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Two new extragradient methods for solving
pseudomonotone the equilibrium problem in Hilbert
spaces
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ABSTRACT. This paper introduces two new extragradient methods designed to solve pseudomonotone equi-
librium problems subject to a Lipschitz-type condition. These methods incorporate a variable stepsize criterion
that dynamically adjusts with each iteration based on prior iterations. A distinguishing feature of these meth-
ods is their independence from prior knowledge of Lipschitz-type constants or any line-search method. The
convergence theorems for the proposed methods are established under mild conditions, without requiring the
knowledge of Lipschitz-type constants. Additionally, the paper includes several investigations demonstrating
the numerical efficacy of the methods and facilitating comparisons with other approaches. This paper con-
tributes to the advancement of computational methods for addressing pseudomonotone equilibrium problems
across various applications.

1. INTRODUCTION

This research focuses on developing new iterative methods to solve the equilibrium
problem, represented by (EP). Here, H represents a real Hilbert space, whereas C denotes
a nonempty closed convex subset of H. The bifunction R : H × H → R plays a central
role, satisfying the condition R(z1, z1) = 0 for every z1 ∈ C.

Formally, the equilibrium problem associated with the bifunction R on C is articulated
as follows: Our objective is to find s∗ ∈ C such that

(EP) R(s∗, z1) ≥ 0 for all z1 ∈ C.

To put it simply, we want to find an element s∗ in the closed convex set C that satis-
fies the inequality shown in (EP) for any z1 in C. This fundamental problem, described
by (EP), represents an important task in the realm of real Hilbert spaces. Consequently,
our research aims to move forward by introducing new iterative methods specifically de-
signed to address this problem.

This study is devoted to the numerical investigation of the equilibrium problem un-
der specific conditions outlined as follows. These conditions provide a comprehensive
framework for understanding the equilibrium problem and serve as the foundation for
the numerical characterization pursued in this research.

(R1) The set Sol(R, C), representing the solution set of the problem (EP), and it is as-
sumed to be nonempty.

(R2) The bifunction R is pseudomonotone [6, 4], indicating that:

R(z1, z2) ≥ 0 =⇒ R(z2, z1) ≤ 0 ∀ z1, z2 ∈ C.
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(R3) Furthermore, R is Lipschitz-like continuous [17] on C if there exist positive constants
c1 and c2 such that:

R(z1, z3) ≤ R(z1, z2) +R(z2, z3) + c1∥z1 − z2∥2 + c2∥z2 − z3∥2 ∀ z1, z2, z3 ∈ C.
(R4) Moreover, for each sequence {zk} ⊂ C satisfying zk ⇀ z∗, the following inequality

holds:
lim sup
k→+∞

R(zk, z1) ≤ R(z∗, z1) ∀ z1 ∈ C.

(R5) R(z1, ·) is convex and subdifferentiable on H for any fixed z1 ∈ H.
The equilibrium problem is very important in academic research because it provides a

unifying framework for addressing a wide range of mathematical problems. These prob-
lems include a diverse array of problem types, including vector and scalar minimization
problems, fixed-point problems, complementarity problems, variational inequalities, sad-
dle point problems, inverse optimization problems, and Nash equilibrium problems in
non-cooperative games (for more details, see [6, 18, 10, 15, 5]). However, the relevance
of the equilibrium problem extends beyond its mathematical domain, finding practical
applications across various economic contexts. Notably, it has been employed in semi-
nal economic investigations such as Cournot’s research [9], elucidating the dynamics of
supply and demand [2], and forming a foundational concept in the theoretical framework
of non-cooperative games and Nash equilibrium models [20, 19]. The term “equilibrium
problem” was first used in the academic literature by Muu and Oettli in 1992 [18], and sub-
sequently subjected to more examination by Blum in 1994 [6]. This interpretation of the
equilibrium problem has proved adaptive, allowing it to include a wide range of math-
ematical and economic phenomena, highlighting its importance in both theoretical and
practical research.

The extragradient method, initially proposed by Flåm and Antipin [11] and subse-
quently refined by Tran et al. [23], has emerged as a valuable numerical approach for
tackling equilibrium problems. This iterative scheme involves determining the next iter-
ation, sk+1, based on the current iteration sk. The method is delineated by the following
steps:

(1.1)


tk = argmin

t∈C
{λR(sk, t) +

1
2∥sk − t∥2},

sk+1 = argmin
t∈C

{λR(tk, t) +
1
2∥sk − t∥2},

where 0 < λ < min
{

1
2c1

, 1
2c2

}
, with c1 and c2 denoting previously defined Lipschitz-type

constants. The iterative nature of the method entails solving two minimization problems
on the feasible set C using the prescribed stepsize λ. The technique described in Equation
(1.1) is also referred to as the two-step extragradient method, attributed to Korpelevich’s
pioneering work [16] for solving saddle point problems. However, it is worth noting two
significant limitations of this approach. Firstly, it relies on a fixed step size, necessitat-
ing prior knowledge or estimation of the Lipschitz constant associated with the relevant
bifunction. Secondly, it only converges weakly in Hilbert spaces, given that Lipschitz
constants are often unknown or challenging to compute. Recent research endeavors have
explored various avenues to effectively address these shortcomings in the context of equi-
librium problems, as extensively reviewed in [26, 27, 25, 28, 13, 12, 24].

From a computational viewpoint, determining the Lipschitz constant before use can
be difficult, limiting the method’s applicability in scenarios where these constants are
unknown. As a result, a pertinent question arises.

Is it possible to introduce an extragradient method with an adaptive stepsize rule for solving
pseudomonotone equilibrium problems (EP)?



207

This research aims to devise explicit-type methods that yield weak convergence sequences
akin to the gradient approach when addressing equilibrium problems involving pseu-
domonotone bifunctions. We propose new extragradient-type methods tailored for solv-
ing equilibrium problems within an infinite-dimensional real Hilbert space, drawing upon
the foundational work of Censor et al. [8] and Hieu et al. [14]. Our contributions to this
study are as follows:

• Subgradient Extragradient Approach: We introduce a subgradient extragradient method
tailored for solving equilibrium problems within a real Hilbert space. Notably,
our approach features a monotone variable stepsize rule, a key aspect that we
thoroughly analyze to establish the weak convergence of the generated sequence.

• Solving Variational Inequality and Fixed Point Problems: Our proposed method’s ver-
satility extends beyond equilibrium problems, proving beneficial for variational
inequality and fixed point problems as well. This adaptability significantly broad-
ens its impact across related problem domains.

• Numerical Validation: We conduct extensive numerical experiments to validate
our theoretical findings and showcase the practical effectiveness of our proposed
methods. These experiments include comparisons with previously reported re-
sults, enabling a comprehensive assessment of our approaches. Our numerical
results affirm that the proposed methods not only align with theoretical expecta-
tions but also surpass existing methodologies in terms of performance.

The paper is structured as follows: Section 2 presents fundamental identities and lem-
mas crucial for conducting convergence analysis. Section 3 introduces new methods and
explores their convergence properties. In Section 4, we assess the efficacy of our pro-
posed method through numerical experiments and comparative analyses against existing
methodologies, demonstrating its superior performance.

2. PRELIMINARIES

In this section, we establish the foundation by presenting essential identities, key lem-
mas, and fundamental definitions. We commence by defining the metric projection PC(z1)
of z1 ∈ H, formulated as follows:

PC(z1) = argmin
z2∈C

{∥z1 − z2∥}.

The subsequent lemma elaborates on the fundamental properties of the projection map-
ping.

Lemma 2.1. [3] Let PC : H → C represent a metric projection. Then, it satisfies the following
properties:

(i)

∥z1 − PC(z2)∥2 + ∥PC(z2)− z2∥2 ≤ ∥z1 − z2∥2, z1 ∈ C, z2 ∈ H;

(ii) z3 = PC(z1) if and only if

⟨z1 − z3, z2 − z3⟩ ≤ 0, ∀ z2 ∈ C;
(iii)

∥z1 − PC(z1)∥ ≤ ∥z1 − z2∥, z2 ∈ C, z1 ∈ H.

Another lemma from [3] is as follows:

Lemma 2.2. [3] For any z1, z2 ∈ H and ℓ ∈ R, the following properties hold:
(i)

∥ℓz1 + (1− ℓ)z2∥2 = ℓ∥z1∥2 + (1− ℓ)∥z2∥2 − ℓ(1− ℓ)∥z1 − z2∥2.
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(ii)

∥z1 + z2∥2 ≤ ∥z1∥2 + 2⟨z2, z1 + z2⟩.
Continuing, the normal cone of C at z1 ∈ C is defined as

NC(z1) = {z3 ∈ H : ⟨z3, z2 − z1⟩ ≤ 0 ∀ z2 ∈ C}.
Consider a convex function ℧ : C → R. The subdifferential of ℧ at z1 ∈ C is defined as

∂℧(z1) = {z3 ∈ H : ℧(z2)− ℧(z1) ≥ ⟨z3, z2 − z1⟩ ∀ z2 ∈ C}.
Each element in the set ∂℧(z1) is referred to as a subgradient of the function ℧ at the

point z1. If a function ℧ has at least one subgradient at z1, it is considered to be subdiffer-
entiable at z1.

Lemma 2.3. [22] Let ℧ : C → R be a convex, lower semicontinuous function that is subdifferen-
tiable on C. An element s ∈ C is a minimizer of the function ℧ if and only if

0 ∈ ∂℧(s) +NC(s),

where ∂℧(s) represents the subdifferential of ℧ at s ∈ C, and NC(s) represents the normal cone of
C at s.

Lemma 2.4. [21] Let C be a nonempty subset of H and {sk} be a sequence in H satisfying the
following conditions:

(i) For any s ∈ C, limk→+∞ ∥sk − s∥ exists;
(ii) Any sequentially weak cluster element of {sk} belongs to C.
Then, {sk} converges weakly to an element in C.

3. MAIN RESULTS

In this section, we introduce a numerical iterative approach aimed at enhancing the
efficiency of the extragradient method (1.1). This method utilizes a monotone stepsize
rule to facilitate its operation. Below, we offer a detailed explanation of the method.

Algorithm 1 (Improved Subgradient Extragradient Method)

(1) Input: Provide initial parameters λ1 > 0, s1 ∈ H, µ ∈ (0, 1), θ ∈ (0, 2−
√
2).

(2) Output: Obtain a convergent sequence {sk}.
(3) Initialization: Set k = 0.
(4) Iteration:

Step 1: Compute tk = argmin
t∈C

{
λkR(sk, t) +

1
2∥sk − t∥2

}
.

If sk = tk, terminate.
Step 2: Take ωk ∈ ∂2R(sk, tk) such that sk − λkωk − tk ∈ NC(tk). Create a set

Hk = {z ∈ H : ⟨sk − λkωk − tk, z − tk⟩ ≤ 0}.
Step 3: Compute sk+1 = argmin

t∈Hk

{
λkR(tk, t) +

1
2∥sk − t∥2

}
.

Step 4: Compute the stepsize λk+1 as follows:

(3.2) λk+1 =


min

{
λk,

µ
2 · (2−

√
2−θ)∥sk−tk∥2+(2−

√
2−θ)∥sk+1−tk∥2

[R(sk,sk+1)−R(sk,tk)−R(tk,sk+1)]

}
if R(sk, sk+1)−R(sk, tk)−R(tk, sk+1) > 0,

λk Otherwise.

Step 5: Set k := k + 1 and return to Step 1.
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Lemma 3.5. The sequence {λk}, as defined in (3.2), converges to λ and is bounded by

min

{
µ(2−

√
2− θ)

max{2c1, 2c2}
, λ1

}
≤ λ ≤ λ1.

Proof. Consider the condition R(sk, sk+1)−R(sk, tk)−R(tk, sk+1) > 0, we have:

µ(2−
√
2− θ)(∥sk − tk∥2 + ∥sk+1 − tk∥2)

2[R(sk, sk+1)−R(sk, tk)−R(tk, sk+1)]

≥ µ(2−
√
2− θ)(∥sk − tk∥2 + ∥sk+1 − tk∥2)

2[c1∥sk − tk∥2 + c2∥sk+1 − tk∥2]

≥ µ(2−
√
2− θ)

2max{c1, c2}
.(3.3)

From (3.3), it is evident that the sequence is bounded. Additionally, since {λk} is mono-
tonically decreasing, we deduce that limk→+∞ λk = λ. □

Lemma 3.6. Algorithm 1 produces the following important inequality:

λkR(tk, t)− λkR(tk, sk+1) ≥ ⟨sk − sk+1, t− sk+1⟩ ∀ t ∈ Hk.

Proof. By employing the expression for sk+1 from Algorithm 1 and insights from Lemma
2.3, we establish that

0 ∈ ∂2

{
λkR(tk, ·) +

1

2
∥sk − ·∥2

}
(sk+1) +NHk

(sk+1).

This implies that for υ ∈ ∂2R(tk, sk+1), there exists a vector υ ∈ NHk
(sk+1) such that

λkυ + sk+1 − sk + υ = 0.

Hence, we obtain

⟨sk − sk+1, t− sk+1⟩ = λk⟨υ, t− sk+1⟩+ ⟨υ, t− sk+1⟩ ∀ t ∈ Hk.

Since υ ∈ NHk
(sk+1), it follows that ⟨υ, t− sk+1⟩ ≤ 0 for all t ∈ Hk. Therefore,

(3.4) ⟨sk − sk+1, t− sk+1⟩ ≤ λk⟨υ, t− sk+1⟩ ∀ t ∈ Hk.

Given υ ∈ ∂2R(tk, sk+1), we have

(3.5) R(tk, t)−R(tk, sk+1) ≥ ⟨υ, t− sk+1⟩ ∀ t ∈ H.

Combining (3.4) and (3.5), we arrive at

λkR(tk, t)− λkR(tk, sk+1) ≥ ⟨sk − sk+1, t− sk+1⟩ ∀ t ∈ Hk.

□

Lemma 3.7. An insightful inequality, deduced from Algorithm 1, is expressed as follows:

λk

{
R(sk, sk+1)−R(sk, tk)

}
≥ ⟨sk − tk, sk+1 − tk⟩.

Proof. Given that sk+1 ∈ Hk, the condition

⟨sk − λkωk − tk, sk+1 − tk⟩ ≤ 0,

implies

(3.6) ⟨sk − tk, sk+1 − tk⟩ ≤ λk⟨ωk, sk+1 − tk⟩.
Considering ωk ∈ ∂2R(sk, tk) and utilizing the subdifferential definition, we derive

R(sk, t)−R(sk, tk) ≥ ⟨ωk, t− tk⟩ ∀ t ∈ H.
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Setting t = sk+1, we obtain

(3.7) R(sk, sk+1)−R(sk, tk) ≥ ⟨ωk, sk+1 − tk⟩.
Combining (3.6) and (3.7), we deduce

(3.8) λk

{
R(sk, sk+1)−R(sk, tk)

}
≥ ⟨sk − tk, sk+1 − tk⟩.

□

Theorem 3.1. Let {sk} be a sequence generated by Algorithm 1, satisfying items (R1)–(R5). Un-
der these conditions, the sequence {sk} converges weakly to a point s∗ ∈ Sol(R, C). Furthermore,
it holds that limk→+∞ PSol(R,C)(sk) = s∗.

Proof. By substituting t = s∗ into Lemma 3.6, we obtain

(3.9) λkR(tk, s
∗)− λkR(tk, sk+1) ≥ ⟨sk − sk+1, s

∗ − sk+1⟩.
Given that s∗ ∈ Sol(R, C) with R(s∗, tk) > 0, according to condition (R2), we have

R(tk, s
∗) < 0.

This leads to the transformation of expression (3.9) into the following form:

(3.10) ⟨sk − sk+1, sk+1 − s∗⟩ ≥ λkR(tk, sk+1).

Using relation (3.2), we find

R(sk, sk+1)−R(sk, tk)−R(tk, sk+1) ≤
(2−

√
2− θ)µ

(
∥sk − tk∥2 + ∥sk+1 − tk∥2

)
2λk+1

,

which implies

(3.11)

λkR(tk, sk+1)

≥ λkR(sk, sk+1)− λkR(sk, tk)

−
(2−

√
2− θ)λkµ

(
∥sk − tk∥2 + ∥sk+1 − tk∥2

)
2λk+1

.

Combining equations (3.10) and (3.11), we derive the inequality:

(3.12)

⟨sk − sk+1, sk+1 − s∗⟩ ≥ λk{R(sk, sk+1)−R(sk, tk)}

−
(2−

√
2− θ)λkµ

(
∥sk − tk∥2 + ∥sk+1 − tk∥2

)
2λk+1

.

By combining expressions (3.8) and (3.12), we deduce:

(3.13)

⟨sk − sk+1, sk+1 − s∗⟩ ≥ ⟨sk − tk, sk+1 − tk⟩

−
(2−

√
2− θ)λkµ

(
∥sk − tk∥2 + ∥sk+1 − tk∥2

)
2λk+1

.

Additionally, we can use the following relations:

2⟨sk − sk+1, sk+1 − s∗⟩ = ∥sk − s∗∥2 − ∥sk+1 − sk∥2 − ∥sk+1 − s∗∥2,

2⟨tk − sk, tk − sk+1⟩ = ∥sk − tk∥2 + ∥sk+1 − tk∥2 − ∥sk − sk+1∥2.
Thus, we can derive:

(3.14)
∥sk+1 − s∗∥2 ≤ ∥sk − s∗∥2 − ∥sk − tk∥2 − ∥sk+1 − tk∥2

+
(2−

√
2− θ)λkµ

(
∥sk − tk∥2 + ∥sk+1 − tk∥2

)
λk+1

.
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Given that λk → λ as k → ∞, there exists a fixed k1 ∈ N such that:

µλk

λk+1
≤ 1, ∀k ≥ k1.

Thus, we have:

(3.15)
∥sk+1 − s∗∥2 ≤ ∥sk − s∗∥2 − ∥sk − tk∥2 − ∥sk+1 − tk∥2

+ (2−
√
2− θ)

(
∥sk − tk∥2 + ∥sk+1 − tk∥2

)
.

Furthermore, this implies:

(3.16)
∥sk+1 − s∗∥2 ≤ ∥sk − s∗∥2 − (

√
2− 1)∥sk − tk∥2 − (

√
2− 1)∥sk+1 − tk∥2

− θ
(
∥sk − tk∥2 + ∥sk+1 − tk∥2

)
.

From equation (3.16), we deduce:

(3.17) ∥sk+1 − s∗∥2 ≤ ∥sk − s∗∥2 ∀ k ≥ k1.

Thus, we can conclude that the sequence {sk} is bounded. Let m ≥ k1, and consider
equation (3.16) for k1, k1 + 1, · · · ,m. Summing these equations up, we obtain:

∥sm+1 − s∗∥2 ≤ ∥sk1 − s∗∥2 −
m∑

k=k1

(
√
2− 1)∥sk − tk∥2

−
m∑

k=k1

(
√
2− 1)∥sk+1 − tk∥2

≤ ∥sk1 − s∗∥2.(3.18)

This leads to:
m∑

k=k1

(
√
2− 1)∥sk − tk∥2 +

m∑
k=k1

(
√
2− 1)∥sk+1 − tk∥2

≤ ∥sk1 − s∗∥2 − ∥sm+1 − s∗∥2.(3.19)

By taking the limit as k → +∞ in equation (3.19), we get:

(3.20)
+∞∑
k=1

∥sk − tk∥2 < +∞ =⇒ lim
k→+∞

∥sk − tk∥ = 0,

and:

(3.21)
+∞∑
k=1

∥sk+1 − tk∥2 < +∞ =⇒ lim
k→+∞

∥sk+1 − tk∥ = 0.

From equations (3.20), (3.21), and applying Cauchy’s inequality, we conclude:

(3.22) lim
k→+∞

∥sk+1 − sk∥ = 0.

Let ŝ denote a weak limit point of {sk}, signifying that a subsequence, denoted by {skj
},

of {sk} converges weakly to ŝ. Consequently, the sequence {tkj} also converges weakly
to ŝ, and ŝ is an element of the set C. Considering relations (3.11), the definition of λk+1,
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and inequality (3.13), we derive the following inequality:

λkjR(tkj , t) ≥ λkjR(tkj , skj+1) + ⟨skj − skj+1, t− skj+1⟩
≥ λkj

R(skj
, skk+1

)− λkj
R(skj

, tkj
)

−
(2−

√
2− θ)µλkj

2λkj+1
∥skj

− tkj
∥2 −

(2−
√
2− θ)µλkj

2λkj+1
∥tkj

− skj+1∥2

+ ⟨skj
− skj+1, t− skj+1⟩

≥ ⟨skj
− tkj

, skj+1 − tkj
⟩ −

(2−
√
2− θ)µλkj

2λkj+1
∥skj

− tkj
∥2

−
(2−

√
2− θ)µλkj

2λkj+1
∥tkj

− skj+1∥2 + ⟨skj
− skj+1, t− skj+1⟩,(3.23)

where t ∈ Hk. It is evident from expressions (3.20), (3.21), and (3.22) that the right-hand
side of the above inequality converges to zero due to the boundedness of {sk}. Given
λkj > 0 and the condition (R3), along with tkj ⇀ ŝ, we establish:

0 ≤ lim sup
j→+∞

R(tkj
, t) ≤ R(ŝ, t) ∀ t ∈ C.

Since C ⊂ Hk implies ŝ ∈ C and R(ŝ, t) ≥ 0, for all t ∈ C, it follows that ŝ ∈ Sol(R, C).
Consequently, Lemma 2.4 guarantees that {sk} and {tk} converge weakly to s∗ as k →
+∞.

The final step involves showing that limk→+∞ PSol(R,C)(sk) = s∗. Let ℑk := PSol(R,C)(sk)
for every k ∈ N. The following inequality illustrates the boundedness of ℑk:

(3.24) ∥ℑk∥ ≤ ∥ℑk − sk∥+ ∥sk∥ ≤ ∥s∗ − sk∥+ ∥sk∥.

Given the definition of {ℑk} as a bounded sequence, we have:

(3.25) ∥sk+1 −ℑk+1∥2 ≤ ∥sk+1 −ℑk∥2 ≤ ∥sk −ℑk∥2 ∀ k ≥ k1.

According to expression (3.25), the sequence ∥sk−ℑk∥ is convergent. For m > k ≥ k1 and
using (3.16), we have:

(3.26) ∥ℑk − sm∥2 ≤ ∥ℑk − sm−1∥2 ≤ · · · ≤ ∥ℑk − sk∥2.

Assuming ℑm,ℑk ∈ Sol(R, C), and applying Lemma 2.1 (i) along with (3.26) for m > k ≥
k1, we obtain:

(3.27) ∥ℑk −ℑm∥2 ≤ ∥ℑk − sm∥2 − ∥ℑm − sm∥2 ≤ ∥ℑk − sk∥2 − ∥ℑm − sm∥2.

As limk→+∞ ∥ℑk − sk∥ indicates that limm,k→+∞ ∥ℑk − ℑm∥ = 0. Since the solution set
Sol(R, C) is closed and {ℑk} is a Cauchy sequence, we have {ℑk} → Π̂ ∈ Sol(R, C). From
Lemma 2.1 (ii) and s∗, Π̂ ∈ Sol(R, C), we obtain:

(3.28) ⟨sk −ℑk, s
∗ −ℑk⟩ ≤ 0.

Given that ℑk → Π̂ and sk ⇀ s∗, implies:

⟨s∗ − Π̂, s∗ − Π̂⟩ ≤ 0,

which gives s∗ = Π̂ = limk→+∞ PSol(R,C)(sk). Moreover, ∥sk − tk∥ → 0 implies
limk→+∞ PSol(R,C)(tk) = s∗. Therefore, the theorem is proved.

□
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We introduce an iterative approach that relies on a monotone variable stepsize rule and
involves two strongly convex minimization problems. The specific details of the second
primary method are presented below.

Algorithm 2 (Improved Extragradient Method)

(1) Input: Provide initial parameters λ1 > 0, s1 ∈ H, µ ∈ (0, 1), θ ∈ (0, 2−
√
2).

(2) Output: Obtain a convergent sequence {sk}.
(3) Initialization: Set k = 0.
(4) Iteration:

Step 1: Compute tk = argmin
t∈C

{
λkR(sk, t) +

1
2∥sk − t∥2

}
.

If sk = tk, terminate.
Step 2: Compute sk+1 = argmin

t∈C

{
λkR(tk, t) +

1
2∥sk − t∥2

}
.

Step 3: Compute the stepsize λk+1 as follows:

(3.29) λk+1 =


min

{
λk,

µ
2 · (2−

√
2−θ)∥sk−tk∥2+(2−

√
2−θ)∥sk+1−tk∥2

[R(sk,sk+1)−R(sk,tk)−R(tk,sk+1)]

}
if R(sk, sk+1)−R(sk, tk)−R(tk, sk+1) > 0,

λk Otherwise.

Step 4: Set k := k + 1 and return to Step 1.

(i) Let A : C → H be an operator. The variational inequality problem A is formulated as
follows: Find s∗ ∈ C such that

(VIP)
〈
A(s∗), t1 − s∗

〉
≥ 0 ∀ t1 ∈ C.

Define the bifunction R as follows:

(3.30) R(t1, t2) :=
〈
A(t1), t2 − t1

〉
∀ t1, t2 ∈ C.

The equilibrium problem is then reformulated into a problem of variational inequality
defined by (VIP), considering Lipschitz constants of the mapping. The construction of
two new methods for solving variational inequalities employs the formula (3.30).

Corollary 3.1. Let A : C → H be weakly continuous, pseudomonotone, and L-Lipschitz continu-
ous. Choose λ1 > 0, s1 ∈ H, µ ∈ (0, 1), θ ∈ (0, 2−

√
2) such that the solution set Sol(A, C) ̸= ∅.

Evaluate
tk = PC(sk − λkA(sk)).

Given sk, tk, construct the set

Hk = {z ∈ H : ⟨sk − λkA(sk)− tk, z − tk⟩ ≤ 0} for each k ≥ 0.

Evaluate
sk+1 = PHk

(sk − λkA(tk)).

Modify the stepsize as follows:

λk+1 =


min

{
λk,

(2−
√
2−θ)µ∥sk−tk∥2+(2−

√
2−θ)µ∥sk+1−tk∥2

2
〈
A(sk)−A(tk), sk+1−tk

〉 }
if

〈
A(sk)−A(tk), sk+1 − tk

〉
> 0,

λk Otherwise.

Then, the sequence {sk} converges weakly to s∗ ∈ Sol(A, C).
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Corollary 3.2. Let A : C → H be weakly continuous, pseudomonotone, and L-Lipschitz continu-
ous. Choose λ1 > 0, s1 ∈ H, µ ∈ (0, 1), θ ∈ (0, 2−

√
2) such that the solution set Sol(A, C) ̸= ∅.

Evaluate
tk = PC(sk − λkA(sk)),

and
sk+1 = PC(sk − λkA(tk)).

Modify the stepsize as follows:

λk+1 =


min

{
λk,

(2−
√
2−θ)µ∥sk−tk∥2+(2−

√
2−θ)µ∥sk+1−tk∥2

2
〈
A(sk)−A(tk), sk+1−tk

〉 }
if

〈
A(sk)−A(tk), sk+1 − tk

〉
> 0,

λk Otherwise.

Hence, the sequence {sk} converges weakly to s∗ ∈ Sol(A, C).

(ii) Let us define a mapping B : C → C as a κ-strict pseudocontraction if, according
to Browder and Petryshyn [7], there exists a constant κ ∈ (0, 1) satisfying the following
inequality:

(3.31) ∥Bt1 − Bt2∥2 ≤ ∥t1 − t2∥2 + κ∥(t1 − Bt1)− (t2 − Bt2)∥2 for all t1, t2 ∈ C.
Here, R is a bifunction defined as follows:

(3.32) R(t1, t2) = ⟨t1 − Bt1, t2 − t1⟩ for all t1, t2 ∈ C.
As established in [29], the expression (3.32) satisfies constraints (R1)-(R5), and the Lips-
chitz constants take values c1 = c2 = 3−2κ

2−2κ . The two main results are utilized to devise
two new methods for solving fixed-point problems using the formula (3.32).

Corollary 3.3. Let a mapping B : C → H be weakly continuous and a κ-strict pseudocontraction.
Choose λ1 > 0, s1 ∈ H, µ ∈ (0, 1), θ ∈ (0, 2−

√
2) with Sol(B, C) ̸= ∅. Evaluate

tk = PC
[
sk − λk(sk − B(sk))

]
.

Given sk, tk, and

Hk = {z ∈ E : ⟨(1− λk)sk + λkB(sk)− tk, z − tk⟩ ≤ 0}.
Evaluate

sk+1 = PHk

[
sk − λk(tk − B(tk))

]
,

and let

λk+1 =

min

{
λk,

(2−
√

2−θ)µ∥sk−tk∥2+(2−
√

2−θ)µ∥sk+1−tk∥2

2
〈
(sk−tk)−[B(sk)−B(tk)],sk+1−tk

〉 }
if
〈
(sk − tk) − [B(sk) − B(tk)], sk+1 − tk

〉
> 0,

λk else.

Then, the sequence {sk} converges weakly to s∗ ∈ Sol(B, C).

Corollary 3.4. Let a mapping B : C → H be weakly continuous and a κ-strict pseudocontraction.
Choose λ1 > 0, s1 ∈ H, µ ∈ (0, 1), θ ∈ (0, 2−

√
2) with Sol(B, C) ̸= ∅. Evaluate

tk = PC
[
sk − λk(sk − B(sk))

]
.

Evaluate
sk+1 = PC

[
sk − λk(tk − B(tk))

]
.

Evaluate

λk+1 =

min

{
λk,

(2−
√

2−θ)µ∥sk−tk∥2+(2−
√

2−θ)µ∥sk+1−tk∥2

2
〈
(sk−tk)−[B(sk)−B(tk)],sk+1−tk

〉 }
if
〈
(sk − tk) − [B(sk) − B(tk)], sk+1 − tk

〉
> 0,

λk else.

Then, the sequence {sk} converges weakly to s∗ ∈ Sol(B, C).
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4. NUMERICAL ILLUSTRATIONS

This section provides a detailed account of a series of numerical experiments conducted
to evaluate the effectiveness of the proposed methodologies. These experiments serve two
primary purposes: first, they offer valuable insights into the selection of optimal control
parameters; second, they provide empirical evidence showcasing the superiority of the
proposed approaches over those previously documented in the literature. All computa-
tional analyses were performed using MATLAB version 9.5 (R2018b) on a computational
platform featuring an Intel(R) Core(TM) i5-6200 Processor CPU, operating at a base fre-
quency of 2.30GHz (with a maximum turbo frequency of 2.40GHz), and equipped with
8.00 GB of RAM.

Example 4.1. The Nash-Cournot Oligopolistic Equilibrium model, outlined in [23], serves as the
basis for formulating the initial test problem. Specifically, in this context, we define the bifunction
R as:

R(s, t) = ⟨Ps+Qt+ c, t− s⟩.
Here, c ∈ RM , and the matrices P and Q are of size M ×M. Matrix P is symmetric and positive
semi-definite, while the difference matrix Q − P is symmetric and negative semi-definite. The
Lipschitz-like criteria are characterized by c1 = c2 = 1

2∥P −Q∥ (for further clarification, refer to
[23]).

Let us examine Example 4.1 to observe the numerical behavior of Algorithm 1 as the con-
trol parameter µ varies. This experimentation aids in identifying the optimal value for the po-
tential control parameter µ. The numerical investigation commences with the initialization of
s1 = (1, 1, · · · , 1), followed by setting M = 5, and defining the error term Dk = ∥sk − tk∥.
Below are the specifications for the matrices P and Q, as well as the vector c. Consider the matrices
P , Q, and c defined as follows:

P =


3.1 2 0 0 0
2 3.6 0 0 0
0 0 3.5 2 0
0 0 2 3.3 0
0 0 0 0 3

 Q =


1.6 1 0 0 0
1 1.6 0 0 0
0 0 1.5 1 0
0 0 1 1.5 0
0 0 0 0 2

 c =


1
−2
−1
2
−1

 .

Furthermore, let the set C ⊂ RM be defined as:

C := {s ∈ RM : −2 ≤ si ≤ 5}.

We present several numerical experiments based on Example 4.1 to assess the efficacy of
Algorithm 1 in terms of both execution time (t in seconds) and iteration count (k) required for
convergence. Our objective is to explore how the performance of Algorithm 3.1 is influenced
by variations in:

(i) The parameter µ (Experiment 1),
(ii) The parameter θ (Experiment 2), and

(iii) A comparative analysis of Algorithm 1 with existing methods (Experiment 3).

In Experiment 1, we investigate the effect of different values of µ on the algorithm’s performance.
Experiment 2 focuses on analyzing how adjustments to the parameter θ impact the behavior of
Algorithm 1. Finally, Experiment 3 involves comparing the performance of our algorithm with
other existing methods. Through these experiments, we aim to gain insights into the behavior and
effectiveness of Algorithm 1 under various parameter settings and in comparison to alternative
approaches.
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Experiment 1. (Impact of the parameter µ).
In this experiment, we investigate the influence of the parameter µ on the performance of Algo-

rithm 1, where the chosen parameters are Dk = ∥sk − tk∥, λ1 = 0.275, and θ = 0.16.
The numerical results obtained for five different initial points µ values are presented in Figure

1 and Table 1. Analysis of these results yields the following observations:
(i) The computational efficiency, as measured by the number of iterations required for conver-

gence, demonstrates sensitivity to the selection of µ. Specifically, Algorithm 1 exhibits an
increase in iteration count as µ approaches zero.

(ii) Additionally, the computational efficiency in terms of CPU time shows dependency on the
choice of µ. Algorithm 1 displays prolonged CPU time as µ tends to zero.

These findings suggest that the parameter µ significantly impacts both the convergence behavior
and computational cost of Algorithm 1. As µ decreases, the algorithm requires more iterations and
consumes more CPU time, indicating a trade-off between precision and computational resources.
Further investigation into optimal parameter selection may yield improvements in algorithmic
efficiency.

TABLE 1. Numerical data corresponding to Figure 1.

µ METHOD-1

(k) (t)

0.182 50 0.5283
0.393 50 0.53417
0.593 50 0.56618
0.754 50 0.5982
0.988 50 0.47054
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FIGURE 1. Numerical performance of Algorithm 1 with different values
of µ.

Experiment 2. (Impact of the parameter θ).
In Experiment 2, we investigate the influence of the parameter θ on the performance of Al-

gorithm 1. The parameters selected for this experiment are Dk = ∥sk − tk∥, λ1 = 0.12, and
µ = 0.55.

The numerical results obtained for five different initial points of θ are presented in Figure 2
and Table 2. Analysis of the graphical representation and the tabulated data yields the following
observations:
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(i) The computational efficiency, as indicated by the number of iterations, is notably affected by
the choice of θ. Specifically, a decrease in the value of θ leads to a reduction in the iteration
count for Algorithm 1.

(ii) Similarly, the computational efficiency in terms of CPU time exhibits dependency on the
parameter θ. Algorithm 1 demonstrates reduced CPU time as θ tends towards zero.

Table 2 provides the corresponding numerical data for the plotted results in Figure 2. Each row
corresponds to a different value of µ, while the columns represent the number of iterations (k) and
the elapsed time (t).

Figure 2 illustrates the numerical performance of Algorithm 1 with varying values of θ. The
left subplot demonstrates the relationship between the number of iterations and θ, while the right
subplot illustrates the impact of θ on the elapsed time.

These findings underscore the significance of parameter selection, particularly θ, in optimizing
the computational efficiency of the algorithm. Lower values of θ are associated with improved
performance metrics, such as reduced iteration counts and CPU time, highlighting its pivotal role
in algorithmic optimization.

TABLE 2. Numerical data corresponding to Figure 2.

µ METHOD-1

(k) (t)

0.54 50 0.431722100000000
0.46 50 0.432941200000000
0.33 50 0.437452300000000
0.18 50 0.514797300000000
0.05 50 0.429655900000000
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FIGURE 2. Numerical performance of Algorithm 1 with different values
of θ.

Experiment 3. (Algorithm 1 comparison with existing methods).
In Experiment 3, we conduct a numerical comparison of Algorithm 1 with previously estab-

lished methods using Example 4.1. The initial conditions for these numerical experiments are set
as s1 = (1, 1, · · · , 1), and the error term is defined as Dk = ∥sk − tk∥. Figure 3 present a compre-
hensive set of results for the initial 50 iterations. We outline the control settings for each method
as follows:
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• METHOD-1 (Algorithm 1):

λ1 = 0.275, µ = 0.55, θ = 0.05

• METHOD-2 (Algorithm 1 in [14]):

λ1 = 0.275, µ = 0.55

• METHOD-3 (Algorithm 2a in [23]):

α = 0.5, θ = 0.5, ρ = 1

• METHOD-4 (Algorithm 1 in [1]):

λk =
1

k
, α = 0.5, θ = 0.5, ρ = 1

Figure 3 presents the numerical results obtained from comparing Algorithm 1 with existing
methods. Analysis of both the graphs and the accompanying table leads to the following observa-
tions:

(i) Algorithm 1 consistently outperforms previously established algorithms in terms of the num-
ber of iterations required to converge.

(ii) Similarly, Algorithm 1 consistently outperforms previously established algorithms in terms
of the required CPU time in most cases, notably demanding less CPU time for convergence.

This comparison underscores the superior performance of Algorithm 1 over existing methods,
emphasizing its potential as an efficient optimization technique.
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FIGURE 3. Numerical performance of Algorithm 1 compared to other ex-
isting algorithms.

Example 4.2. Let A : R2 → R2 represent an operator defined as follows:

(4.33) A(s) =

(
0.5s1s2 − 2s2 − 107

−4s1 − 0.1s22 − 107

)
where

C = {s ∈ R2 : (s1 − 2)2 + (s2 − 2)2 ≤ 1}.
It is evident that A is Lipschitz continuous and pseudomonotone with L = 5. By setting the
bifunction as R(s, t) = ⟨A(s), t − s⟩ and c1 = c2 = 5

2 . In this experiment, we utilize the
same parameters as in Example 4.1. The numerical results for various initial values, such as
s1 = (1.5, 1.7)T , s1 = (2.0, 3.0)T , s1 = (1.0, 2.0)T , and s1 = (2.7, 2.6)T , are presented in
Figures 4-7 and summarized in Tables 3-4. The comparative findings are as follows:
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(i) Algorithm 1 consistently exhibits superior performance compared to previously existing al-
gorithms. It demonstrates advantages in terms of both the number of iterations required to
converge and the associated CPU time.

(ii) Interestingly, our analysis reveals that altering the initial points has a minimal impact on the
iteration count. However, it significantly affects the CPU time required for convergence. This
highlights the intricate relationship between initial conditions and computational efficiency
in iterative algorithms.

TABLE 3. Numerical data for Figures 4-7 in terms of the number of itera-
tions.

Number of iterations
s1 Algorithm 1 in [1] Algorithm 2a in [23] Algorithm 1 in [14] Algorithm 1
(1.5, 1.7)T 25 20 13 8
(2.0, 3.0)T 26 21 13 8
(1.0, 2.0)T 26 22 14 8
(2.7, 2.6)T 18 14 10 7

TABLE 4. Numerical data for Figures 4–7 in terms of elapsed time.

CPU time
s1 Algorithm 1 in [1] Algorithm 2a in [23] Algorithm 1 in [14] Algorithm 1
(1.5, 1.7)T 1.3488092 1.2253712 0.7397098 0.3190929
(2.0, 3.0)T 1.6837978 1.2216390 0.6241229 0.3730259
(1.0, 2.0)T 1.4884408 1.1326319 0.8129079 0.3580586
(2.7, 2.6)T 0.9886659 0.6064355 0.5215287 0.3997974
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FIGURE 4. Computational comparison of Algorithm 1 with s1 =
(1.5, 1.7)T .
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FIGURE 5. Computational comparison of Algorithm 1 with s1 =
(2.0, 3.0)T .
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FIGURE 6. Computational comparison of Algorithm 1 with s1 =
(1.0, 2.0)T .
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FIGURE 7. Computational comparison of Algorithm 1 with s1 =
(2.7, 2.6)T .
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5. CONCLUSIONS

The paper describes two explicit extragradient-like methods for solving an equilibrium
problem in a real Hilbert space. These methods use a pseudomonotone and a Lipschitz-
type bifunction. Furthermore, a new stepsize rule independent of Lipschitz-type param-
eter information has been established, and the convergence of the proposed methods has
been proven. Several experiments were carried out to demonstrate the numerical perfor-
mance of the proposed method and to allow comparisons to commonly used methods in
the literature.
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