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Gradient Projection Method for Quasiconvex Equilibrium
Problems

QAMRUL HASAN ANSARI1,2, MUZAFFAR SARKAR RAJU1 AND FEEROZ BABU3

ABSTRACT. This paper proposes a gradient projection method to solve the equilibrium problems where the
bifunction is quasiconvex in its second argument. We use the Greenberg-Pierskalla quasi-subdifferential of
quasiconvex functions. We prove the convergence of the sequence generated by the proposed algorithm under
some mild assumptions. Some examples and their numerical evolutions are illustrated where previous methods
are not applicable.

1. INTRODUCTION

Let H be a real Hilbert space, C be a nonempty closed and convex subset of H , and f :
C×C → R be a bifunction. The equilibrium problem (in short, EP) is to find x̄ ∈C such that

(1.1) f (x̄,y)≥ 0, ∀y ∈C.

We denote the solution set of the EP defined by the bifunction f over the set C by S( f ,C).
The EP has been extensively studied in the fields such as optimization and nonlinear analysis.

We refer to Chapter 1 in [6] for historical details and applications. Over the past few decades,
numerous methods have been proposed to solve different types of EPs; see [1–5,7,9,12,15–17,19]
and the references therein.

Recently, Hai [11] introduced a gradient projection method to solve strongly pseudomonotone
equilibrium problems. However, this method assumes the convexity of the bifunction in the second
argument, and therefore, it cannot be employed to solve equilibrium problems involving bifunctions
which are quasiconvex but not convex with respect to the second variable. In this paper, we propose
a method that can handle such equilibrium problems subject to certain assumptions. Since convex
functions are also quasiconvex, the technique mentioned in [11] can be seen as a specific case of
our method.

Another approach, described by Yen et al. [20], tackles an EP where the bifunction may be
quasiconvex in the second argument. However, their method assumes the bifunction to be pseu-
domonotone as well as paramonotone. They also assumed that the bifunction needs to be upper
semicontinuous with respect to both the arguments. In our approach, we relax these assumptions
and consider a strongly pseudomonotone bifunction which is upper semicontinuous with respect to
the second variable only, allowing us to solve a broader class of equilibrium problems.

The sections of this paper are arranged as follows. In the next section, we give some prelim-
inaries and basic results which will be required throughout the paper. We propose a projection
algorithm to solve EP (1.1) and prove the convergence of the sequence generated by our algorithm
in Section 3. We justify the proposed method with numerical examples in the last section.
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2. PRELIMINARY RESULTS

Let H be a real Hilbert space whose inner product and norm are denoted by ⟨·, ·⟩ and ∥ · ∥,
respectively. It is well-known that for any x,y,z ∈ H , the following relation holds:

(2.2)
〈
z− x,x− y

〉
=

1
2
∥y− z∥2 − 1

2
∥z− x∥2 − 1

2
∥x− y∥2.

A nonempty subset C of a real vector space X is said to form a cone if for all x ∈C and λ > 0,
λx ∈C.

Let C be a nonempty convex subset of H . A function g : C → R is said to be
(a) convex on C if

g(λx+(1−λ )y)≤ λg(x)+(1−λ )g(y), ∀x,y ∈C and ∀λ ∈ [0,1];

(b) quasiconvex on C if

g(λx+(1−λ )y)≤ max{g(x),g(y)}, ∀x,y ∈C and ∀λ ∈ [0,1].

Clearly, every convex function is quasiconvex, but the converse is not true in general. For any
α ∈ R, the sublevel set of g : H → R is defined by

lev<α g := {x ∈ H : g(x)< α}.

It is well-known that g is quasiconvex if and only if lev<α g is convex for all α ∈ R.
For a quasiconvex function g : H → R, the Greenberg-Pierskalla quasi-subdifferential [10] at

x ∈ H is defined by

(2.3) ∂
GPg(x) =

{
u ∈ H : ⟨u,y− x⟩< 0, ∀y ∈ lev<g(x)g

}
.

The following lemma guarantees the existence of the Greenberg-Pierskalla quasi-subdifferential
of a quasiconvex function.

Lemma 2.1. [13, Lemma 3(e)] If g : H → R is quasiconvex and upper semicontinuous on H ,
then ∂ GPg(x) ̸= /0 for all x ∈ H .

Proposition 2.1. [10, Theorem 6] Let g : H → R be a quasiconvex and upper semicontinuous
function. Then ∂ GPg(x) forms a cone and hence is unbounded for every x ∈ H .

Let C be a nonempty set in H . Then for each x ∈ H , the mapping PC : x 7→ PC(x) defined by

PC(x) = argmin
z∈C

∥x− z∥,

is called the projection map onto C. When C is nonempty, closed and convex, the mapping PC is
single-valued and well defined for every x ∈ H .

Proposition 2.2. [8] Let C be a nonempty, closed and convex set in H . Then, the projection map
PC satisfies the following inequalities:

(a) ∥PC(x)−PC(y)∥ ≤ ∥x− y∥, ∀x,y ∈ H .
(b)

〈
y−PC(x),x−PC(x)

〉
≤ 0, ∀x ∈ H , y ∈C.

Let C be a nonempty set in H . A mapping F : C →H is said to be γ-strongly pseudomonotone
on C if there exists a constant γ ∈ (0,∞) such that for all x,y ∈C,

⟨F(y),x− y⟩ ≥ 0 ⇒ ⟨F(x),x− y⟩ ≥ γ∥x− y∥2.

Furthermore, a bifunction f : C×C → R is called
(a) pseudomonotone on C if for all x,y ∈C,

f (x,y)≥ 0 ⇒ f (y,x)≤ 0;
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(b) γ-strongly pseudomonotone on C if there exists γ ∈ (0,∞) such that for all x,y ∈C,

f (x,y)≥ 0 ⇒ f (y,x)≤−γ∥x− y∥2;

(c) paramonotone on C with respect to S( f ,C) if

x ∈ S( f ,C), y ∈C and f (x,y) = f (y,x) = 0 ⇒ y ∈ S( f ,C).

For a bifunction f : C ×C → R, we use the notation ∂ GP f (x,x) for the Greenberg-Pierskalla
quasi-subdifferential of the function y 7→ f (x,y) at x for all x ∈C.

Let C be a nonempty, closed and convex subset of H . We make the following assumptions on
the bifunction f : C×C → R.

Assumption 1. (A0) f (x,x) = 0 for all x ∈C.

(A1) f (x, ·) is quasiconvex for all x ∈C.

(A2) f (x, ·) is upper semicontinuous on C.

(A3) f is γ-strongly pseudomonotone on C.

(A4) The solution set S( f ,C) is nonempty.

Now we give an example of a bifunction which is strongly pseudomonotone and upper semi-
continuous with respect to the second argument, but it is not upper semicontinuous with respect to
both arguments.

Example 2.1. Let C = [0,2]⊂ R. Define f : C×C → R by

f (x,y) =

{(
1

|x−1| −
1
2

)
x(y− x), when x ̸= 1;

y−1, when x = 1.
(2.4)

When x = 1, then f (1,y) = y− 1 for every y ∈ C. So, f (1, ·) is continuous and hence, upper
semicontinuous on C.

When x ̸= 1, then obviously f (x, ·) is continuous and, hence, upper semicontinuous on C.
To check the upper semicontinuity of f (·, ·) at (1,1.5), let us consider the sequence (xk,yk)k∈N

in C ×C with xk = 1+ 1
k+1 and yk = 1.5+ 1

k+1 for all k ∈ N. Then limk→∞(xk,yk) = (1,1.5).
But limsupk→∞ f (xk,yk) = limsupk→∞

(
k+1− 1

2

)(
1+ 1

k+1

)
(1.5−1) =+∞ > 0.5 = f (1,1.5). So,

f (x,y) is not upper semicontinuous at (1,1.5).
We observe that 0 ≤ x ≤ 2. Hence, −1 ≤ x− 1 ≤ 1, i.e., |x− 1| ≤ 1. So, for x ̸= 1 we have

1
|x−1| ≥ 1, and hence,

(
1

|x−1| −
1
2

)
≥ 1

2 for all x(̸= 1) ∈ C. Let x,y ∈ C and f (x,y) ≥ 0. Consider
the following two cases:

Case (i): Suppose x = 1. Then, f (x,y) = y−1 and for y = 1, f (y,x) = 0 =−γ|x− y|2 holds for
any γ > 0. Assume that y ̸= 1 and f (x,y)≥ 0 ⇒ y−1 ≥ 0, then

f (y,1) =
(

1
|y−1|

− 1
2

)
y(1− y)

≤
(

1
|y−1|

− 1
2

)
(y(1− y)+(y−1))

≤−1
2
(1− y)2.

Case (ii): Suppose x ̸= 1. Then for x,y ∈C satisfying f (x,y)≥ 0, we have x(y− x)≥ 0. Now, if
y = 1, then x(1− x)≥ 0. This implies that

f (1,x) = x−1 ≤ (x−1)+ x(1− x)≤−1
2
(x−1)2.
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If y ̸= 1, we have

f (y,x) =
(

1
|y−1|

− 1
2

)
y(x− y)≤

(
1

|y−1|
− 1

2

)
{y(x− y)+ x(y− x)}

=−
(

1
|y−1|

− 1
2

)
(x− y)2

≤−1
2
(x− y)2

=−γ∥x− y∥2, with γ =
1
2
.

Therefore, f is γ-strongly pseudomonotone. Furthermore, observe that f (x, .) is quasiconvex for
every x ∈ C and f (0,y) = 0 for all y ∈ C, i.e., 0 ∈ S( f ,C). Thus, f satisfies all the conditions of
Assumption 1.

The following result, which is related to a certain divergent series, will be used to discuss the
convergence analysis.

Lemma 2.2. [18] If {ξn} ⊆ [0,1) is a sequence, then
∞

∑
n=1

ξn =+∞ ⇔
∞

∏
n=1

(1±ξn) = 0.

3. AN ALGORITHM AND ITS CONVERGENCE ANALYSIS

In this section, we extend the algorithm introduced in [11] for solving convex equilibrium prob-
lems to quasiconvex equilibrium problems. We use Greenberg-Pierskalla quasi-subgradient to pro-
pose our algorithm. We analyze that if the sequence generated by our algorithm terminates after
a finite number of iterates, then the final iterated point is a solution of the EP (1.1). We further
establish that the sequence generated by Algorithm 1 converges to a solution of EP (1.1) under
some mild conditions.

Algorithm 1 (Projection Method for Quasiconvex EP).

Step 0: Fix M > 1. Take x0 ∈C, and a sequence {βk} ⊂ (0,+∞) satisfying

βk → 0 and
∞

∑
k=0

βk =+∞.

Set k = 0.
Step 1: Take uk ∈ ∂ GP f (xk,xk) such that ∥uk∥ ≤ M and

(3.5) λk =
βk

max{1,∥uk∥2} ,

Compute xk+1 as

(3.6) xk+1 = PC
(
xk −λkuk

)
.

Step 2: If xk+1 = xk, then STOP: Otherwise update k := k+1 and go to Step 1.

As the Greenberg-Pierskalla subdifferential encompasses the convex subdifferential, the algo-
rithm presented in [11, Algorithm 4.1] can be viewed as a specific instance of the aforementioned
algorithm.

Remark 3.1. (a) It is clear that if uk = 0, then obviously xk+1 = xk, and hence, by Lemma 3.3,
xk is a solution of EP (1.1).
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(b) If we normalize uk, that is, ∥uk∥= 1, then from (3.5), we have λk = βk. In this case, Algo-
rithm 1 is considered by Yen and Muu [20], and the convergence of the sequence is studied
under the assumption that f (·, ·) is upper semicontinuous, and f is pseudomonotone as
well as paramonotone.

(c) If we take βk =
1
k , then we see that ∑

∞
k=1 βk =+∞ and ∑

∞
k=1 β 2

k <+∞, which are the same
conditions considered in [20]. Furthermore, βk =

1√
k

satisfies the parametric condition in
Algorithm 1, but it does not satisfy the condition of the algorithm in [20]. So, in Algorithm
1, we have the opportunity to consider a larger class of parameters.

Lemma 3.3. Let C be a nonempty closed and convex subset of a real Hilbert space H and f :
C ×C → R be a bifunction that satisfies the assumptions (A0), (A1) and (A2). If xk+1 = xk for
some k ∈ N in Algorithm 1, then xk ∈ S( f ,C).

Proof. Since xk+1 is the projection of xk −λkuk onto the closed convex set C, we have〈
y− xk+1,xk −λkuk − xk+1

〉
≤ 0, ∀y ∈C.

If xk+1 = xk, then the above inequality reduces to〈
y− xk,−λkuk

〉
≤ 0, ∀y ∈C,

that is,

(3.7)
〈
y− xk,uk

〉
≥ 0, ∀y ∈C.

On the other hand, uk ∈ ∂ GP f (xk,xk) implies that〈
uk,z− xk

〉
< 0, ∀z ∈ lev< f (xk,xk) f (xk, ·) = lev<0 f (xk, ·).

Hence, it is observed from (3.7) that y /∈ lev<0 f (xk, ·) for all y ∈C. This implies that f (xk,y) ≥ 0
for all y ∈C. Thus, xk ∈ S( f ,C). □

Theorem 3.1. Let C be a nonempty, closed and convex subset of a real Hilbert space H . If the
bifunction f : C×C →R satisfies the assumptions (A0)-(A4), then the sequence {xk} generated by
Algorithm 1 converges to a solution of the equilibrium problem (1.1).

Proof. From the definition of xk+1, we have〈
xk −λkuk − xk+1,y− xk+1

〉
≤ 0, ∀y ∈C,

that is,

(3.8)
〈
xk − xk+1,y− xk+1

〉
≤ λk

〈
uk,y− xk+1

〉
, ∀y ∈C.

Taking y = xk and using Schwarz inequality, the above inequality reduces to

∥xk+1 − xk∥2 ≤ λk
〈
uk,xk − xk+1

〉
≤ λk∥uk∥∥xk+1 − xk∥.

Hence,

(3.9) ∥xk+1 − xk∥ ≤ λk∥uk∥.
Now consider two cases:
Case (i): Suppose ∥uk∥2 ≤ 1. Then, (3.5) gives λk = βk. Hence, (3.9) turns to

∥xk+1 − xk∥ ≤ βk∥uk∥ ≤ βk.

Case (ii): If ∥uk∥> 1, then (3.5) implies λk =
βk

∥uk∥2 . Therefore, (3.9) becomes

∥xk+1 − xk∥ ≤
βk

∥uk∥2 ∥uk∥=
βk

∥uk∥
< βk.

Thus, in both the cases, we obtain from (3.9) that

(3.10) ∥xk+1 − xk∥ ≤ βk, ∀k ∈ N∪{0}.
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Moreover, from (2.2), we have〈
xk+1 − xk,xk+1 − x∗

〉
=−

〈
xk − xk+1,xk+1 − x∗

〉
=−

[
1
2
∥xk − x∗∥2 − 1

2
∥xk+1 − xk∥2 − 1

2
∥xk+1 − x∗∥2

]
.

This refers to

∥xk+1 − x∗∥2 = ∥xk − x∗∥2 −∥xk+1 − xk∥2 +2
〈
xk+1 − xk,xk+1 − x∗

〉
≤ ∥xk − x∗∥2 −∥xk+1 − xk∥2 +2λk

〈
uk,x∗− xk+1

〉
,(3.11)

where the last inequality follows from (3.8).
Furthermore, consider a set

(3.12) I =
{

k ∈ N :
〈
uk,x∗− xk+1

〉
≥ γ

2
∥xk − x∗∥2

}
.

For all i ∈ I, we analyze from (3.5) that

βi = λi max{1,∥ui∥2} ≥ λi∥ui∥2 = λi∥ui∥∥ui∥.
Using (3.9) and the definition of set I, we get

βi ≥ ∥xi+1 − xi∥∥ui∥ ≥
〈
ui,xi − xi+1

〉
=
〈
ui,xi − x∗

〉
+
〈
ui,x∗− xi+1

〉
≥
〈
ui,xi − x∗

〉
+

γ

2
∥xi − x∗∥2.(3.13)

Since ui ∈ ∂ GP f (xi,xi), we have

(3.14)
〈
ui,y− xi

〉
< 0, ∀y ∈ lev<0 f (xi, ·).

Also, since x∗ ∈ S( f ,C), it follows that f (x∗,xi) ≥ 0, and hence, strong pseudomonotonicity of f
implies that

f (xi,x∗)≤−γ∥xi − x∗∥2 < 0.

So, x∗ ∈ lev<0 f (xi, ·). Then from (3.14), we obtain〈
ui,x∗− xi

〉
< 0, i.e.,

〈
ui,xi − x∗

〉
> 0.

This together with (3.13) implies that

βi >
γ

2
∥xi − x∗∥2,

and hence,

(3.15) ∥xi − x∗∥<

√
2βi

γ
, ∀i ∈ I.

Since the set I defined by (3.12) could be finite or infinite, we consider two cases.
Case 1. I is a finite set. Then, m = max

{
i : i ∈ I

}
+1 /∈ I, and hence,〈

um,x∗− xm+1
〉
<

γ

2
∥xm − x∗∥2.

Then, for all k ≥ m, this implies with (3.11) that

∥xk+1 − x∗∥2 < (1+λkγ)∥xk − x∗∥2

< (1+λkγ)(1+λk−1γ) · · ·(1+λmγ)∥xm − x∗∥2

=
k

∏
i=m

(1+λiγ)∥xm − x∗∥2.
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Then, the sequence {xk} is bounded. Moreover, by the choice of uk in Step 1, we have ∥uk∥ ≤ M
for all k ∈ N. Therefore, from (3.5), we have

∞

∑
k=0

λk ≥
1

max{1;M2}

∞

∑
k=0

βk =
1

M2

∞

∑
k=0

βk.

Since
∞

∑
k=0

βk = ∞, it follows from the above inequality that
∞

∑
k=0

λk = ∞. Thus, from Lemma 2.2, we

obtain

lim
k→∞

k

∏
i=m

(1+λiγ) = 0,

and hence,
lim
k→∞

xk = x∗.

Case 2. I is an infinite set. Then, we show that for an arbitrary ε > 0, there exists k0 ∈ I such
that ∥xk − x∗∥< ε for all k ≥ k0.

Now, consider two cases:
Case (a): If k /∈ I and let m(k) = max{i ∈ I : i < k}, then k > m(k)≥ k0. Let ε > 0 be arbitrary.

Since βk → 0 and I is an infinite set, there exists k0 ∈ I such that

max

{
βk,

√
2βk

γ

}
≤ ε

2
√(

1+λm(k)+1γ
) , ∀k ≥ k0.

Furthermore, from (3.11), we observe that

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 −∥xk+1 − xk∥2 +λkγ∥xk − x∗∥2

= (1+λkγ)∥xk − x∗∥2 −∥xk+1 − xk||2, ∀k /∈ I.

Using (3.10), (3.15) and the above inequality, we get

∥xk − x∗∥2 ≤
(
1+λm(k)+1γ

)
∥xm(k)+1 − x∗∥2 −∥xk − xm(k)+1∥2

≤
(
1+λm(k)+1γ

)
∥xm(k)+1 − x∗∥2,

and so,

∥xk − x∗∥=
√(

1+λm(k)+1γ
)
∥xm(k)+1 − x∗∥

≤
√(

1+λm(k)+1γ
){

∥xm(k)+1 − xm(k)∥+∥xm(k)− x∗∥
}

≤
√(

1+λm(k)+1γ
)βm(k)+

√
2βm(k)

γ


≤
√(

1+λm(k)+1γ
) ε

2
√(

1+λm(k)+1γ
) + ε

2
√(

1+λm(k)+1γ
)


= ε.

Case (b): If k ∈ I, then from (3.15), we have

∥xk − x∗∥<

√
2βk

γ
≤ ε

2
√(

1+λm(k)+1γ
) < ε.

Hence, xk → x∗. This completes the desired result. □
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4. NUMERICAL EXAMPLES

This section illustrates the functionality of the composed Algorithm 1 through large-scale exam-
ples. The computational programming is performed in MATLAB R2024a running on Acer Swift 3
PC with 11th Gen Intel(R) Core(TM) i5 @ 2.42 GHz processor and RAM 16.0 GB.

Example 4.2. Consider the nonempty closed and convex set C = {x ∈ R : 0 ≤ x ≤ 2} in R and a
bifunction f : C×C → R defined as in Example 2.1 which is quasiconvex. Note that zero is the
unique solution of the EP (1.1) whose bifunction is given by (2.4).

As we have seen in Example 2.1 all the conditions of Algorithm 1 are satisfied. Consider the
parameter βk =

1
(k+1)α , 0 < α < 1 for the Algorithm 1. We analyze Algorithm 1 with random

initial points x0 = 0.96, 0.86, 1 and α = 0.25. We take ∥xk+1 − xk∥ < 10−4 and ∥xk − x̄∥ < 10−4

as the stopping criterion to check the convergence of the sequence {xk} to the unique solution
x̄ = 0 of EP (1.1). The results are shown in Figure 1. The CPU times and number of iterations
corresponding to different initial points are shown in Table 1.

Error Initial Point (x0) No. of Iterations CPU Times (Secs)
0.96 22 6.91×10−5

∥xk+1 − xk∥ ≤ 10−4 0.86 20 5.33×10−5

1 18 5.13×10−5

0.96 28 9.79×10−5

∥xk − x̄∥< 10−4 0.86 26 6.69×10−5

1 24 6.43×10−5

TABLE 1. Table of CPU Times for Example 4.2

(A) ∥xk+1 − xk∥→ 0 (B) ∥xk∥→ 0

FIGURE 1. Convergence of Example 4.2

Example 4.3. Let E, P be two n× n symmetric and positive definite matrices, e⊤, c⊤, b⊤ ∈ Rn,
and d, g ∈ R. Consider a nonempty closed convex subset C of Rn defined by

C = {X ∈ Rn : m < ⟨c,X⟩+d < M} ,
with 0 < m < M <+∞. Define F : C → Rn and G : C → R by

F(X) =
EX + e

⟨c,X⟩+d
, G(X) =

1
2 ⟨PX , X⟩+ ⟨b, X⟩+g

⟨c, X⟩+d
.
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Let the bifunction f : C×C → R be defined by

f (X ,Y ) = ⟨X , F(Y )−F(X)⟩+G(Y )−G(X).

Note that the function f (X , ·) is quasiconvex for all X ∈C (see, [14, Example 4.1]). Furthermore,
it is clear that f (X , ·) is upper semicontinuous on C. We show that the operator F is strongly
pseudomonotone on C. Suppose ⟨F(Y ),X −Y ⟩ ≥ 0 for any X ,Y ∈C, then we have〈

EY + e
⟨c,Y ⟩+d

, X −Y
〉
≥ 0,

that is,

⟨EY + e, X −Y ⟩ ≥ 0.(4.16)

This implies that

⟨F(X),X −Y ⟩=
〈

EX + e
⟨c,X⟩+d

,X −Y
〉

=
1

⟨c,X⟩+d
⟨EX + e,X −Y ⟩

≥ 1
M

⟨EX + e,X −Y ⟩

=
1
M

⟨E(X −Y ),X −Y ⟩+ 1
M

⟨EY + e,X −Y ⟩

≥ 1
M

⟨E(X −Y ),X −Y ⟩

≥ γ∥X −Y∥2, for some γ ∈ (0,+∞).

The last inequality follows from the fact that E is positive definite. Using strong pseudomonotonic-
ity of F, we can easily show that the bifunction f is γ-strongly pseudomonotone on C. Therefore, f
satisfies all conditions of Assumption 1.

Using different initial choices X0 and stopping conditions ∥Xk+1 −Xk∥ < 10−4, we investigate
Algorithm 1. The convergence of the composed Algorithm 1 to a solution of EP (1.1) is shown for
n = 2, 5, 10, 50, 250 and βk =

1
(k+1)α , (0 < α ≤ 1) with α = 1, 0.9 and 0.7.

For n = 2, we take C = [0,10]2 ⊂ R2,

E =

[
1 0
0 0

]
, e =

[
1 0

]⊤
, c =

[
1 1

]⊤
, d = 6,

P =

[
2 0
0 2

]
, b =

[
1 1

]⊤
, g = 1.

Figure 2, (A) illustrates the convergence result for the initial point X0 = (1,1)⊤. When n> 2, we
consider C = [0,10]n ⊂ Rn and E, P, which are symmetric, positive definite, randomly generated
matrices with nonnegative elements. In the interval (0,1), the vectors e, c, b and the scalars g,
d are considered at random. The convergence results for n = 5, 10, 50, and 250 are displayed in
subfigures (B), (C), (D) and (E) of Figure 2, in that order. Table 2 displays the CPU times and
number of iterations for various values of n, which correspond to various initial locations and step
sizes.

Remark 4.2. In Example 4.2 and Example 4.3, f (x, ·) is assumed quasiconvex and upper semicon-
tinuous for all x ∈C, while in [11] the convexity of f (x, ·) is assumed, in [20] the upper semiconti-
nuity of f (·, ·) is assumed. So, by Algorithm 1 we can solve a larger class of equilibrium problems
which cannot be solved by other methods proposed in [11, 20].
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Remark 4.3. From Table 2, it is clear that the number of iterations depends on both the dimension
(n) and the choice of the initial point (X0).

(A) n = 2 and X0 = (1,1)⊤ (B) n = 5 and X0 = (8,8,8,8,8)⊤

(C) n = 10 and X0 = (9, · · · ,9)⊤ (D) n = 50 and X0 = (5, · · · ,5)⊤

(E) n = 250 and X0 = (5, · · · ,5)⊤

FIGURE 2. Convergence of Example 4.3.
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n Initial Point α No. of Iterations CPU Times (Secs)
1.0 453 6.7189

2 X0 = (1,1)⊤ 0.9 118 1.5788
0.7 32 0.3374
1.0 134 0.5470

5 X0 = (8,8,8,8,8)⊤ 0.9 54 0.1752
0.7 20 0.1203
1.0 36 1.0790

10 X0 = (9, · · · ,9)⊤ 0.9 22 0.6127
0.7 12 0.2761
1.0 500 13.9800

50 X0 = (5, · · · ,5)⊤ 0.9 690 16.9100
0.7 1000 18.0100
1.0 830 23.1900

250 X0 = (5, · · · ,5)⊤ 0.9 635 30.4300
0.7 510 34.1600

TABLE 2. Table of CPU Times for Example 4.3
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[15] López, R. Approximations of equilibrium problems. SIAM J. Control Optim. 50 (2012), no. 2, 1038–1070.



12 Q. H. Ansari, M. S. Raju and F. Babu

[16] Muu, L.; Oettli, W. Convergence of an adaptive penalty scheme for finding constrained equilibria. Nonlinear Anal.
TMA. 18 (1992), no. 12, 1159–1166.

[17] Muu, L. D.; Quoc, T. D. Regularization algorithms for solving monotone Ky Fan inequalities with application to a
Nash-Cournot equilibrium model. J. Optim. Theory Appl. 142 (2009), no. 1, 185–204.

[18] Rudin, W. Real and Complex Analysis, McGraw-Hill International Editions: Mathematics Series, 1987.
[19] Van Nguyen, L.; Ansari, Q. H.; Qin, X. Linear conditioning, weak sharpness and finite convergence for equilibrium

problems. J. Global Optim. 77 (2020), no. 2, 405–424.
[20] Yen, L. H.; et al. A subgradient method for equilibrium problems involving quasiconvex bifunctions. Oper. Res. Lett.

48 (2020), no. 5, 579–583.

1ALIGARH MUSLIM UNIVERSITY

DEPARTMENT OF MATHEMATICS

ALIGARH, INDIA

Email address: qhansari@gmail.com; msarkar704@gmail.com

2COLLEGE OF SCIENCES

CHONGQING UNIVERSITY OF TECHNOLOGY

CHONGQING 400054, CHINA

Email address: qhansari@gmail.com

3MATHEMATICS DIVISION, SCHOOL OF ADVANCED SCIENCES & LANGUAGES

VIT BHOPAL UNIVERSITY

BHOPAL-INDORE HIGHWAY, KOTHRIKALAN, SEHORE

MADHYA PRADESH 466 114, INDIA

Email address: firoz77b@gmail.com; feerozbabu@vitbhopal.ac.in


