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Hybrid CG-Like Algorithm for Nonlinear Equations and
Image Restoration
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ABSTRACT. This paper introduces a hybrid spectral-conjugate gradient (SCG) method to solve nonlinear
monotone operator equations efficiently. The proposed method incorporates a hybrid parameter that encom-
passes the Polak–Ribière–Polyak (PRP), Liu-Storey (LS), Fletcher-Reeves (FR), and conjugate descent (CD) meth-
ods as particular instances. Additionally, we derive the spectral parameter to ensure that the search direction
adheres to the sufficient descent condition. The search direction is also designed to be bounded, and under spe-
cific conditions, we demonstrate that the sequence produced by our hybrid SCG algorithm converges toward a
solution. Furthermore, to underscore the effectiveness of our proposed method, we conducted extensive numer-
ical experiments comparing its performance against that of existing algorithms. These experiments were based
on a selection of benchmark nonlinear monotone operator equations, highlighting our proposed algorithm’s
superior efficiency and potential in practical applications.

1. INTRODUCTION

Let A ⊆ Rn be a nonempty, closed and convex and H : A → Rn be monotone and
Lipschitz continuous operator. This work considers the problem of searching a point y ∈
A such that

(1.1) H(y) = 0.

Many real-world applications such as the economic equilibrium problems [16], the chem-
ical equilibrium systems [27] and compressive sensing [34] can be modelled in the form
of (1.1), this has led to an increasing interest of researchers in studying methods for solv-
ing (1.1). Given a good starting point, numerical methods such as Newton’s and Quasi-
Newton’s methods and their variants are quite interesting. However, due to the need for
computation of Jacobian of the underlying operator or approximation of it, these meth-
ods are not suitable for handling large-scale nonlinear problems see [13, 32, 29, 14] for an
overview of these methods.

Following the famous projection method of Solodov and Svaiter [30], the Conjugate
Gradient (CG) method for solving problems (1.1) is proposed as one of the first-order op-
timization method, which is known for its simplicity and low storage requirements. Sev-
eral CG methods have been introduced, studied, and extended over the years for solving
(1.1), as discussed in [1, 6, 5, 19, 21, 20] and references therein.

Generally, a CG method for solving (1.1) generates an iterative sequence {yk}, defined
by, for k = 0, 1, 2, . . .

(1.2) yk+1 = yk + αkdk,
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where αk > 0 is a line search and dk is a direction given by

(1.3) dk =

{
−Hk if k = 0,

−Hk + βkdk−1 if k ≥ 0,

where Hk is the function evaluation of H at yk and βk is a scalar called the CG parameter.
Different choices of the parameter βk correspond to different CG methods. Several Hybrid
methods have been introduced recently as a combination of CG methods to take advan-
tage of some vital features of each of the combined methods, for example Mtagulwa in [26]
proposed a hybrid method consisting of Polak–Ribière–Polyak (PRP) and Fletcher-Reeves
(FR). Under some suitable conditions, it was shown that their method not only possesses
the good computational effect as the PRP method but also holds all the nice convergence
properties of the FR method. Another hybrid method given as a convex combination of
Liu-Storey (LS) and FR methods was considered in [18]; the proposed method utilised the
strong convergence property of the FR method and the good numerical performance of
the LS method. The search direction was shown to satisfy the descent condition under
some suitable conditions.

Moreover, inspired by the work of Andrei [10], the fact that the LS method usually
performs better in practice than Dia-Liao (DY) method, and on the other hand, the DY
method has stronger convergence property than the LS method. Liu [24] established a
more efficient and robust hybrid CG method by utilising the advantages of LS and DY
methods for solving unconstrained optimization problems with suitable conditions. The
parameter βk in the proposed method is computed as a convex combination of the βk pa-
rameters of LS and DY methods. Another kind of hybrid combination is the three-term
method known for its good theoretic properties which has been introduced and studied
in the literature. Notably, Amini et al. [9] proposed a modified HS method for solving
unconstrained optimization with a new direction that satisfies descent condition inde-
pendent of the choice of line search. It has been shown that the proposed method inherits
the good theoretical properties of the three terms combinations and in particular, the nu-
merical efficiency of Hestens-Stiefel (HS).

In the same vein, a three-term spectral conjugate gradient (CG) method based on the
conjugate descent (CD) CG parameter was proposed in [4], where two directions were
obtained by adding a term to the CD direction. Under some assumptions, it has been
shown that sufficient descent property is satisfied. Additionally, Narushima et al. [28]
introduced a generalised three-term CG methods type. Like [9], it has been proved that
the sufficient descent condition is satisfied independent of the choice of βk parameter and
line search. Motivated and inspired by the strong convergence properties of FR and con-
jugate descent (CD) methods together with the good numerical performance of PRP and
LS method, this article to the best of our knowledge proposes for the first a generalised
CG-method for (1.1). The proposed method uses the PRP, LS, FR, and CG methods in
particular cases. Additionally, using some benchmark test problems, the numerical per-
formance of the proposed method in comparison with some existing CG methods in the
literature is presented.

The paper’s outline is given as follows: in section 2 we present some preliminaries
required for the formulation of the proposed method, and we present the convergence
analysis of the hybrid method in Section 4. In the last section, we report the proposed
method’s numerical experiments compared with some existing methods in the literature.

Notation. Unless otherwise stated, the symbol ‖ · ‖ stands for Euclidean norm on Rn.
H(yk) is abbreviated to Hk. Furthermore, PA[·] is the projection mapping from Rn onto
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A given by PA[y] = arg min{‖y− z‖ : y ∈ Rn, z ∈ A}, for a nonempty closed and convex
set A ∈ Rn.

2. HYBRID PRP-LS-FR-CD

This section will propose a new hybrid three-term spectral-conjugate gradient algo-
rithm for finding approximate solutions to problem (1.1). The search direction com-
prises two parameters, namely, the hybrid conjugate gradient (CG) parameter denoted by
βPLFCk and the parameter denoted by θPLFCk derived to ensure the search direction sat-
isfies the sufficient descent condition. The parameter βPLFCk combines four well-known
CG parameters. It is defined as

(2.4) βPLFCk :=
ω1H

T
k zk−1 + ω2‖Hk‖2

ω3‖Hk−1‖ − ω4dTk−1Hk−1
,

where zk−1 = Hk −Hk−1. Note that,

• if ω1 = ω3 = 1 and ω2 = ω4 = 0, then βPLFCk = βPRPk .
• if ω1 = c4 = 1 and ω2 = ω3 = 0 , then βPLFCk = βLSk .
• if ω2 = ω3 = 1 and ω1 = ω4 = 0 , then βPLFCk = βFRk .
• if ω2 = ω4 = 1 and ω1 = ω3 = 0, then βPLFCk = βCDk .

Next, we propose the new hybrid three-term direction as

(2.5) d0 = −H0, dk := dPLFCk := −Hk + βPLFCk sk−1 − θPLFCk Hk, k ≥ 1,

where sk = αkdk, βPLFCk is given by (2.4) and θPLFCk is defined in such a way that

(2.6) HT
k dk = −‖Hk‖2,

holds.

It is easy to see that for k = 0, (2.6) is satisfied. As for k ≥ 1, multiplying both sides of
(2.5) by HT

k , we have

HT
k dk = −

(
1− βPLFCk

HT
k sk−1
‖Hk‖2

+ θPLFCk

)
‖Hk‖2.

For (2.6) to be satisfied, we require

(2.7) θPLFCk = βPLFCk

HT
k sk−1
‖Hk‖2

.

In what follows, we denote the solution set of (1.1) by Sol(A, H) and assume that:

Assumption 2.1. Sol(A, H) is nonempty.

Assumption 2.2. The operator H is monotone. That is for any y1, y2 ∈ Rn,

(2.8) (H(y1)−H(y2))T (y1 − y2) ≥ 0.

Assumption 2.3. The operator H is L-Lipschitz continuous on Rn. That is for any y1, y2 ∈ Rn,
L > 0,

(2.9) ‖H(y1)−H(y2)‖ ≤ L‖y1 − y2‖.

Next, we present the algorithm for the method we proposed above.
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Algorithm 1: HYBRIDSCG
Input. Choose an initial guess y0 ∈ A, ω1, ω2, ω3, ω4, t > 0, 0 < θ < 2, 0 < µ < 1,
σ > 0, tol > 0 and k := 0.

Step 1. If ‖Hk‖ ≤ tol, terminate. Else move to Step 2.
Step 2. Compute dk using (2.5).
Step 3. Compute

(2.10) γk = yk + αkdk,

αk = tµi, for i = 0, 1, · · · , where i is the least nonnegative integer satisfying

(2.11) −H(γk)T dk ≥ σαk‖dk‖2.
Step 4. If γk ∈ A and ‖H(γk)‖ ≤ tol, stop. Else, compute

(2.12) yk+1 := PA[yk − θϕkH(γk)],

where

(2.13) ϕk :=
H(γk)T (yk − γk)

‖H(γk)‖2
.

Step 5. Let k = k + 1 and repeat from Step 1.

3. THEORETICAL RESULTS

In this section, we will need the following results in order to establish the sequence of
iterates generated by Algorithm 1 converges to a solution of (1.1).

Lemma 3.1. The search direction defined by (2.5) satisfies the sufficient descent property (2.6).

Proof. If k = 0,
HT

0 d0 = −‖H0‖2.
If k ≥ 1, utilizing (2.4), (2.5) and (2.7), we get

HT
k dk = −‖Hk‖2 + βPLFCk HT

k sk−1 − θPLFCk ‖Hk‖2

= −‖Hk‖2 + βPLFCk HT
k sk−1 − βPLFCk

HT
k sk−1
‖Hk‖2

‖Hk‖2

= −‖Hk‖2.

Therefore, (2.6) is satisfied. �

Lemma 3.2. Suppose Assumption 2.1, Assumption 2.2 and Assumption 2.3 are satisfied. If {dk},
{γk} and {yk} are sequences defined by (2.5), (2.10) and (2.12), respectively, then
(i) for all k, there is αk = tµi satisfying (2.11) for some i ∈ N ∪ {0} and ∀k ≥ 0.
(ii) αk obtained via (2.11) satisfy

(3.14) αk >
µ‖Hk‖2

(L+ σ)‖dk‖2
.

Proof. (i) Suppose on the contrary there exists k0 ≥ 0 such that (2.11) does not hold for
any non-negative integer i, i.e.,

−H(yk0 + tµidk0)T dk0 < σtµi‖dk0‖2.

By assumption 2.3 and allowing i→∞, we get

(3.15) −H(yk0)T dk0 ≤ 0.
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On the other hand, from (2.6),

−H(yk0)T dk0 = ‖H(yk0)‖2 > 0,

which contradicts (3.15). Hence, the step size is well defined. (ii) If αk 6= t, then α
′

k = αk

µ

does not satisfy (2.11), that is

−H(yk + α
′

kdk)T dk < σα
′

k‖dk‖2.

Using (2.6) and assumption 2.3, then

‖Hk‖2 = −HT
k dk

= (H(yk + α
′

kdk)−Hk)T dk −H(yk + α
′

kdk)T dk

< Lα
′

k‖dk‖2 + σα
′

k‖dk‖2

= (L+ σ)αkµ
−1‖dk‖2.

Hence,

αk >
µ‖Hk‖2

(L+ σ)‖dk‖2
.

�

Lemma 3.3. [2] If Aassumption 2.1, 2.2 and 2.3 are satisfied, then the sequences {γk} and {yk}
defined by (2.10) and (2.12) in Algorithm 1 are bounded. In addition,

(3.16) lim
k→∞

αk‖dk‖ = 0.

Lemma 3.4. Let {yk} be the sequence generated by Algorithm 2 under assumption 2.1, 2.2 and
2.3, it holds that

(3.17) ‖yk+1 − ȳ‖2 ≤ ‖yk − ȳ‖2.

Proof. The proof follows from [2, Lemma 4]. �

Remark 3.1. Since {yk} is bounded from Lemma 3.3 and F is continuous from Assumption 2.3,
{Hk} is also bounded. That is, there exist c1, c2 > 0 such that for all k

(3.18) ‖yk‖ ≤ c1, ‖Hk‖ ≤ c2.

Theorem 3.4. Suppose Assumption 2.1, 2.2 and 2.3 are satisfied. If {yk} is a sequence defined by
(2.12), then,

(3.19) lim inf
k→∞

‖Hk‖ = 0.

Furthermore, the sequence {yk} converges to a solution of problem (1.1).

Proof. Suppose lim inf
k→∞

‖Hk‖ 6= 0, then, there exists c3 > 0 such that for all k ≥ 0

(3.20) ‖Hk‖ ≥ c3.

Next, we will show that dk defined by (2.5) is bounded.
For k = 0,

‖d0‖ = ‖H0‖ ≤ c4.
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Now for k ≥ 1, using (2.4),

|βPLFCk | =

∣∣∣∣∣ ω1H
T
k zk−1 + ω2‖Hk‖2

ω3‖Hk−1‖ − ω4dTk−1Hk−1

∣∣∣∣∣
≤ ω1‖Hk‖‖zk−1‖+ ω2‖Hk‖2

−ω4dTk−1Hk−1

=
ω1‖Hk‖‖zk−1‖+ ω2‖Hk‖2

ω4‖Hk−1‖2
.(3.21)

Also using (2.7) and (3.21),

|θPLFCk | =
∣∣∣∣βPLFCk

HT
k sk−1
‖Hk‖2

∣∣∣∣
≤
(
ω1‖Hk‖‖zk−1‖+ ω2‖Hk‖2

ω4‖Hk−1‖2

)
‖Hk‖‖sk−1‖
‖Hk‖2

=

(
ω1‖Hk‖‖zk−1‖+ ω2‖Hk‖2

ω4‖Hk−1‖2‖Hk‖

)
‖sk−1‖

=

(
ω1‖zk−1‖+ ω2‖Hk‖

ω4‖Hk−1‖2

)
‖sk−1‖.(3.22)

So, using (2.5), (3.18), (3.20) (3.21), (3.22) and assumption 2.2,

‖dk‖ =
∥∥−Hk + βPLFCk sk−1 − θPLFCk Hk

∥∥
≤ ‖Hk‖+ |βPLFCk |‖sk−1‖+ |θPLFCk |‖Hk‖

≤ ‖Hk‖+

(
ω1‖Hk‖‖zk−1‖+ ω2‖Hk‖2

ω4‖Hk−1‖2

)
‖sk−1‖+

(
ω1‖Hk‖‖zk−1‖+ ω2‖Hk‖2

ω4‖Hk−1‖2

)
‖sk−1‖

≤ ‖Hk‖+ 2

(
ω1‖Hk‖L(‖yk‖+ ‖yk−1‖) + ω2‖Hk‖2

ω4‖Hk−1‖2

)
αk−1‖dk−1‖

≤ c2 + 2
(ω1c2L(2c1) + ω2c

2
2)

ω4c23
αk−1‖dk−1‖.

By equality (3.16), we have for any c5 > 0, there exists k0 ∈ N for which αk−1‖dk−1‖ < c5,
∀k > k0. So, if we chose c5 = ω4c

2
3 and c7 = max{‖d0‖, ‖d1‖, · · · , ‖dk0‖, c6}, where c6 =

c2(1 + 4Lω1c1 + 2ω2c2). Letting M = max{c4, c7}, we have

(3.23) ‖dk‖ ≤M, ∀k ∈ N.

Now, multiplying both side of (3.14) by ‖dk‖, we have

αk‖dk‖ >
µ‖Hk‖2

(L+ σ)‖dk‖
≥ µc23

(L+ σ)M
> 0.

This contradicts (3.16) and hence lim inf
k→∞

‖Hk‖ = 0.

Since H is continuous and (3.19) hold, then the sequence {yk} has some accumulation
point say ȳ for which H(ȳ) = 0, that is, ȳ is a solution of (1.1). From (3.17), it holds that
{‖yk − ȳ‖} converges, and since ȳ is an accumulation point of {yk}, Then we must have
that {yk} converges to ȳ. �
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TABLE 1. List of test problems with their references

S/N Problem & Reference
1 Modified exponential function 2 [22]
2 Logarithmic function [22]
3 Nonsmooth function [35]
4 Strictly convex function I [22]
5 Strictly convex function II [22]
6 Tridiagonal exponential function [11]
7 Nonsmooth function [33]
8 Problem 4 in [15]
9 Pursuit-evasion problem [7]

4. NUMERICAL EXPERIMENTS

In this section, the numerical strength of the proposed hybrid algorithm called HY-
BRIDSCG is tested based on some standard metrics. All numerical simulations are im-
plemented in Matlab R2020b on an HP laptop with 8 GB RAM and 2.40 GHz processor.
The standard metrics are: the number of iterations (NOI), the number of function evalu-
ations (NFE), and the CPU time (TIME). To show the strength of the proposed algorithm
based on the above metrics, we compare it with the algorithm called DFPB1 proposed by
Ahookhosh et al. in [8] and the algorithm called MFRM proposed by Abubakar et al. [3].
We use the following for the experiments:

• Problems: Nine test problems.
• Parameters: t = 1, µ = 0.8, σ = 10−4, θ = 1.2, ω1 = ω2 = ω3 = ω4 = 1. As for

DFPB1 and MFRM, all parameters come from [8] and [3], respectively.
• Termination criterion: Iterations terminate when ‖Hk‖ ≤ 10−5 and/or the number

of iterations exceed 1000 without reaching a solution.
• The symbol − is used to indicate that an algorithm failed due to number of itera-

tions exceeding 1000.
The list of the nine test problems are given in Table 1 below. The results of the experi-
ments on the nine test problems can be found in the Appendix. In adition, we employ
the performance profiles of Dolan and Morè [17] to plot the graph of comparison for each
metric. Figure 1, 2 and 3 represent the performance profiles of HYBRIDSCG, DFPB1 and
MFRM based on NOI, NFE and TIME, respectively. By Figure 1, HYBRIDSCG is the best
solver with 60% success. It is also the best solver based on Figure 2 with more than 70%
success. Likewise in Figure 3, it is the most successful with over based 60% success. The
percentage of success for the algorithms by Ahookhosh et al. in [8] and Abubakar et al.
[3] based on each plot is summarized as follows

• Figure 1: DFPB1 (< 10%), MFRM (almost 50%).
• Figure 2: DFPB1 (< 10%), MFRM ( around 30%).
• Figure 3: DFPB1 (< 10%), MFRM (around 35%).

5. APPLICATIOM IN IMAGE RESTORATION

In this subsection, we aim at evaluating the efficiency of the HYBRIDSCG in image
restoration. Image restoration problem can be mathematically formulated as:

(5.24) b = Ay + υ,
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FIGURE 1. Performance profiles for the number of iterations (NOI)
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FIGURE 2. Performance profiles for the number of function evaluations (NFE)

where b ∈ Rk is the observed data, A ∈ Rk×n and υ ∈ Rk is an error term. See [18] for
more details.

The HYBRIDSCG method is compared with some existing methods such as the modified
Fletcher-Reeves conjugate gradient method for monotone nonlinear equations with ap-
plications (MFRM) [3] and the conjugate gradient method for solving convex constrained
monotone equations with applications in compressive sensing (CGD) by Xiao et al. [31].
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FIGURE 3. Performance profiles for the CPU time (in seconds)

In the numerical implementation, three (3) colored images of different sizes are degraded
using a Gaussian noise operator and a Gaussian blur with a standard deviation of 10−2,
then we apply the three methods to restore the degraded images. Experimental results
for HYBRIDSCG, MFRM, and CGD are given in Table 2. The comparison is based on
the signal-to-noise ratio (SNR), peak signal-to-noise ratio (PSNR) [12], and the structural
similarity index (SSIM) [23]. HYBRIDSCG is implemented using the following specified
parameters: t = 1, µ = 0.01, σ = 10−4, θ = 1, and ω1 = ω2 = ω3 = ω4 = 1 with a merit
function defined as follows:

(5.25) f(y) =
1

2
‖Ay − b‖22 + λ‖y‖1.

Using the same initial point, all algorithms were implemented. The regularization param-
eter λ is selected based on the approach presented by Liu and Li [25].
y0 = AT b is used in starting the experiment and

|fk − fk−1|
|fk−1|

< 10−4,

as the stopping criterion, where fk is the function value at yk.

In Table 2, we report the results of the image restoration process by the proposed and
compared methods. The results obtained by HYBRIDSCG are much better than the results
obtained by the compared methods. Notably, HYBRIDSCG has a larger value of SNR,
PSNR and SSIM, indicating it performs better than the compared methods in restoring
the degraded images.

6. CONCLUSIONS

This article proposes a new hybrid algorithm for solving nonlinear monotone operator
equations with convex constraints. To the best of our knowledge, this is the first algorithm
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TABLE 2. Efficiency comparison for HYBRIDSCG, MFRM and CGD
based on SNR, PSNR and SSIM

HYBRIDSGC MFRM CGD

Images SNR PSNR SSIM SNR PSNR SSIM SNR PSNR SSIM

Lenna 17.16 22.49 0.9200 16.66 21.99 0.9110 16.83 22.17 0.9137
Tiffany 21.51 23.34 0.9240 21.03 22.87 0.913 21.02 22.86 0.9140
Peppers 15.89 21.81 0.9040 15.31 21.23 0.890 15.59 21.51 0.896

FIGURE 4. Restoration of the test images. From left to right: original
image, degraded image, restored image by HYBRIDSGC, restored image
by MFRM, and restored image by CGD.

of its kind, and it is based on the SCG method. The PRP, LS, FR, and CD methods are spe-
cial cases of this new hybrid method. One of the notable features of the new method
is that its search direction is both descent and bounded, independent of the line search.
Under certain favourable assumptions, the sequence generated by this method converges
globally. The new method’s efficiency was demonstrated through numerical experiments
on several benchmark test problems. The results indicate that the new algorithm outper-
forms the existing methods it was compared with, showcasing its superior efficiency. The
proposed algorithm’s performance was evaluated based on multiple criteria, including
convergence rate and computational cost. These comprehensive tests validate the robust-
ness and practical applicability of the new method in solving complex nonlinear problems
with convex constraints.
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APPENDIX

Throughout, ”DIM” denotes the dimension, ”INP” denotes initial point, ”NOI” de-
notes number of iterations, ”NFE” denotes number of function evaluations, ”TIME” de-
notes the CPU running time and ”Norm” denotes the norm of a function at the ap-
proximate solution. The associated initial points used for these experiments are x1 =
(0.1, 0.1, · · · , 0.1)T , x2 = (0.2, 0.2, · · · , 0.2)T ,
x3 = (0.5, 0.5, · · · , 0.5)T , x4 = (1.5, 1.5, · · · 1.5)T , x5 = (2, 2, · · · , 2)T . The symbol − is used
to indicate that an algorithm failed due to number of iterations exceeding 1000.
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TABLE 3. Results for the three algorithms on Problem 1.
HYBRIDSCG DFPB1 MFRM

DIM INP NOI NFE TIME Norm NOI NFE TIME Norm NOI NFE TIME Norm

1000

x1 1 7 0.00208 0.00E+00 59 184 0.017397 9.97E-06 23 98 0.013288 9.01E-06

x2 1 7 0.001195 0.00E+00 52 162 0.013355 9.95E-06 7 35 0.005672 8.82E-06

x3 1 7 0.001198 0.00E+00 143 436 0.0285 9.71E-06 8 40 0.004216 9.74E-06

x4 1 9 0.001595 0.00E+00 465 1405 0.073153 9.91E-06 5 31 0.003143 0

x5 1 10 0.002063 0.00E+00 4 23 0.004625 0 31 134 0.009485 7.65E-06

5000

x1 1 7 0.00214 0.00E+00 88 270 0.056742 9.80E-06 8 38 0.00848 5.63E-06

x2 1 7 0.00243 0.00E+00 89 274 0.058434 9.86E-06 8 40 0.008403 2.59E-06

x3 1 7 0.002771 0.00E+00 302 916 0.21207 9.96E-06 8 40 0.008365 6.41E-06

x4 1 9 0.004404 0.00E+00 4 23 0.006772 0 5 31 0.006826 0

x5 1 10 0.004374 0.00E+00 3 20 0.005763 0 31 134 0.02749 8.10E-06

10000

x1 1 7 0.004689 0.00E+00 48 149 0.068357 9.92E-06 5 26 0.011089 3.70E-06

x2 1 7 0.005319 0.00E+00 132 404 0.16097 9.97E-06 8 40 0.016022 3.64E-06

x3 1 7 0.005584 0.00E+00 302 916 0.33523 9.96E-06 8 40 0.016474 5.44E-06

x4 1 9 0.005512 0.00E+00 5 26 0.012497 0 5 31 0.013106 0

x5 1 10 0.009738 0.00E+00 3 20 0.011495 0 28 122 0.048459 7.18E-06

50000

x1 1 7 0.013687 0.00E+00 123 376 0.55323 9.55E-06 5 26 0.039405 3.58E-06

x2 1 7 0.013792 0.00E+00 280 849 1.2166 9.74E-06 8 40 0.063794 8.10E-06

x3 1 7 0.013815 0.00E+00 435 1315 1.9343 9.93E-06 8 40 0.057732 4.54E-06

x4 1 9 0.017657 0.00E+00 3 20 0.044262 0 5 31 0.048293 0

x5 1 10 0.025617 0.00E+00 4 23 0.046637 0 20 90 0.12298 6.44E-06

100000

x1 1 7 0.025428 0.00E+00 180 548 1.753 9.60E-06 5 26 0.075056 4.59E-06

x2 1 7 0.028532 0.00E+00 403 1220 3.5145 9.96E-06 9 43 0.11747 1.59E-06

x3 1 7 0.024189 0.00E+00 432 1307 3.8515 9.96E-06 8 40 0.11518 4.96E-06

x4 1 9 0.0323 0.00E+00 2 17 0.067078 0 32 138 0.35109 7.09E-06

x5 1 10 0.033243 0.00E+00 - - - - 17 78 0.2203 9.31E-06
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TABLE 4. Results for the three algorithms on Problem 2.
HYBRIDSCG DFPB1 MFRM

DIM INP NOI NFE TIME Norm NOI NFE TIME Norm NOI NFE TIME Norm

1000

x1 5 14 0.002712 5.40E-06 91 278 0.023238 9.30E-06 3 8 0.002453 5.17E-07

x2 5 14 0.002174 6.67E-06 80 246 0.026381 9.62E-06 3 8 0.002031 6.04E-06

x3 6 16 0.002883 1.15E-06 36 111 0.0081 8.33E-06 4 11 0.002095 4.37E-07

x4 6 16 0.002547 1.26E-06 151 459 0.034901 9.83E-06 5 14 0.001851 1.10E-06

x5 7 18 0.003591 3.90E-06 217 658 0.062891 9.84E-06 6 17 0.002024 1.74E-08

5000

x1 5 15 0.006807 8.82E-06 83 255 0.086791 9.92E-06 3 8 0.003307 1.75E-07

x2 6 17 0.007096 1.12E-06 64 196 0.064129 9.90E-06 3 8 0.003025 3.13E-06

x3 6 16 0.007799 2.51E-06 149 453 0.15207 9.63E-06 4 11 0.00427 1.42E-07

x4 6 16 0.007371 3.40E-06 329 995 0.33947 9.99E-06 5 14 0.006139 4.05E-07

x5 7 18 0.009422 8.69E-06 472 1425 0.46621 9.88E-06 6 17 0.005815 2.36E-09

10000

x1 6 17 0.016245 1.29E-06 59 182 0.11499 9.72E-06 3 8 0.005392 1.21E-07

x2 6 17 0.013211 1.59E-06 66 202 0.12517 8.76E-06 3 8 0.006238 2.79E-06

x3 6 16 0.01863 3.54E-06 220 667 0.42825 9.77E-06 4 11 0.007939 9.73E-08

x4 6 16 0.013821 4.91E-06 483 1458 0.93875 9.87E-06 5 14 0.009098 2.93E-07

x5 7 19 0.015851 8.89E-06 692 2086 1.3808 9.84E-06 6 17 0.010531 1.24E-09

50000

x1 6 17 0.044504 2.89E-06 98 299 0.72483 9.63E-06 3 8 0.022176 6.32E-08

x2 6 17 0.048016 3.57E-06 216 655 1.5813 9.96E-06 3 8 0.020866 3.37E-06

x3 6 16 0.046256 7.91E-06 479 1446 3.4612 9.79E-06 4 11 0.03066 4.87E-08

x4 6 17 0.0451 8.10E-06 725 2186 5.2517 9.97E-06 5 14 0.036304 1.84E-07

x5 8 21 0.058008 2.05E-06 723 2179 5.2287 9.84E-06 6 17 0.043019 4.01E-10

100000

x1 6 17 0.1012 4.08E-06 146 444 1.9984 9.42E-06 3 8 0.0418 5.40E-08

x2 6 17 0.089258 5.05E-06 221 670 2.9995 9.72E-06 3 8 0.040817 4.27E-06

x3 6 17 0.089481 8.11E-06 701 2113 9.4877 9.99E-06 4 11 0.05554 4.05E-08

x4 7 19 0.092316 1.18E-06 739 2227 9.9448 9.82E-06 5 14 0.069756 1.80E-07

x5 8 21 0.11838 2.90E-06 745 2245 10.072 9.98E-06 6 17 0.081469 2.71E-10
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TABLE 5. Results for the three algorithms on Problem 3.
HYBRIDSCG DFPB1 MFRM

DIM INP NOI NFE TIME Norm NOI NFE TIME Norm NOI NFE TIME Norm

1000

x1 208 634 0.05439 9.87E-06 624 1882 0.158 9.87E-06 6 24 0.002396 3.11E-06

x2 208 634 0.043583 9.87E-06 624 1882 0.13109 9.87E-06 6 24 0.002149 5.94E-06

x3 208 634 0.04418 9.86E-06 64 196 0.01487 8.62E-06 6 24 0.002174 9.94E-06

x4 9 28 0.003061 3.59E-06 300 909 0.076095 1.00E-05 11 46 0.002925 2.71E-06

x5 8 26 0.003225 5.51E-06 618 1865 0.12764 9.99E-06 16 68 0.004583 8.38E-06

5000

x1 219 667 0.17978 9.90E-06 43 133 0.037317 9.85E-06 6 24 0.00564 6.96E-06

x2 219 667 0.20085 9.90E-06 65 199 0.054585 8.55E-06 7 28 0.006942 1.33E-06

x3 219 667 0.18565 9.90E-06 146 444 0.12493 9.45E-06 7 28 0.007307 2.22E-06

x4 9 28 0.008754 8.03E-06 654 1972 0.55188 9.86E-06 11 46 0.011082 6.06E-06

x5 9 28 0.008722 3.28E-06 659 1987 0.56525 9.99E-06 17 72 0.016643 7.67E-06

10000

x1 224 682 0.34196 9.73E-06 41 126 0.066791 8.91E-06 6 24 0.01097 9.85E-06

x2 224 682 0.32324 9.73E-06 97 296 0.15224 9.44E-06 7 28 0.012606 1.88E-06

x3 224 682 0.32965 9.73E-06 216 655 0.35641 9.67E-06 7 28 0.013306 3.14E-06

x4 9 29 0.015087 5.10E-06 665 2006 1.1222 9.98E-06 11 46 0.019798 8.58E-06

x5 9 28 0.023411 4.64E-06 673 2029 1.1502 9.85E-06 18 76 0.033463 4.44E-06

50000

x1 235 715 1.2938 9.76E-06 98 299 0.62404 8.90E-06 7 28 0.046645 2.20E-06

x2 235 715 1.6854 9.76E-06 215 652 1.3631 9.55E-06 7 28 0.045009 4.20E-06

x3 235 715 1.3124 9.76E-06 471 1422 2.9649 9.81E-06 7 28 0.044088 7.03E-06

x4 10 31 0.061176 3.04E-06 707 2131 4.444 9.89E-06 12 50 0.088998 5.20E-06

x5 9 29 0.055521 4.66E-06 704 2122 4.4704 9.89E-06 18 76 0.12249 9.93E-06

100000

x1 240 730 4.2127 9.59E-06 145 441 1.7 9.81E-06 7 28 0.084886 3.11E-06

x2 240 730 3.3075 9.59E-06 316 957 3.6007 9.94E-06 7 28 0.084564 5.94E-06

x3 240 730 3.7609 9.59E-06 690 2080 7.743 9.94E-06 7 28 0.084681 9.94E-06

x4 10 31 0.10698 4.30E-06 5 26 0.13981 0 12 50 0.15095 7.35E-06

x5 9 29 0.1052 6.59E-06 718 2164 8.1766 9.88E-06 19 80 0.24534 5.75E-06
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TABLE 6. Results for the three algorithms on Problem 4.
HYBRIDSCG DFPB1 MFRM

DIM INP NOI NFE TIME Norm NOI NFE TIME Norm NOI NFE TIME Norm

1000

x1 1 4 0.001312 0 38 118 0.007735 9.79E-06 6 24 0.002023 1.65E-06

x2 1 4 0.000811 0 48 149 0.011013 9.16E-06 5 20 0.001592 2.32E-06

x3 5 17 0.002061 8.04E-06 93 284 0.017588 9.51E-06 10 42 0.003416 6.42E-06

x4 1 7 0.001015 0 426 1287 0.071075 9.90E-06 16 71 0.004065 8.48E-06

x5 1 9 0.001308 0 613 1849 0.096644 9.94E-06 1 15 0.001776 0

5000

x1 1 4 0.001705 0 3 15 0.004367 0 6 24 0.00492 3.68E-06

x2 1 4 0.001533 0 63 193 0.037773 8.74E-06 5 20 0.004287 5.20E-06

x3 6 19 0.005213 4.78E-06 208 631 0.12208 9.55E-06 11 46 0.008255 3.89E-06

x4 1 7 0.003002 0.00E+00 645 1945 0.39337 9.81E-06 18 79 0.015013 6.15E-06

x5 1 9 0.003058 0 3 20 0.006331 0 1 15 0.003854 0

10000

x1 1 4 0.002513 0 34 105 0.035563 8.06E-06 6 24 0.008339 5.20E-06

x2 1 4 0.002308 0 96 293 0.10306 9.36E-06 5 20 0.006425 7.35E-06

x3 6 19 0.008479 6.76E-06 307 929 0.335 9.62E-06 11 46 0.014964 5.50E-06

x4 1 7 0.003576 0 5 26 0.012717 0 18 79 0.026799 8.69E-06

x5 1 9 0.004746 0.00E+00 3 20 0.010875 0 1 15 0.007209 0

50000

x1 1 4 0.007637 0 97 296 0.40247 9.47E-06 7 28 0.035767 1.16E-06

x2 1 4 0.008306 0 213 646 0.88198 9.87E-06 6 24 0.02789 1.64E-06

x3 6 20 0.027349 6.78E-06 666 2008 2.8021 9.99E-06 12 50 0.058484 3.33E-06

x4 1 7 0.011779 0 3 20 0.03512 0 20 87 0.10175 6.31E-06

x5 1 9 0.013706 0 2 17 0.030306 0 1 15 0.026876 0

100000

x1 1 4 0.012268 0.00E+00 145 441 1.1719 9.21E-06 7 28 0.062812 1.65E-06

x2 1 4 0.011989 0 314 950 2.4091 9.99E-06 6 24 0.055935 2.32E-06

x3 6 20 0.050065 9.58E-06 681 2053 5.2381 9.82E-06 12 50 0.11534 4.71E-06

x4 1 7 0.019024 0 3 20 0.067134 0 20 87 0.20414 8.92E-06

x5 1 9 0.024915 0 2 17 0.057477 0 1 15 0.052133 0
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TABLE 7. Results for the three algorithms on Problem 5.
HYBRIDSCG DFPB1 MFRM

DIM INP NOI NFE TIME Norm NOI NFE TIME Norm NOI NFE TIME Norm

1000

x1 14 39 0.022763 7.75E-06 86 263 0.016227 9.77E-06 26 98 0.006234 3.51E-06

x2 14 38 0.003236 7.42E-06 86 262 0.016786 9.24E-06 46 178 0.011195 7.43E-06

x3 14 42 0.00418 4.72E-06 84 257 0.018012 9.89E-06 37 144 0.009441 7.11E-06

x4 16 51 0.004114 7.95E-06 345 1043 0.064886 9.76E-06 46 194 0.011187 7.06E-06

x5 30 95 0.007561 9.32E-06 481 1453 0.091225 9.98E-06 43 182 0.009821 8.70E-06

5000

x1 47 142 0.033341 8.63E-06 197 597 0.11997 9.72E-06 38 147 0.030431 4.96E-06

x2 181 549 0.11761 9.92E-06 196 594 0.1291 9.75E-06 20 77 0.017908 4.98E-06

x3 14 42 0.014535 9.10E-06 193 585 0.12104 9.72E-06 41 157 0.029593 8.92E-06

x4 17 53 0.022852 8.18E-06 782 2356 0.51453 9.99E-06 - - - -

x5 32 100 0.021863 9.62E-06 756 2278 0.49511 9.94E-06 45 190 0.043542 7.14E-06

10000

x1 60 183 0.082076 9.86E-06 294 889 0.37295 9.80E-06 37 143 0.051113 9.28E-06

x2 34 102 0.045406 9.75E-06 293 886 0.35567 9.52E-06 22 84 0.032708 9.78E-06

x3 15 44 0.023447 3.99E-06 288 871 0.341 9.99E-06 39 149 0.050962 6.74E-06

x4 17 54 0.025686 8.74E-06 811 2443 0.99399 9.93E-06 44 186 0.064499 7.68E-06

x5 33 103 0.042758 8.89E-06 881 2653 1.0904 9.90E-06 46 194 0.065669 8.62E-06

50000

x1 107 325 0.4712 9.86E-06 939 2827 4.4152 9.86E-06 56 218 0.2953 6.31E-06

x2 26 77 0.10972 6.50E-06 652 1965 3.0427 9.77E-06 69 280 0.38081 6.87E-06

x3 15 44 0.066827 8.84E-06 643 1938 3.0116 9.83E-06 - - - -

x4 18 56 0.10153 8.73E-06 - - - - 46 194 0.28237 8.47E-06

x5 35 109 0.15201 8.99E-06 - - - - 50 210 0.2796 8.12E-06

100000

x1 184 558 1.5203 9.49E-06 968 2914 7.9513 9.84E-06 31 121 0.32019 4.48E-06

x2 19 56 0.14931 9.22E-06 963 2900 8.2014 9.99E-06 - - - -

x3 15 45 0.11472 8.71E-06 951 2863 8.1928 9.88E-06 46 178 0.46446 6.99E-06

x4 18 57 0.14127 9.26E-06 - - - - 47 198 0.59746 8.31E-06

x5 36 112 0.29533 8.86E-06 - - - - 52 218 0.58434 7.37E-06
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TABLE 8. Results for the three algorithms on Problem 6.
HYBRIDSCG DFPB1 MFRM

DIM INP NOI NFE TIME Norm NOI NFE TIME Norm NOI NFE TIME Norm

1000

x1 8 24 0.028518 6.23E-06 463 1398 0.15017 9.80E-06 11 44 0.005115 8.32E-06

x2 8 24 0.00387 6.48E-06 321 971 0.094723 9.83E-06 11 44 0.004648 7.32E-06

x3 8 24 0.003359 7.01E-06 318 963 0.076505 9.99E-06 11 44 0.003925 8.83E-06

x4 8 24 0.004506 5.91E-06 147 447 0.038539 9.49E-06 9 36 0.003494 8.29E-06

x5 8 24 0.003804 4.28E-06 98 299 0.028484 9.01E-06 7 28 0.003089 8.25E-06

5000

x1 8 25 0.011983 6.36E-06 698 2104 0.85174 9.80E-06 8 32 0.010689 1.87E-06

x2 8 25 0.012516 6.39E-06 696 2098 0.84443 9.90E-06 8 32 0.011528 1.80E-06

x3 8 25 0.011862 6.33E-06 691 2083 0.85148 9.84E-06 8 32 0.011359 1.59E-06

x4 8 25 0.010762 4.66E-06 464 1401 0.55128 9.86E-06 7 28 0.009012 8.62E-06

x5 8 24 0.011493 8.82E-06 216 656 0.27 9.96E-06 7 28 0.010534 5.08E-06

10000

x1 8 24 0.020913 7.12E-06 712 2146 1.7802 9.87E-06 8 32 0.021535 2.62E-06

x2 8 24 0.020639 7.19E-06 710 2140 1.7344 9.97E-06 8 32 0.022687 2.52E-06

x3 8 24 0.019573 7.48E-06 705 2125 1.7163 9.91E-06 8 32 0.023337 2.22E-06

x4 8 24 0.028183 6.76E-06 680 2050 1.631 9.96E-06 8 32 0.022381 1.22E-06

x5 8 24 0.024112 4.77E-06 319 965 0.77825 9.83E-06 7 28 0.021931 7.18E-06

50000

x1 8 25 0.069879 6.45E-06 744 2242 6.4162 9.87E-06 8 32 0.080613 5.85E-06

x2 8 25 0.078116 6.42E-06 742 2236 6.3846 1.00E-05 8 32 0.079199 5.63E-06

x3 8 25 0.078497 6.44E-06 737 2222 6.3313 9.99E-06 8 32 0.079298 4.96E-06

x4 7 21 0.068783 9.55E-06 713 2150 6.1378 9.98E-06 8 32 0.078776 2.72E-06

x5 7 21 0.060604 6.23E-06 692 2086 5.9485 9.83E-06 8 32 0.079353 1.61E-06

100000

x1 7 21 0.12721 6.69E-06 753 2270 12.8687 9.97E-06 8 32 0.17703 8.28E-06

x2 7 21 0.12365 6.57E-06 754 2272 13.0305 9.87E-06 8 32 0.17207 7.96E-06

x3 7 21 0.12876 6.18E-06 750 2260 12.8745 9.97E-06 8 32 0.16946 7.01E-06

x4 7 21 0.12073 4.18E-06 727 2192 13.1911 9.99E-06 8 32 0.18228 3.85E-06

x5 7 21 0.12014 2.70E-06 706 2128 12.1153 9.91E-06 8 32 0.17072 2.27E-06
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TABLE 9. Results for the three algorithms on Problem 7.
HYBRIDSCG DFPB1 MFRM

DIM INP NOI NFE TIME Norm NOI NFE TIME Norm NOI NFE TIME Norm

1000

x1 6 23 0.026961 8.90E-06 47 147 0.012069 9.51E-06 4 21 0.002293 3.24E-07

x2 7 25 0.002594 1.12E-06 45 140 0.011434 8.84E-06 4 21 0.001968 1.43E-07

x3 3 14 0.00209 2.43E-06 7 22 0.002668 8.05E-06 3 17 0.001705 5.81E-08

x4 4 17 0.00311 9.07E-07 74 228 0.020342 9.16E-06 7 34 0.002805 6.36E-06

x5 5 19 0.002793 1.87E-06 73 225 0.017418 8.97E-06 8 37 0.003184 1.90E-06

5000

x1 7 25 0.008957 2.13E-06 113 346 0.10171 9.13E-06 4 21 0.007073 7.25E-07

x2 7 25 0.007984 2.50E-06 74 228 0.060023 9.60E-06 4 21 0.006495 3.20E-07

x3 3 14 0.005602 5.42E-06 6 20 0.00638 6.65E-06 3 17 0.006098 1.30E-07

x4 4 17 0.00679 2.03E-06 166 507 0.14053 1.00E-05 8 38 0.010315 1.49E-06

x5 5 19 0.007403 4.18E-06 241 732 0.21577 9.50E-06 8 37 0.010848 4.26E-06

10000

x1 7 25 0.013733 3.01E-06 168 512 0.26911 9.42E-06 4 21 0.010077 1.02E-06

x2 7 25 0.017363 3.53E-06 113 346 0.18599 9.22E-06 4 21 0.010746 4.52E-07

x3 3 14 0.011848 7.67E-06 14 45 0.024651 9.20E-06 3 17 0.009026 1.84E-07

x4 4 17 0.012261 2.87E-06 246 747 0.39502 9.73E-06 8 38 0.017835 2.10E-06

x5 5 19 0.013002 5.91E-06 354 1072 0.58062 9.84E-06 8 37 0.017645 6.02E-06

50000

x1 7 25 0.04846 6.73E-06 367 1112 2.2913 9.96E-06 4 21 0.043377 2.29E-06

x2 7 25 0.05098 7.90E-06 250 759 1.5387 9.80E-06 4 21 0.037317 1.01E-06

x3 4 16 0.031574 2.55E-06 67 208 0.43005 9.24E-06 3 17 0.031092 4.11E-07

x4 4 17 0.039941 6.42E-06 371 1124 2.2876 9.99E-06 8 38 0.063828 4.70E-06

x5 6 21 0.048487 1.79E-06 371 1123 2.2984 9.76E-06 9 41 0.081229 1.41E-06

100000

x1 7 25 0.09203 9.52E-06 375 1135 4.2041 9.77E-06 4 21 0.069675 3.24E-06

x2 7 26 0.099234 7.70E-06 368 1114 4.1018 9.88E-06 4 21 0.071007 1.43E-06

x3 4 16 0.070669 3.60E-06 101 311 1.1614 9.67E-06 3 17 0.061634 5.81E-07

x4 4 17 0.075186 9.07E-06 378 1145 4.2028 9.99E-06 8 38 0.12589 6.65E-06

x5 6 21 0.078324 2.53E-06 389 1177 4.3844 9.88E-06 9 41 0.15559 1.99E-06
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TABLE 10. Results for the three algorithms on Problem 8.
HYBRIDSCG DFPB1 MFRM

DIM INP NOI NFE TIME Norm NOI NFE TIME Norm NOI NFE TIME Norm

1000

x1 5 21 0.012929 3.33E-06 - - - - 9 42 0.003772 9.49E-06

x2 5 21 0.001766 2.01E-06 - - - - 9 42 0.004332 9.49E-06

x3 5 21 0.001681 1.92E-06 - - - - 13 62 0.004369 5.02E-06

x4 6 24 0.003185 1.20E-06 - - - - 13 62 0.004391 5.02E-06

x5 6 24 0.002362 1.72E-06 - - - - 13 62 0.004568 5.02E-06

5000

x1 5 21 0.004363 7.44E-06 - - - - 10 50 0.013257 3.97E-06

x2 5 21 0.005446 4.50E-06 - - - - 12 58 0.014512 3.50E-06

x3 5 21 0.006948 4.30E-06 - - - - 12 58 0.015315 3.50E-06

x4 6 24 0.005116 2.68E-06 127 392 0.092756 9.86E-06 12 58 0.015189 3.50E-06

x5 6 24 0.004529 3.85E-06 - - - - 12 58 0.014247 3.50E-06

10000

x1 6 24 0.007889 8.38E-07 - - - - 11 54 0.030046 7.99E-06

x2 5 21 0.007325 6.37E-06 - - - - 11 54 0.030193 7.99E-06

x3 5 21 0.006432 6.08E-06 113 349 0.17688 9.79E-06 11 54 0.036489 7.99E-06

x4 6 24 0.008236 3.79E-06 - - - - 11 54 0.029971 7.99E-06

x5 6 24 0.010118 5.44E-06 - - - - 11 54 0.027405 7.99E-06

50000

x1 6 24 0.024719 1.87E-06 76 238 0.50184 9.01E-06 27 118 0.20019 8.75E-06

x2 6 24 0.024973 1.13E-06 76 238 0.4899 9.01E-06 27 118 0.20591 8.75E-06

x3 6 24 0.027511 1.08E-06 - - - - 27 118 0.21152 8.75E-06

x4 6 24 0.026514 8.47E-06 - - - - 27 118 0.19623 8.75E-06

x5 7 27 0.027801 1.15E-06 - - - - 27 118 0.21923 8.75E-06

100000

x1 6 24 0.051423 2.65E-06 59 188 0.70717 9.94E-06 - - - -

x2 6 24 0.05418 1.60E-06 - - - - - - - -

x3 6 24 0.064822 1.53E-06 - - - - - - - -

x4 7 27 0.066902 1.13E-06 - - - - - - - -

x5 7 27 0.05231 1.63E-06 - - - - - - - -
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TABLE 11. Results for the three algorithms on Problem 9.
HYBRIDSCG DFPB1 MFRM

DIM INP NOI NFE TIME Norm NOI NFE TIME Norm NOI NFE TIME Norm

1000

x1 7 25 0.024428 3.31E-06 39 123 0.006235 9.49E-06 4 25 0.001891 8.20E-07

x2 7 25 0.001179 2.00E-06 71 221 0.008798 9.82E-06 4 25 0.00165 4.96E-07

x3 7 25 0.00113 1.91E-06 55 174 0.006965 9.77E-06 4 25 0.00171 4.73E-07

x4 8 28 0.001269 1.68E-06 161 492 0.020052 9.32E-06 4 25 0.001679 3.71E-06

x5 8 28 0.001734 2.41E-06 238 724 0.030846 9.83E-06 4 25 0.002033 5.32E-06

5000

x1 7 25 0.003592 7.40E-06 69 215 0.032179 9.77E-06 4 25 0.004306 1.83E-06

x2 7 25 0.003092 4.48E-06 39 123 0.017953 9.59E-06 4 25 0.004595 1.11E-06

x3 7 25 0.002703 4.27E-06 43 135 0.021851 8.70E-06 4 25 0.004466 1.06E-06

x4 8 28 0.004574 3.75E-06 244 742 0.11336 9.72E-06 4 25 0.004989 8.29E-06

x5 8 28 0.003543 5.39E-06 247 751 0.11355 9.67E-06 5 29 0.005801 1.64E-07

10000

x1 8 28 0.006141 1.17E-06 107 330 0.099953 9.86E-06 4 25 0.008901 2.59E-06

x2 7 25 0.005568 6.34E-06 70 217 0.066935 9.99E-06 4 25 0.01048 1.57E-06

x3 7 25 0.006774 6.04E-06 70 217 0.085183 9.95E-06 4 25 0.009931 1.50E-06

x4 8 28 0.006288 5.31E-06 247 751 0.32871 9.75E-06 5 29 0.012762 1.62E-07

x5 8 28 0.007178 7.62E-06 - - - - 5 29 0.010457 2.32E-07

50000

x1 8 28 0.024964 2.62E-06 239 727 0.89519 9.95E-06 4 25 0.029792 5.80E-06

x2 8 28 0.02207 1.59E-06 160 489 0.57925 9.81E-06 4 25 0.029347 3.51E-06

x3 8 28 0.023477 1.52E-06 160 489 0.5803 9.40E-06 4 25 0.030874 3.35E-06

x4 9 31 0.024584 1.33E-06 - - - - 5 29 0.034249 3.61E-07

x5 9 31 0.024464 1.91E-06 - - - - 5 29 0.032112 5.19E-07

100000

x1 8 28 0.044541 3.71E-06 244 742 1.5579 9.63E-06 4 25 0.073174 8.20E-06

x2 8 28 0.044001 2.25E-06 237 721 1.5175 9.86E-06 4 25 0.057577 4.96E-06

x3 8 28 0.04765 2.14E-06 236 719 1.559 9.98E-06 4 25 0.058631 4.73E-06

x4 9 31 0.050755 1.88E-06 - - - - 5 29 0.071601 5.11E-07

x5 9 31 0.067252 2.70E-06 - - - - 5 29 0.063296 7.34E-07
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