-
ations (NFE), and the CPU time (TIME). To show the strength of the proposed algorithm
based on the above metrics, we compare it with the algorithm called DFPB1 proposed by
Ahookhosh et al. in [8] and the algorithm called MFRM proposed by Abubakar et al. [3].
We use the following for the experiments:

e Problems: Nine test problems.

e Parameters: t = 1, p = 0.8, 0 = 1074, § = 1.2, w; = wp = w3 = wy = 1. As for
DFPB1 and MFRM, all parameters come from [8] and [3], respectively.

e Termination criterion: Iterations terminate when || Hx|| < 10~° and/or the number
of iterations exceed 1000 without reaching a solution.

e The symbol — is used to indicate that an algorithm failed due to number of itera-
tions exceeding 1000.

The list of the nine test problems are given in Table 1 below. The results of the experi-
ments on the nine test problems can be found in the Appendix. In adition, we employ
the performance profiles of Dolan and More [17] to plot the graph of comparison for each
metric. Figure 1,2 and 3 represent the performance profiles of HYBRIDSCG, DFPB1 and
MFRM based on NOI, NFE and TIME, respectively. By Figure 1, HYBRIDSCG is the best
solver with 60% success. It is also the best solver based on Figure 2 with more than 70%
success. Likewise in Figure 3, it is the most successful with over based 60% success. The
percentage of success for the algorithms by Ahookhosh et al. in [8] and Abubakar et al.
[3] based on each plot is summarized as follows

e Figure 1: DFPB1 (< 10%), MFRM (almost 50%).
e Figure 2: DFPB1 (< 10%), MFRM ( around 30%).
e Figure 3: DFPB1 (< 10%), MFRM (around 35%).

5. APPLICATIOM IN IMAGE RESTORATION

In this subsection, we aim at evaluating the efficiency of the HYBRIDSCG in image
restoration. Image restoration problem can be mathematically formulated as:

(5.24) b= Ay +v,
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——— HYBRIDSCG

0.3
—— DFPB1
0.2 =— MFRM
0.1
0 I I I
0 2 4 6 8 10

——— HYBRIDSCG

0.2 ——— DFPB1
‘ MFRM
0.1
0 L L L L L L L L
0 1 2 3 4 5 6 7 8

FIGURE 2. Performance profiles for the number of function evaluations (NFE)

where b € R* is the observed data, A € R**™ and v € RF is an error term. See [18] for
more details.

The HYBRIDSCG method is compared with some existing methods such as the modified
Fletcher-Reeves conjugate gradient method for monotone nonlinear equations with ap-
plications (MFRM) [3] and the conjugate gradient method for solving convex constrained
monotone equations with applications in compressive sensing (CGD) by Xiao et al. [31].
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—— HYBRIDSCG | |
—+—— DFPB1
MFRM

FIGURE 3. Performance profiles for the CPU time (in seconds)

In the numerical implementation, three (3) colored images of different sizes are degraded
using a Gaussian noise operator and a Gaussian blur with a standard deviation of 1072,
then we apply the three methods to restore the degraded images. Experimental results
for HYBRIDSCG, MFRM, and CGD are given in Table 2. The comparison is based on
the signal-to-noise ratio (SNR), peak signal-to-noise ratio (PSNR) [12], and the structural
similarity index (SSIM) [23]. HYBRIDSCG is implemented using the following specified
parameters: t = 1, p = 0.01,0 = 107%,0 = 1, and w; = wy = w3 = wy = 1 with a merit
function defined as follows:

1
(5.25) () = 514y = blIz + Ally1.

Using the same initial point, all algorithms were implemented. The regularization param-
eter ) is selected based on the approach presented by Liu and Li [25].
yo = ATbis used in starting the experiment and

1o = fual
| fr—1l

as the stopping criterion, where f;, is the function value at yj.

<1074,

In Table 2, we report the results of the image restoration process by the proposed and
compared methods. The results obtained by HYBRIDSCG are much better than the results
obtained by the compared methods. Notably, HYBRIDSCG has a larger value of SNR,
PSNR and SSIM, indicating it performs better than the compared methods in restoring
the degraded images.

6. CONCLUSIONS

This article proposes a new hybrid algorithm for solving nonlinear monotone operator
equations with convex constraints. To the best of our knowledge, this is the first algorithm



180 K. Muangchoo, S. Phiangsungnoen

TABLE 2. Efficiency comparison for HYBRIDSCG, MFRM and CGD

based on SNR, PSNR and SSIM

HYBRIDSGC MFRM CGD
Images SNR PSNR SSIM  SNR PSNR SSIM SNR PSNR SSIM
Lenna 17.16 2249 09200 16.66 2199 09110 16.83 22.17 0.9137
Tiffany 21.51 23.34 09240 21.03 2287 0913 21.02 2286 0.9140
Peppers 15.89 21.81 09040 1531 21.23 0.890 1559 21.51 0.896

FIGURE 4. Restoration of the test images. From left to right: original
image, degraded image, restored image by HYBRIDSGC, restored image

by MFRM, and restored image by CGD.

of its kind, and it is based on the SCG method. The PRP, LS, FR, and CD methods are spe-
cial cases of this new hybrid method. One of the notable features of the new method
is that its search direction is both descent and bounded, independent of the line search.
Under certain favourable assumptions, the sequence generated by this method converges
globally. The new method’s efficiency was demonstrated through numerical experiments
on several benchmark test problems. The results indicate that the new algorithm outper-
forms the existing methods it was compared with, showcasing its superior efficiency. The
proposed algorithm’s performance was evaluated based on multiple criteria, including
convergence rate and computational cost. These comprehensive tests validate the robust-
ness and practical applicability of the new method in solving complex nonlinear problems

with convex constraints.



Hybrid CG-Like Algorithm for Nonlinear Equations 181

ACKNOWLEDGMENTS

The first author was financially supported by Rajamangala University of Technology
Phra Nakhon (RMUTP) Research Scholarship. Also, the corresponding author Supak Phi-
angsungnoen was supported in part by the Institute of Research and Development, Raja-
mangala University of Technology Rattanakosin; in part by the Thailand Science Research
and Innovation (TSRI) and the Fundamental Fund of the Rajamangala University of Tech-
nology Rattanakosin under Contract FRB6719/ 2567.

REFERENCES

[1] Abubakar, A. B.; Kumam, P. An improved three-term derivative-free method for solving nonlinear equa-
tions. Comput. Appl. Math. 37 (2018), no. 5, 6760-6773.

[2] Abubakar, A. B.; Kumam, P.; Mohammad, H. A note on the spectral gradient projection method for nonlin-
ear monotone equations with applications. Comput. Appl. Math. 39 (2020), 129.

[3] Abubakar, A. B.; Kumam, P.; Mohammad, H.; Awwal, A. M.; Kanokwan, S. A modified Fletcher-Reeves
conjugate gradient method for monotone nonlinear equations with some applications. Mathematics. 7
(2019), no. 8, 745.

[4] Abubakar, A. B.; Rilwan, J.; Yimer, S. E.; Ibrahim, A. H.; Ahmed, I. Spectral three-term conjugate descent
method for solving nonlinear monotone equations with convex constraints. Thai |. Math. 18 (2020), no. 1,
501-517.

[5] Abubakar, A. B.; Ibrahim, A. H.; Abdullahi, M.; Aphane, M.; Chen, J. A sufficient descent ls-prp-bfgs-
like method for solving nonlinear monotone equations with application to image restoration. Numer. Algor.
(2023), 1-42.

[6] Abubakar, A. B.; Kumam, P.; Mohammad, H.; Ibrahim, A. H.; Seangwattana, T.; Hassan, B. A. A hybrid
bfgs-like method for monotone operator equations with applications. |. Comput. Appl. Math. 446 (2024),
115857.

[7] Abubakar, A. B.; Kumam, P.; Mohammad, H.; Ibrahim, A. H.; Kiri, A. I. A hybrid approach for finding ap-
proximate solutions to constrained nonlinear monotone operator equations with applications. Appl. Numer.
Math. 177 (2022), 79-92.

[8] Ahookhosh, M.; Amini, K.; Bahrami, S. Two derivative-free projection approaches for systems of large-scale
nonlinear monotone equations. Numer. Algor. 64 (2013), no. 1, 21-42.

[9] Aminifard, Z.; Bahrami, S. A modified descent Polak-Ribiére-Polyak conjugate gradient method with
global convergence property for nonconvex functions. Calcolo. 56 (2019), no. 2, 16.

[10] Andrei, N. Another hybrid conjugate gradient algorithm for unconstrained optimization. Numer. Algor. 47
(2008), no. 2, 143-156.

[11] Bing, Y.; Lin, G. An efficient implementation of merrill’s method for sparse or partially separable systems
of nonlinear equations. SIAM |. Optim. 1 (1991), no. 2, 206-221.

[12] Bovik, A. C. Handbook of image and video processing. Academic press, 2010.

[13] Dennis, J. E.; Moré, J. J. A characterization of superlinear convergence and its application to quasi-newton
methods. Math. Comput. 28 (1974), no. 126, 549-560.

[14] Dennis, ]J. E. Jr.; Moré, ]. J. Quasi-newton methods, motivation and theory. SIAM Review. 19 (1977), no. 1,
46-89.

[15] Ding, Y.; Xiao, Y. H.; Li, J. A class of conjugate gradient methods for convex constrained monotone equa-
tions. Opt. 66 (2017), no. 12, 2309-2328.

[16] Dirkse, S. P.; Ferris, M. C. Mcplib: A collection of nonlinear mixed complementarity problems. Optim.
Methods Softw. 5 (1995), no. 4, 319-345.

[17] Dolan, E. D.; Moré, J. J. Benchmarking optimization software with performance profiles. Math. Program. 91
(2002), no. 2, 201-213.

[18] Ibrahim, A. H.; Kumam, P.; Abubakar, A. B.; Jirakitpuwapat, W.; Abubakar, J. A hybrid conjugate gradient
algorithm for constrained monotone equations with application in compressive sensing. Heliyon. 6 (2020),
no 3, e03466.

[19] Ibrahim, A. H.; Alshahrani, M.; Al-Homidan, S. Two classes of spectral three-term derivative-free method
for solving nonlinear equations with application. Numer. Algor. 96 (2024), 1625-1645.

[20] Ibrahim, A. H.; Deepho, J.; Abubakar, A. B.; Kamandi, A. A globally convergent derivative-free projection
algorithm for signal processing. J. Interdiscip. Math. 25(2022), no. 8, 2301-2320.

[21] Kimiaei, M.; Ibrahim, A. H.; Ghaderi, S. A subspace inertial method for derivative-free nonlinear monotone
equations. Opt. (2023), 1-28.



182 K. Muangchoo, S. Phiangsungnoen

[22] La Cruz, W.; Martinez, J.; Raydan, M. Spectral residual method without gradient information for solving
large-scale nonlinear systems of equations. Math. Comput. 75 (2006), no. 255, 1429-1448.

[23] Lajevardi, S. M. Structural similarity classifier for facial expression recognition. Signal Image Video Process. 8
(2014), no. 6, 1103-1110.

[24] Liu, J.; Li, S. New hybrid conjugate gradient method for unconstrained optimization. Appl. Math. Comput.
245 (2014), 36-43.

[25] Liu, J.; Li, S. A projection method for convex constrained monotone nonlinear equations with applications.
Comput. Math. Appl. 70 (2015),no. 10, 2442-2453.

[26] Mtagulwa, P; Kaelo, P. An efficient modified PRP-FR hybrid conjugate gradient method for solving uncon-
strained optimization problems. Appl. Numer. Math. 145 (2019), 111-120.

[27] Narushima, Y. A smoothing conjugate gradient method for solving systems of nonsmooth equations. Appl.
Math. Comput. 219 (2013), no. 16, 8646-8655.

[28] Narushima, Y.; Yabe, H.; Ford, J. A. A three-term conjugate gradient method with sufficient descent prop-
erty for unconstrained optimization. SIAM ]. Optim. 21 (2011), no. 1, 212-230.

[29] Qi, L.; Sun, J. A nonsmooth version of Newton’s method. Math. Program. 58 (1993), no. 1-3, 353-367.

[30] Solodov, M.; Svaiter, B. A new projection method for variational inequality problems. SIAM |. Control Optim.
37 (1999), no. 3, 765-776.

[31] Xiao, Y.; Zhu, H. A conjugate gradient method to solve convex constrained monotone equations with ap-
plications in compressive sensing. J. Math. Anal. Appl. 405 (2013), no. 1, 310-319.

[32] Yamashita, N.; Fukushima, M. On the rate of convergence of the levenberg-marquardt method. In Topics in
numerical analysis. pages 239-249. Springer, 2001.

[33] Yu, Z; Lin, J.; Sun, J.; Xiao, Y; Liu, L.; Li, Z. Spectral gradient projection method for monotone nonlinear
equations with convex constraints. Appl. Numer. Math. 59 (2009), no. 10, 416-2423.

[34] Zhang, L.; Zhou, W.; Li, D. A descent modified Polak-Ribiére-Polyak conjugate gradient method and its
global convergence. IMA |. Numer. Anal. 26 (2006), no. 4, 629-640.

[35] Zhou, W.; Li, D. A globally convergent BFGS method for nonlinear monotone equations without any merit
functions. Math. Comput. 77 (2008), no. 264, 2231-2240.

APPENDIX

Throughout, "DIM” denotes the dimension, "INP” denotes initial point, "NOI” de-
notes number of iterations, "NFE” denotes number of function evaluations, “TIME” de-
notes the CPU running time and "Norm” denotes the norm of a function at the ap-
proximate solution. The associated initial points used for these experiments are z; =
(0.1,0.1,-,0.1)7, 25 = (0.2,0.2,--- ,0.2)T,
z3 = (0.5,0.5,---,0.5)T, 24 = (1.5,1.5,--- 1.5)T 25 = (2,2, -+ ,2). The symbol — is used
to indicate that an algorithm failed due to number of iterations exceeding 1000.
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TABLE 3. Results for the three algorithms on Problem 1.

HYBRIDSCG DFPB1 MFRM
DIM | INP | NOI | NFE | TIME Norm | NOI | NFE | TIME Norm | NOI | NFE | TIME Norm
1 1 7 0.00208 | 0.00E+00 | 59 | 184 | 0.017397 | 9.97E-06 | 23 98 |0.013288 | 9.01E-06
2 1 7 10.001195 | 0.00E+00 | 52 | 162 | 0.013355 | 9.95E-06 | 7 35 | 0.005672 | 8.82E-06
1000 | z3 1 0.001198 | 0.00E+00 | 143 | 436 | 0.0285 |9.71E-06 | 8 40 | 0.004216 | 9.74E-06
T4 1 9 10.001595 | 0.00E+00 | 465 | 1405 | 0.073153 | 9.91E-06 | 5 31 |0.003143 0
5 1 10 | 0.002063 | 0.00E+00 | 4 23 | 0.004625 0 31 | 134 | 0.009485 | 7.65E-06
1 1 7 0.00214 | 0.00E+00 | 88 | 270 | 0.056742 | 9.80E-06 | 8 38 | 0.00848 | 5.63E-06
T 1 7 0.00243 | 0.00E+00 | 89 | 274 | 0.058434 | 9.86E-06 | 8 40 | 0.008403 | 2.59E-06
5000 | 3 1 0.002771 | 0.00E+00 | 302 | 916 | 0.21207 | 9.96E-06 | 8 40 | 0.008365 | 6.41E-06
T4 1 9 |0.004404 | 0.00E+00 | 4 23 | 0.006772 0 5 31 | 0.006826 0
T5 1 10 | 0.004374 | 0.00E+00 | 3 20 | 0.005763 0 31 | 134 | 0.02749 | 8.10E-06
] 1 7 | 0.004689 | 0.00E+00 | 48 | 149 | 0.068357 | 9.92E-06 | 5 26 | 0.011089 | 3.70E-06
T 1 7 10.005319 | 0.00E+00 | 132 | 404 | 0.16097 | 9.97E-06 | 8 40 | 0.016022 | 3.64E-06
10000 | =3 1 0.005584 | 0.00E+00 | 302 | 916 | 0.33523 | 9.96E-06 | 8 40 | 0.016474 | 5.44E-06
T4 1 9 |0.005512 | 0.00E+00 | 5 26 | 0.012497 0 5 31 | 0.013106 0
T5 1 10 | 0.009738 | 0.00E+00 | 3 20 |0.011495 0 28 | 122 | 0.048459 | 7.18E-06
Ty 1 7 | 0.013687 | 0.00E+00 | 123 | 376 | 0.55323 | 9.55E-06 | 5 26 | 0.039405 | 3.58E-06
T 1 7 10.013792 | 0.00E+00 | 280 | 849 | 1.2166 |9.74E-06 | 8 40 | 0.063794 | 8.10E-06
50000 | *3 1 0.013815 | 0.00E+00 | 435 | 1315 | 1.9343 | 9.93E-06 | 8 40 | 0.057732 | 4.54E-06
T4 1 9 |0.017657 | 0.00E+00 | 3 20 | 0.044262 0 5 31 |0.048293 0
T5 1 10 | 0.025617 | 0.00E+00 | 4 23 | 0.046637 0 20 90 | 0.12298 | 6.44E-06
Ty 1 7 | 0.025428 | 0.00E+00 | 180 | 548 1.753 | 9.60E-06 | 5 26 | 0.075056 | 4.59E-06
T 1 7 10.028532 | 0.00E+00 | 403 | 1220 | 3.5145 | 9.96E-06 | 9 43 | 0.11747 | 1.59E-06
100000 | =3 1 0.024189 | 0.00E+00 | 432 | 1307 | 3.8515 | 9.96E-06 | 8 40 | 0.11518 | 4.96E-06
T4 1 9 0.0323 | 0.00E+00 | 2 17 | 0.067078 0 32 | 138 | 0.35109 |7.09E-06
T5 1 10 | 0.033243 | 0.00E+00 | - - - - 17 78 0.2203 | 9.31E-06
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TABLE 4. Results for the three algorithms on Problem 2.

HYBRIDSCG DFPB1 MFRM
DIM |INP |NOI|NFE| TIME | Norm |NOI|NFE| TIME | Norm |NOI|NFE| TIME | Norm
| 5 | 14 [0.002712 | 5.40E-06 | 91 | 278 [0.023238 | 9.30E-06 | 3 | 8 |0.002453 |5.17E-07
za | 5 | 14 |0.002174 | 6.67E-06 | 80 | 246 | 0.026381 | 9.62E-06 | 3 | 8 |0.002031 | 6.04E-06
1000 | s | 6 | 16 |0.002883 | 1.15E-06 | 36 | 111 | 0.0081 |8.33E-06| 4 | 11 |0.002095 | 4.37E-07
x4 | 6 | 16 |0.002547 | 1.26E-06 | 151 | 459 | 0.034901 | 9.83E-06 | 5 | 14 |0.001851 | 1.10E-06
x5 | 7 | 18 [0.003591 | 3.90E-06 | 217 | 658 | 0.062891 | 9.84E-06 | 6 | 17 |0.002024 | 1.74E-08
| 5 | 15 |0.006807 | 8.82E-06 | 83 | 255 | 0.086791 | 9.92E-06 | 3 | 8 |0.003307 | 1.75E-07
z2 | 6 | 17 |0.007096 | 1.12E-06 | 64 | 196 | 0.064129 | 9.90E-06 | 3 | 8 |0.003025 | 3.13E-06
5000 | @s | 6 | 16 |0.007799 | 2.51E-06 | 149 | 453 | 0.15207 | 9.63E-06 | 4 | 11 | 0.00427 | 1.42E-07
zs | 6 | 16 |0.007371 | 3.40E-06 | 329 | 995 | 0.33947 | 9.99E-06 | 5 | 14 |0.006139 | 4.05E-07
x5 | 7 | 18 |0.009422 | 8.69E-06 | 472 | 1425 | 0.46621 |9.88E-06 | 6 | 17 |0.005815 | 2.36E-09
x| 6 | 17 |0.016245 | 1.29E-06 | 59 | 182 | 0.11499 |9.72E-06 | 3 | 8 |0.005392 | 1.21E-07
za | 6 | 17 [0.013211 | 1.59E-06 | 66 | 202 | 0.12517 |8.76E-06 | 3 | 8 |0.006238 |2.79E-06
10000 | @s | 6 | 16 | 0.01863 | 3.54E-06 | 220 | 667 | 0.42825 | 9.77E-06 | 4 | 11 |0.007939 | 9.73E-08
x4 | 6 | 16 |0.013821 |4.91E-06 | 483 | 1458 | 0.93875 | 9.87E-06 | 5 | 14 |0.009098 | 2.93E-07
x5 | 7 | 19 |0.015851 | 8.89E-06 | 692 | 2086 | 1.3808 |9.84E-06 | 6 | 17 |0.010531 | 1.24E-09
x| 6 | 17 |0.044504 | 2.89E-06 | 98 | 299 | 0.72483 | 9.63E-06 | 3 | 8 |0.022176 | 6.32E-08
zy | 6 | 17 |0.048016 | 357E-06 | 216 | 655 | 15813 |9.96E-06| 3 | 8 |0.020866 | 3.37E-06
50000 | @3 | 6 | 16 |0.046256 | 7.91E-06 | 479 | 1446 | 3.4612 | 9.79E-06 | 4 | 11 | 0.03066 | 4.87E-08
x4 | 6 | 17 | 0.0451 |8.10E-06 | 725 |2186| 52517 |9.97E-06| 5 | 14 |0.036304 | 1.84E-07
x5 | 8 | 21 [0.058008 |2.05E-06 | 723 | 2179 | 52287 |9.84E-06 | 6 | 17 |0.043019 | 4.01E-10
x| 6 | 17 | 01012 |4.08E-06 | 146 | 444 | 1.9984 |9.42E-06| 3 | 8 | 0.0418 |5.40E-08
za | 6 | 17 |0.089258 | 5.05E-06 | 221 | 670 | 29995 |9.72E-06 | 3 | 8 |0.040817 | 4.27E-06
100000 | #s | 6 | 17 |0.089481 | 8.11E-06 | 701 | 2113 | 9.4877 |9.99E-06 | 4 | 11 | 0.05554 | 4.05E-08
x4 | 7 | 19 [0.092316 | 1.18E-06 | 739 | 2227 | 9.9448 |9.82E-06| 5 | 14 |0.069756 | 1.80E-07
x5 | 8 | 21 | 0.11838 |2.90E-06 | 745 | 2245 | 10.072 |9.98E-06 | 6 | 17 |0.081469 | 2.71E-10
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TABLE 5. Results for the three algorithms on Problem 3.

HYBRIDSCG DFPB1 MFRM

DIM | INP | NOI | NFE | TIME Norm | NOI | NFE | TIME Norm | NOI | NFE | TIME Norm
x1 | 208 | 634 | 0.05439 | 9.87E-06 | 624 | 1882 | 0.158 |9.87E-06| 6 24 | 0.002396 | 3.11E-06
xy | 208 | 634 | 0.043583 | 9.87E-06 | 624 | 1882 | 0.13109 | 9.87E-06 | 6 24 | 0.002149 | 5.94E-06
1000 x3 | 208 | 634 | 0.04418 | 9.86E-06 | 64 | 196 | 0.01487 | 8.62E-06 | 6 24 | 0.002174 | 9.94E-06
Z4 9 28 | 0.003061 | 3.59E-06 | 300 | 909 | 0.076095 | 1.00E-05 | 11 46 | 0.002925 | 2.71E-06
z5 8 26 | 0.003225 | 5.51E-06 | 618 | 1865 | 0.12764 | 9.99E-06 | 16 68 | 0.004583 | 8.38E-06
x| 219 | 667 | 0.17978 | 9.90E-06 | 43 | 133 | 0.037317 | 9.85E-06 | 6 24 | 0.00564 | 6.96E-06
zo | 219 | 667 | 0.20085 | 9.90E-06 | 65 | 199 | 0.054585 | 8.55E-06 | 7 28 | 0.006942 | 1.33E-06
5000 xz3 | 219 | 667 | 0.18565 | 9.90E-06 | 146 | 444 | 0.12493 | 9.45E-06 | 7 28 | 0.007307 | 2.22E-06
Z4 9 28 | 0.008754 | 8.03E-06 | 654 | 1972 | 0.55188 | 9.86E-06 | 11 46 | 0.011082 | 6.06E-06
z5 9 28 | 0.008722 | 3.28E-06 | 659 | 1987 | 0.56525 | 9.99E-06 | 17 72 1 0.016643 | 7.67E-06
x1 | 224 | 682 | 0.34196 | 9.73E-06 | 41 | 126 | 0.066791 | 8.91E-06 | 6 24 | 0.01097 | 9.85E-06
xo | 224 | 682 | 0.32324 | 9.73E-06 | 97 | 296 | 0.15224 | 9.44E-06 | 7 28 | 0.012606 | 1.88E-06
10000 | @3 | 224 | 682 | 0.32965 | 9.73E-06 | 216 | 655 | 0.35641 | 9.67E-06 | 7 28 | 0.013306 | 3.14E-06
Ty 9 29 | 0.015087 | 5.10E-06 | 665 | 2006 | 1.1222 | 9.98E-06 | 11 46 | 0.019798 | 8.58E-06
x5 9 28 | 0.023411 | 4.64E-06 | 673 | 2029 | 1.1502 | 9.85E-06 | 18 76 | 0.033463 | 4.44E-06
xy | 235 | 715 | 1.2938 |9.76E-06 | 98 | 299 | 0.62404 | 8.90E-06 | 7 28 | 0.046645 | 2.20E-06
xp | 235 | 715 | 1.6854 | 9.76E-06 | 215 | 652 | 1.3631 | 9.55E-06 | 7 28 | 0.045009 | 4.20E-06
50000 | w3 | 235 | 715 | 1.3124 | 9.76E-06 | 471 | 1422 | 2.9649 | 9.81E-06 | 7 28 | 0.044088 | 7.03E-06
Ty 10 31 | 0.061176 | 3.04E-06 | 707 | 2131 | 4.444 | 9.89E-06 | 12 50 | 0.088998 | 5.20E-06
x5 9 29 | 0.055521 | 4.66E-06 | 704 | 2122 | 4.4704 | 9.89E-06 | 18 76 | 0.12249 | 9.93E-06
x1 | 240 | 730 | 4.2127 | 9.59E-06 | 145 | 441 1.7 9.81E-06 | 7 28 | 0.084886 | 3.11E-06
xo | 240 | 730 | 3.3075 |9.59E-06 | 316 | 957 | 3.6007 | 9.94E-06 | 7 28 | 0.084564 | 5.94E-06
100000 | x3 | 240 | 730 | 3.7609 | 9.59E-06 | 690 |2080 | 7.743 |9.94E-06| 7 28 | 0.084681 | 9.94E-06
Ty 10 31 | 0.10698 | 4.30E-06 | 5 26 | 0.13981 0 12 50 | 0.15095 | 7.35E-06
z5 9 29 0.1052 | 6.59E-06 | 718 | 2164 | 8.1766 | 9.88E-06 | 19 80 | 0.24534 | 5.75E-06
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TABLE 6. Results for the three algorithms on Problem 4.

HYBRIDSCG DFPB1 MFRM
DIM | INP | NOI | NFE | TIME Norm | NOI | NFE | TIME Norm | NOI | NFE | TIME Norm
1 1 4 10.001312 0 38 | 118 | 0.007735 | 9.79E-06 | 6 24 | 0.002023 | 1.65E-06
) 1 4 | 0.000811 0 48 | 149 | 0.011013 | 9.16E-06 | 5 20 |0.001592 | 2.32E-06
1000 z3 5 17 | 0.002061 | 8.04E-06 | 93 | 284 | 0.017588 | 9.51E-06 | 10 42 | 0.003416 | 6.42E-06
T4 1 7 1 0.001015 0 426 | 1287 | 0.071075 | 9.90E-06 | 16 71 | 0.004065 | 8.48E-06
z5 1 9 10.001308 0 613 | 1849 | 0.096644 | 9.94E-06 | 1 15 |0.001776 0
1 1 4 10.001705 0 3 15 | 0.004367 0 6 24 | 0.00492 | 3.68E-06
Z2 1 4 10.001533 0 63 | 193 | 0.037773 | 8.74E-06 | 5 20 | 0.004287 | 5.20E-06
5000 z3 6 19 | 0.005213 | 4.78E-06 | 208 | 631 | 0.12208 | 9.55E-06 | 11 46 | 0.008255 | 3.89E-06
Ty 1 7 1 0.003002 | 0.00E+00 | 645 | 1945 | 0.39337 | 9.81E-06 | 18 79 10.015013 | 6.15E-06
z5 1 9 10.003058 0 3 20 | 0.006331 0 1 15 | 0.003854 0
1 1 4 | 0.002513 0 34 | 105 | 0.035563 | 8.06E-06 | 6 24 | 0.008339 | 5.20E-06
Za 1 4 10.002308 0 96 | 293 | 0.10306 |9.36E-06 | 5 20 | 0.006425 | 7.35E-06
10000 | =3 6 19 | 0.008479 | 6.76E-06 | 307 | 929 0.335 | 9.62E-06 | 11 46 | 0.014964 | 5.50E-06
T4 1 7 | 0.003576 0 5 26 |0.012717 0 18 79 1 0.026799 | 8.69E-06
z5 1 9 ]0.004746 | 0.00E+00 | 3 20 | 0.010875 0 1 15 | 0.007209 0
1 1 4 | 0.007637 0 97 | 296 | 0.40247 | 9.47E-06 | 7 28 | 0.035767 | 1.16E-06
Za 1 4 1 0.008306 0 213 | 646 | 0.88198 | 9.87E-06 | 6 24 | 0.02789 | 1.64E-06
50000 | *3 6 20 | 0.027349 | 6.78E-06 | 666 | 2008 | 2.8021 |9.99E-06 | 12 50 |0.058484 | 3.33E-06
T4 1 7 10.011779 0 3 20 | 0.03512 0 20 87 | 0.10175 | 6.31E-06
z5 1 9 ]0.013706 0 2 17 | 0.030306 0 1 15 | 0.026876 0
1 1 4 | 0.012268 | 0.00E+00 | 145 | 441 | 1.1719 |9.21E-06 | 7 28 | 0.062812 | 1.65E-06
E2 1 4 10.011989 0 314 | 950 | 24091 |9.99E-06 | 6 24 | 0.055935 | 2.32E-06
100000 | =3 6 20 | 0.050065 | 9.58E-06 | 681 | 2053 | 5.2381 |9.82E-06 | 12 50 | 0.11534 | 4.71E-06
T4 1 7 | 0.019024 0 3 20 | 0.067134 0 20 87 | 0.20414 | 8.92E-06
z5 1 9 10.024915 0 2 17 | 0.057477 0 1 15 | 0.052133 0
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TABLE 7. Results for the three algorithms on Problem 5.

HYBRIDSCG DEFPB1 MFRM
DIM |INP |NOI [NFE| TIME | Norm |NOI|NFE| TIME | Norm |NOI|NFE| TIME | Norm
x1 | 14 | 39 |0.022763 | 7.75E-06 | 86 | 263 | 0.016227 | 9.77E-06 | 26 | 98 |0.006234 | 3.51E-06
z2 | 14 | 38 |0.003236 | 742E-06 | 86 | 262 | 0.016786 | 9.24E-06 | 46 | 178 |0.011195 | 7.43E-06
1000 | @s | 14 | 42 | 0.00418 | 4.72E-06 | 84 | 257 | 0.018012 | 9.89E-06 | 37 | 144 | 0.009441 | 7.11E-06
24 | 16 | 51 |0.004114 | 7.95E-06 | 345 | 1043 | 0.064886 | 9.76E-06 | 46 | 194 | 0.011187 | 7.06E-06
x5 | 30 | 95 |0.007561 | 9.32E-06 | 481 | 1453 | 0.091225 | 9.98E-06 | 43 | 182 | 0.009821 | 8.70E-06
21 | 47 | 142 | 0.033341 | 8.63E-06 | 197 | 597 | 0.11997 | 9.72E-06 | 38 | 147 |0.030431 | 4.96E-06
z, | 181 | 549 | 0.11761 | 9.92E-06 | 196 | 594 | 0.1291 | 9.75E-06 | 20 | 77 |0.017908 | 4.98E-06
5000 | x3 | 14 | 42 | 0.014535 | 9.10E-06 | 193 | 585 | 0.12104 | 9.72E-06 | 41 | 157 | 0.029593 | 8.92E-06
x4 | 17 | 53 | 0.022852 | 8.18E-06 | 782 | 2356 | 0.51453 | 9.99E-06 | - - - -
x5 | 32 | 100 | 0.021863 | 9.62E-06 | 756 | 2278 | 0.49511 | 9.94E-06 | 45 | 190 | 0.043542 | 7.14E-06
x1 | 60 | 183 | 0.082076 | 9.86E-06 | 294 | 889 | 0.37295 | 9.80E-06 | 37 | 143 |0.051113 | 9.28E-06
2o | 34 | 102 | 0.045406 | 9.75E-06 | 293 | 886 | 0.35567 | 9.52E-06 | 22 | 84 |0.032708 | 9.78E-06
10000 | =s | 15 | 44 |0.023447 | 3.99E-06 | 288 | 871 | 0.341 |9.99E-06 | 39 | 149 | 0.050962 | 6.74E-06
x4 | 17 | 54 | 0.025686 | 8.74E-06 | 811 | 2443 | 0.99399 | 9.93E-06 | 44 | 186 | 0.064499 | 7.68E-06
25 | 33 | 103 | 0.042758 | 8.89E-06 | 881 | 2653 | 1.0904 | 9.90E-06 | 46 | 194 | 0.065669 | 8.62E-06
x| 107 | 325 | 04712 |9.86E-06 | 939 | 2827 | 44152 |9.86E-06 | 56 | 218 | 0.2953 | 6.31E-06
22 | 26 | 77 | 010972 | 6.50E-06 | 652 | 1965 | 3.0427 | 9.77E-06 | 69 | 280 | 0.38081 | 6.87E-06
50000 | @3 | 15 | 44 |0.066827 | 8.84E-06 | 643 | 1938 | 3.0116 | 9.83E-06| - - - B
x4 | 18 | 56 | 0.10153 | 8.73E-06 | - - - - 46 | 194 | 0.28237 | 8.47E-06
x5 | 35 | 109 | 0.15201 | 8.99E-06 | - - - - 50 | 210 | 0.2796 | 8.12E-06
z1 | 184 | 558 | 15203 | 9.49E-06 | 968 | 2914 | 7.9513 | 9.84E-06 | 31 | 121 | 0.32019 | 4.48E-06
22 | 19 | 56 | 0.14931 | 9.22E-06 | 963 | 2900 | 82014 | 9.99E-06 | - - - -
100000 | #s | 15 | 45 | 0.11472 | 8.71E-06 | 951 | 2863 | 8.1928 | 9.88E-06 | 46 | 178 | 0.46446 | 6.99E-06
x4 | 18 | 57 | 014127 | 9.26E-06 | - - - - 47 | 198 | 059746 | 8.31E-06
x5 | 36 | 112 | 0.29533 | 8.86E-06 | - - - - 52 | 218 | 0.58434 | 7.37E-06

187



188

K. Muangchoo, S. Phiangsungnoen

TABLE 8. Results for the three algorithms on Problem 6.

HYBRIDSCG DFPB1 MFRM
DIM |INP [NOI [NFE| TIME | Norm |NOI|NFE| TIME | Norm |NOI|NFE| TIME | Norm
x| 8 | 24 |0.028518 | 6.23E-06 | 463 | 1398 | 0.15017 | 9.80E-06 | 11 | 44 |0.005115 | 8.32E-06
za | 8 | 24 | 0.00387 |6.48E-06 | 321 | 971 | 0.094723 | 9.83E-06 | 11 | 44 | 0.004648 | 7.32E-06
1000 | =s | 8 | 24 |0.003359 | 7.01E-06 | 318 | 963 | 0.076505 | 9.99E-06 | 11 | 44 | 0.003925 | 8.83E-06
x4 | 8 | 24 |0.004506 | 5.91E-06 | 147 | 447 | 0.038539 | 9.49E-06 | 9 | 36 | 0.003494 | 8.29E-06
zs | 8 | 24 |0.003804 | 4.28E-06 | 98 | 299 | 0.028484 | 9.01E-06 | 7 | 28 |0.003089 | 8.25E-06
x| 8 | 25 |0.011983 | 6.36E-06 | 698 | 2104 | 0.85174 | 9.80E-06 | 8 | 32 |0.010689 | 1.87E-06
z2 | 8 | 25 |0.012516 | 6.39E-06 | 696 | 2098 | 0.84443 | 9.90E-06 | 8 | 32 |0.011528 | 1.80E-06
5000 | xs | 8 | 25 |0.011862 | 6.33E-06 | 691 | 2083 | 0.85148 | 9.84E-06 | 8 | 32 | 0.011359 | 1.59E-06
x4 | 8 | 25 |0.010762 | 4.66E-06 | 464 | 1401 | 0.55128 | 9.86E-06 | 7 | 28 |0.009012 | 8.62E-06
x5 | 8 | 24 [0.011493 | 8.82E-06 | 216 | 656 | 027 |9.96E-06| 7 | 28 |0.010534 | 5.08E-06
x| 8 | 24 [0020913 |7.12E-06 | 712 | 2146 | 1.7802 |9.87E-06 | 8 | 32 |0.021535 | 2.62E-06
z2 | 8 | 24 |0.020639 |7.19E-06 | 710 | 2140 | 1.7344 |997E-06| 8 | 32 |0.022687 | 2.52E-06
10000 | @s | 8 | 24 |0.019573 | 7.48E-06 | 705 | 2125 | 1.7163 |9.91E-06| 8 | 32 |0.023337 | 2.22E-06
x4 | 8 | 24 |0.028183 | 6.76E-06 | 680 | 2050 | 1.631 |9.96E-06| 8 | 32 |0.022381 | 1.22E-06
x5 | 8 | 24 |0.024112 |4.77E-06 | 319 | 965 | 0.77825 | 9.83E-06 | 7 | 28 | 0.021931 | 7.18E-06
x| 8 | 25 |0.069879 | 6.45E-06 | 744 | 2242 | 64162 |9.87E-06| 8 | 32 |0.080613 | 5.85E-06
z2 | 8 | 25 |0.078116 | 6.42E-06 | 742 | 2236 | 6.3846 | 1.00E-05| 8 | 32 |0.079199 | 5.63E-06
50000 | @3 | 8 | 25 |0.078497 | 6.44E-06 | 737 | 2222 | 6.3313 | 9.99E-06 | 8 | 32 |0.079298 | 4.96E-06
zs | 7 | 21 |0.068783 | 9.55E-06 | 713 | 2150 | 6.1378 | 9.98E-06 | 8 | 32 | 0.078776 | 2.72E-06
x5 | 7 | 21 |0.060604 | 6.23E-06 | 692 | 2086 | 59485 |9.83E-06| 8 | 32 |0.079353 | 1.61E-06
x| 7 | 21 | 012721 |6.69E-06 | 753 | 2270 | 12.8687 | 9.97E-06 | 8 | 32 | 0.17703 | 8.28E-06
z2 | 7 | 21 | 012365 | 6.57E-06 | 754 | 2272 | 13.0305 | 9.87E-06 | 8 | 32 | 0.17207 | 7.96E-06
100000 | @s | 7 | 21 | 012876 | 6.18E-06 | 750 | 2260 | 12.8745 |9.97E-06 | 8 | 32 | 0.16946 | 7.01E-06
x4 | 7 | 21 | 012073 | 4.18E-06 | 727 | 2192 | 13.1911 |9.99E-06 | 8 | 32 | 0.18228 | 3.85E-06
x5 | 7 | 21 | 012014 | 2.70E-06 | 706 | 2128 | 12.1153 | 9.91E-06 | 8 | 32 | 0.17072 | 2.27E-06
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TABLE 9. Results for the three algorithms on Problem 7.

HYBRIDSCG DFPB1 MFRM
DIM |INP |NOI [NFE| TIME | Norm |NOI|NFE| TIME | Norm |NOI|NFE| TIME | Norm
21 | 6 | 23 |0.026961 | 890E-06 | 47 | 147 | 0.012069 | 9.51E-06 | 4 | 21 |0.002293 | 3.24E-07
22 | 7 | 25 |0.002594 | 1.12E-06 | 45 | 140 | 0.011434 | 8.84E-06 | 4 | 21 |0.001968 | 1.43E-07
1000 | @s | 3 | 14 | 0.00209 |243E-06| 7 | 22 |0.002668 | 8.05E-06 | 3 | 17 |0.001705 | 5.81E-08
x4 | 4 | 17 | 0.00311 | 9.07E-07 | 74 | 228 | 0.020342 | 9.16E-06 | 7 | 34 | 0.002805 | 6.36E-06
zs | 5 | 19 |0.002793 | 1.87E-06 | 73 | 225 | 0.017418 | 897E-06 | 8 | 37 |0.003184 | 1.90E-06
21 | 7 | 25 |0.008957 | 2.13E-06 | 113 | 346 | 0.10171 | 9.13E-06 | 4 | 21 |0.007073 | 7.25E-07
22 | 7 | 25 |0.007984 | 2.50E-06 | 74 | 228 | 0.060023 | 9.60E-06 | 4 | 21 |0.006495 | 3.20E-07
5000 | x3 | 3 | 14 |0.005602 | 5.42E-06 | 6 | 20 | 0.00638 | 6.65E-06| 3 | 17 |0.006098 | 1.30E-07
24 | 4 | 17 | 0.00679 | 2.03E-06 | 166 | 507 | 0.14053 | 1.00E-05| 8 | 38 |0.010315 | 1.49E-06
zs | 5 | 19 |0.007403 | 4.18E-06 | 241 | 732 | 0.21577 | 9.50E-06 | 8 | 37 |0.010848 | 4.26E-06
21 | 7 | 25 |0.013733 | 3.01E-06 | 168 | 512 | 026911 | 9.42E-06 | 4 | 21 |0.010077 | 1.02E-06
22 | 7 | 25 |0.017363 | 3.53E-06 | 113 | 346 | 0.18599 | 9.22E-06 | 4 | 21 |0.010746 | 4.52E-07
10000 | z3 | 3 | 14 |0011848 | 7.67E-06 | 14 | 45 |0.024651 | 920E-06 | 3 | 17 |0.009026 | 1.84E-07
x4 | 4 | 17 |0.012261 | 2.87E-06 | 246 | 747 | 0.39502 | 9.73E-06 | 8 | 38 |0.017835 | 2.10E-06
25 | 5 | 19 |0.013002 | 5.91E-06 | 354 | 1072 | 0.58062 | 9.84E-06 | 8 | 37 |0.017645 | 6.02E-06
21 | 7 | 25 | 0.04846 | 6.73E-06 | 367 | 1112 | 22913 | 9.96E-06 | 4 | 21 |0.043377 | 2.29E-06
22 | 7 | 25 | 0.05098 | 7Z.90E-06 | 250 | 759 | 1.5387 | 9.80E-06| 4 | 21 |0.037317 | 1.01E-06
50000 | @3 | 4 | 16 | 0.031574 | 2.55E-06 | 67 | 208 | 0.43005 | 9.24E-06 | 3 | 17 |0.031092 | 4.11E-07
x4 | 4 | 17 |0.039941 | 6.42E-06 | 371 | 1124 | 2.2876 | 9.99E-06 | 8 | 38 |0.063828 | 4.70E-06
25 | 6 | 21 |0.048487 | 1.79E-06 | 371 | 1123 | 2.2984 | 9.76E-06| 9 | 41 |0.081229 | 1.41E-06
x| 7 | 25 | 0.09203 | 9.52E-06 | 375 | 1135 | 4.2041 |9.77E-06| 4 | 21 |0.069675 | 3.24E-06
22 | 7 | 26 |0.099234 | 7.70E-06 | 368 | 1114 | 4.1018 | 9.88E-06| 4 | 21 |0.071007 | 1.43E-06
100000 | #s | 4 | 16 |0.070669 | 3.60E-06 | 101 | 311 | 1.1614 |9.67E-06| 3 | 17 |0.061634 | 5.81E-07
zs | 4 | 17 | 0075186 | 9.07E-06 | 378 | 1145 | 4.2028 | 9.99E-06 | 8 | 38 | 0.12589 | 6.65E-06
w5 | 6 | 21 |0.078324 | 2.53E-06 | 389 | 1177 | 4.3844 | 9.88E-06| 9 | 41 | 0.15559 | 1.99E-06
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TABLE 10. Results for the three algorithms on Problem 8.

HYBRIDSCG DFPB1 MFRM
DIM | INP | NOI | NFE | TIME Norm | NOI | NFE | TIME Norm | NOI | NFE | TIME Norm
x 5 21 |0.012929 | 3.33E-06 | - - - - 9 42 | 0.003772 | 9.49E-06
9 5 21 | 0.001766 | 2.01E-06 | - - - - 9 42 | 0.004332 | 9.49E-06
1000 | z3 5 21 |0.001681 | 1.92E-06 | - - - - 13 62 | 0.004369 | 5.02E-06
24 6 24 |0.003185 | 1.20E-06 | - - - - 13 62 | 0.004391 | 5.02E-06
5 6 24 |0.002362 | 1.72E-06 | - - - - 13 62 | 0.004568 | 5.02E-06
1 5 21 | 0.004363 | 7.44E-06 | - - - - 10 50 | 0.013257 | 3.97E-06
T3 5 21 | 0.005446 | 4.50E-06 | - - - - 12 58 | 0.014512 | 3.50E-06
5000 | @3 5 21 |0.006948 | 4.30E-06 | - - - - 12 58 | 0.015315 | 3.50E-06
24 6 24 | 0.005116 | 2.68E-06 | 127 | 392 | 0.092756 | 9.86E-06 | 12 58 | 0.015189 | 3.50E-06
x5 6 24 | 0.004529 | 3.85E-06 | - - - - 12 58 | 0.014247 | 3.50E-06
ml 6 24 |0.007889 | 8.38E-07 | - - - - 11 54 | 0.030046 | 7.99E-06
3 5 21 |0.007325 | 6.37E-06 | - - - - 11 54 | 0.030193 | 7.99E-06
10000 | 3 5 21 | 0.006432 | 6.08E-06 | 113 | 349 | 0.17688 | 9.79E-06 | 11 54 | 0.036489 | 7.99E-06
En 6 24 |0.008236 | 3.79E-06 | - - - - 11 54 | 0.029971 | 7.99E-06
5 6 24 |0.010118 | 5.44E-06 | - - - - 11 54 | 0.027405 | 7.99E-06
gt 6 24 |0.024719 | 1.87E-06 | 76 | 238 | 0.50184 | 9.01E-06 | 27 | 118 | 0.20019 | 8.75E-06
o 6 24 |0.024973 | 1.13E-06 | 76 | 238 | 04899 |9.01E-06 | 27 | 118 | 0.20591 | 8.75E-06
50000 | %3 6 24 |0.027511 | 1.08E-06 | - - - - 27 | 118 | 0.21152 | 8.75E-06
Ty 6 24 |0.026514 | 8.47E-06 | - - - - 27 | 118 | 0.19623 | 8.75E-06
x5 7 27 |0.027801 | 1.15E-06 | - - - - 27 | 118 | 0.21923 | 8.75E-06
gt 6 24 | 0.051423 | 2.65E-06 | 59 | 188 | 0.70717 | 9.94E-06 | - - - -
2 6 24 | 0.05418 | 1.60E-06 | - - - - - - - -
100000 | 3 6 24 | 0.064822 | 1.53E-06 | - - - - - - - -
T4 7 27 | 0.066902 | 1.13E-06 | - - - - - - - -
x5 7 27 | 0.05231 | 1.63E-06 | - - - - - - - -
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TABLE 11. Results for the three algorithms on Problem 9.

HYBRIDSCG DFPB1 MFRM

DIM | INP | NOI | NFE | TIME Norm | NOI | NFE | TIME Norm | NOI | NFE | TIME Norm
3 7 25 | 0.024428 | 3.31E-06 | 39 | 123 | 0.006235 | 9.49E-06 | 4 25 | 0.001891 | 8.20E-07
T 7 25 10.001179 | 2.00E-06 | 71 | 221 | 0.008798 | 9.82E-06 | 4 25 | 0.00165 | 4.96E-07
1000 T3 7 25 | 0.00113 | 1.91E-06 | 55 | 174 | 0.006965 | 9.77E-06 | 4 25 | 0.00171 | 4.73E-07
24 8 28 | 0.001269 | 1.68E-06 | 161 | 492 | 0.020052 | 9.32E-06 | 4 25 |0.001679 | 3.71E-06
z5 8 28 | 0.001734 | 2.41E-06 | 238 | 724 | 0.030846 | 9.83E-06 | 4 25 | 0.002033 | 5.32E-06
1 7 25 | 0.003592 | 7.40E-06 | 69 | 215 | 0.032179 | 9.77E-06 | 4 25 | 0.004306 | 1.83E-06
2 7 25 | 0.003092 | 4.48E-06 | 39 | 123 | 0.017953 | 9.59E-06 | 4 25 | 0.004595 | 1.11E-06
5000 z3 7 25 | 0.002703 | 4.27E-06 | 43 | 135 | 0.021851 | 8.70E-06 | 4 25 | 0.004466 | 1.06E-06
Z4 8 28 | 0.004574 | 3.75E-06 | 244 | 742 | 0.11336 | 9.72E-06 | 4 25 | 0.004989 | 8.29E-06
z5 8 28 | 0.003543 | 5.39E-06 | 247 | 751 | 0.11355 | 9.67E-06 | 5 29 | 0.005801 | 1.64E-07
1 8 28 | 0.006141 | 1.17E-06 | 107 | 330 | 0.099953 | 9.86E-06 | 4 25 | 0.008901 | 2.59E-06
Z 7 25 | 0.005568 | 6.34E-06 | 70 | 217 | 0.066935 | 9.99E-06 | 4 25 | 0.01048 | 1.57E-06
10000 | =3 7 25 | 0.006774 | 6.04E-06 | 70 | 217 | 0.085183 | 9.95E-06 | 4 25 | 0.009931 | 1.50E-06
Ty 8 28 | 0.006288 | 5.31E-06 | 247 | 751 | 0.32871 | 9.75E-06 | 5 29 |0.012762 | 1.62E-07
x5 8 28 | 0.007178 | 7.62E-06 | - - - - 5 29 | 0.010457 | 2.32E-07
1 8 28 | 0.024964 | 2.62E-06 | 239 | 727 | 0.89519 | 9.95E-06 | 4 25 |0.029792 | 5.80E-06
E2 8 28 | 0.02207 | 1.59E-06 | 160 | 489 | 0.57925 | 9.81E-06 | 4 25 |0.029347 | 3.51E-06
50000 | *3 8 28 | 0.023477 | 1.52E-06 | 160 | 489 | 0.5803 | 9.40E-06 | 4 25 | 0.030874 | 3.35E-06
Zy 9 31 |0.024584 | 1.33E-06 | - - - - 5 29 | 0.034249 | 3.61E-07
z5 9 31 | 0.024464 | 1.91E-06 | - - - - 5 29 |0.032112 | 5.19E-07
1 8 28 | 0.044541 | 3.71E-06 | 244 | 742 | 15579 | 9.63E-06 | 4 25 | 0.073174 | 8.20E-06
E2 8 28 | 0.044001 | 2.25E-06 | 237 | 721 | 1.5175 | 9.86E-06 | 4 25 | 0.057577 | 4.96E-06
100000 | =3 8 28 | 0.04765 | 2.14E-06 | 236 | 719 1559 | 9.98E-06 | 4 25 | 0.058631 | 4.73E-06
Z4 9 31 | 0.050755 | 1.88E-06 | - - - - 5 29 |0.071601 | 5.11E-07
z5 9 31 | 0.067252 | 2.70E-06 | - - - - 5 29 | 0.063296 | 7.34E-07
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