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Characterizations of amenable gyrogroups related to
Tarski’s Theorem

JATURON WATTANAPAN AND TEERAPONG SUKSUMRAN

ABSTRACT. Amenable groups, the notion due to J. von Neumann and found responsible for the counter-
intuitive Banach–Tarski paradox, are groups that admit a left-invariant mean. In this article, we extend the
notion of amenability to gyrogroups, which are non-associative group-like structures. We study their elemen-
tary properties and use them to construct an example of infinite amenable gyrogroup. We also give a few
characterizations of amenable gyrogroups and extend Tarski’s Theorem to the case of gyrogroups.

1. INTRODUCTION

Amenable groups, the notion due to J. von Neumann and found responsible for the
counter-intuitive Banach–Tarski paradox, are groups that admit a left-invariant mean. De-
spite having its origin in measure theory, amenable groups have been studied in several
fields of mathematics, and now play an important role in many areas of mathematics such
as ergodic theory, harmonic analysis, representation theory, dynamical systems, geomet-
ric group theory, probability theory, and statistics, among others. We refer the reader
to [4,7,14,20] for more details on the subject. As for the recent progress on the subject see,
for example, [2, 5, 9, 15, 19].

Around 1990, via studying the parametrization of the Lorentz transformation group,
A. Ungar discovered an interesting mathematical structure, which is now called a gyro-
group. Gyrogroups have been proven to be closely connected with groups in several
ways, as various results on groups naturally extend to gyrogroups. For example, we
can use gyrogroups to regulate hyperbolic geometry just like we use groups to regu-
late Euclidean geometry; see, for instance, [21]. Lately, gyrogroups have been studied
from several perspectives such as algebraic and topological perspectives; see, for instance,
[3,6,8,11–13,16,18,22–24]. These works suggest that groups and gyrogroups have a strong
connection from various viewpoints. In addition, by studying gyrogroups one often gains
a better understanding of groups, and vice versa. For example, see Theorem 3.8 below.
It is a result obtained by trying to generalize Tarski’s theorem to gyrogroup’s case. How-
ever, Tarski’s theorem is not only applicable to gyrogroups, but also a wider classes of
actions.

In this work, we extend the notion of amenability to gyrogroups, study basic properties
of amenable gyrogroups, and give characterizations of amenable gyrogroups.

2. PRELIMINARIES

In this section, we give a brief review on terminology and facts that will be used in later
sections. See [10, 16, 21] for more details.
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2.1. Basic knowledge of gyrogroups. Recall that a groupoid (G,⊕) consists of a non-
empty set G, together with a binary operation ⊕ on G. We denote the group of auto-
morphisms of (G,⊕) by Aut (G,⊕) or just Aut (G) if the operation is clear.

Definition 2.1. A groupoid (G,⊕) is called a gyrogroup if it satisfies the following axioms:
(1) there exists an element e ∈ G such that e⊕ a = a for all a ∈ G; (left identity)
(2) for each a ∈ G, there exists an element b ∈ G such that b⊕ a = e; (left inverse)
(3) for all a, b ∈ G, there is an automorphism gyr[a, b] ∈ Aut (G) such that

(2.1) a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c

for all c ∈ G; and (left gyroassociative law)
(4) for all a, b ∈ G, gyr [a⊕ b, b] = gyr [a, b]. (left loop property)

We remark that the axioms in Definition 2.1 imply the right counterparts: a right iden-
tity exists, a right inverse exists, and the right gyroassociative law and the right loop
property are satisfied. In fact, any gyrogroup has a unique two-sided identity, denoted by
e, and an element a of the gyrogroup has a unique two-sided inverse, denoted by	a. The
automorphism gyr [a, b] is called the gyroautomorphism generated by a and b. Notice that
every group is a gyrogroup with all of its gyroautomorphisms being the identity function.

The gyrogroup cooperation of a gyrogroup G, denoted by �, is defined by the formula

a� b = a⊕ gyr[a,	b]b, a, b ∈ G.
For elements a, b in a gyrogroup G, we define a	 b = a⊕ (	b) and a� b = a� (	b).

Due to lacking of associativity, the right cancellation law did not holds for gyrogroups.
That is, if a and b are elements of a gyrogroup, we might have (b⊕ a)	 a 6= b. However, if
one of the operation involved is the gyrogroup cooperation, the right cancellation law is
restored, as shown in the following proposition.

Proposition 2.1 (see Table 2.2 in page 50 of [21]). Let G be a gyrogroup, and let a, b, c ∈ G.
(1) 	a⊕ (a⊕ b) = b. (left cancellation)
(2) (b⊕ a) � a = b. (right cancellation)
(3) (b� a)	 a = b. (right cancellation)
(4) 	(a⊕ b) = gyr[a, b](	b	 a). (gyrosum inversion law)
(5) (a⊕ b)⊕ c = a⊕ (b⊕ gyr[b, a]c). (right gyroassociative law)

For an element a of a gyrogroup G, we define the left gyrotranslation by a, denoted by
La, to be the function from G to G given by La(x) = a⊕ x for all x ∈ G. Note that all left
gyrotranslations are bijective, and L−1

a = L	a according to the left cancellation.
Now, we give a few facts related to gyroautomorphisms. The gyrator identity given

in the following theorem shows that the gyroautomorphism generated by a and b is com-
pletely determined by a and b.

Theorem 2.1 (see Table 2.2 in page 50 of [21]). Let a, b, and c be elements of a gyrogroup G.
Then,

(1) gyr[a, b]c = 	(a⊕ b)⊕ (a⊕ (b⊕ c)). (gyrator identity)
(2) gyr−1[a, b] = gyr[b, a]. (inversive symmetry)
(3) gyr [	gyr [a, b]b, a] = gyr [a, b].

The next proposition follows directly from the gyroassociative laws. Here, if A and B
are subsets of a gyrogroup G, then A⊕B is defined as A⊕B = {a⊕ b | a ∈ A, b ∈ B}.

Proposition 2.2. Let G be a gyrogroup. If V is a subset of G such that gyr[a, b](V ) = V for all
a, b ∈ G, then

A⊕ (B ⊕ V ) = (A⊕B)⊕ V
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for all subsets A and B of G.

Definition 2.2. Let G be a gyrogroup. A non-empty subset H of G is a subgyrogroup if H
is a gyrogroup under the operation inherited from G, and the restriction of gyr[a, b] to H
becomes an automorphism of H for all a, b ∈ H . A subgyrogroup H of a gyrogroup G is
an L-subgyrogroup if gyr [a, h](H) = H for all a ∈ G, h ∈ H .

Proposition 2.3. A non-empty subset H of a gyrogroup G is a subgyrogroup if and only if 	a ∈
H and a⊕ b ∈ H for all a, b ∈ H .

For a subgyrogroup H of a gyrogroup G, set G/H = {a ⊕ H | a ∈ G}, where a ⊕ H
is called a left coset defined by a ⊕ H = {a ⊕ h | h ∈ H}. We remark that a generic
subgyrogroup H of a gyrogroup G does not partition G into left cosets. However, if H is
an L-subgyrogroup of G, then G/H forms a partition of G, and in particular, two distinct
left cosets of H are disjoint (see Theorem 27 of [16]).

We now proceed with the construction of quotient gyrogroups. Let G and H be gy-
rogroups, and let φ : G → H be a homomorphism. Define the kernel of φ to be the set
kerφ = {a ∈ G | φ(a) = e}. It can be checked that kerφ is a subgyrogroup of G.

Definition 2.3. A subgyrogroup N of a gyrogroup G is normal in G if it is the kernel of a
homomorphism defined on G.

Observe that ifN is a normal subgyrogroup of a gyrogroupG, thenN is an L-subgyrogroup
of G. In fact, gyr [a, b](N) = N for all a, b ∈ G.

Theorem 2.2 (Theorem 29, [16]). If N is a normal subgyrogroup of a gyrogroup G, then the
collection

G/N = {a⊕N | a ∈ G}
forms a gyrogroup under the operation ⊕ defined by

(a⊕N)⊕ (b⊕N) = (a⊕ b)⊕N
for all a, b ∈ G. The gyrogroup G/N is called a quotient gyrogroup.

2.2. Notations in l1(X) and l∞(X) spaces. Let X be a non-empty set. For a function
f : X → [0,∞], define∑

x∈X
f(x) = sup

{∑
x∈A

f(x) | A is a finite subset of X

}
.

Also, define

l1(X) =

{
f : X → R |

∑
x∈X
|f(x)| <∞

}
,

and define a function ‖ · ‖1 : l1(X)→ R by the formula

‖f‖1 =
∑
x∈X
|f(x)|

for all f ∈ l1(X).
Furthermore, we define

l∞(X) = {f : X → R | f is bounded},
and define a function ‖ · ‖∞ : l∞(X)→ R by the formula

‖f‖∞ = sup{|f(x)| | x ∈ X}.
Then, (l1(X), ‖ · ‖1) and (l∞(X), ‖ · ‖∞) are Banach spaces. We remark that the subspace
of l∞(X) spanning by {1A | A ⊆ X} is dense in l∞(X).
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2.3. Means and finitely additive probability measures.

Definition 2.4. Let X be a non-empty set. A function µ : P(X) → [0, 1] is called a finitely
additive probability measure if

(1) µ(A ∪B) = µ(A) + µ(B) whenever A,B ∈ P(X) are disjoint;
(2) µ(X) = 1.

We denote the set of all finitely additive probability measures on X by PM(X).

Definition 2.5. Let X be a non-empty set. A mean on X is a linear functional m in l∞(X)∗

such that
(1) m(1X) = 1;
(2) m(f) ≥ 0 whenever f ≥ 0 and f ∈ l∞(X).

We denote the set of all means on X by M(X).
By identifying any subsetA ofX with its characteristic function 1A, we obtain a one-to-

one correspondence between M(X) and PM(X) as described in the following theorem.

Theorem 2.3 (Theorem A.4 of [10]). The function ·̂ : M(X)→ PM(X), defined by

m̂(A) = m(1A)

for all A ∈ P(X) and for all m ∈M(X), is bijective.

Let X be a non-empty set, and define

Prob(X) = {µ ∈ l1(X) | ‖µ‖1 = 1 and µ ≥ 0}.
Also, define a function l1(X)→ l∞(X)∗ by the formula

f 7→ mf , where mf (g) =
∑
x∈X

f(x)g(x) for all g ∈ l∞(X).

Note that the function f 7→ mf is injective, and it sends f ∈ Prob(X) to mf ∈M(X).

Theorem 2.4 (Fact A.3 (iv) of [10]). The set Prob(X) is weak*-dense in M(X).

Define a function l1(X)∗ → l∞(X) by the formula

φ 7→ nφ, where nφ(x) = φ(1x) for all x ∈ X.

Theorem 2.5. Let f ∈ l1(X), and let φ ∈ l1(X)∗. Then, φ(f) = mf (nφ).

3. MAIN RESULTS

3.1. Basic properties of amenable gyrogroups. In this section, we extend the concept
of amenabily for gyrogroups, and prove some elementary properties of amenable gy-
rogroups.

Let G be a gyrogroup. A finitely additive probability measure µ on G is said to be
left-invariant if µ(g ⊕A) = µ(A) for all A ⊆ G and for all g ∈ G.

Definition 3.6. LetG be a gyrogroup. We say thatG is amenable ifG admits a left-invariant
finitely additive probability measure.

Theorem 3.6. Let G be a gyrogroup.
(1) Finite gyrogroups are amenable.
(2) Any non-zero measure subgyrogroup of an amenable gyrogroup is amenable.
(3) If N is a normal subgyrogroup of G and G is amenable, then G/N is amenable.
(4) If N is a normal subgyrogroup of G such that N and G/N are amenable, then G is

amenable.
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(5) Let {Gi}i∈I be a collection of amenable subgyrogroups of a gyrogroupH . If for all i, j ∈ I ,
there is an index k ∈ I such that Gi, Gj ⊆ Gk, then the gyrogroup G =

⋃
i∈I

Gi is

amenable.

Proof.

(1) The function defined by the formula µ(A) = |A|
|G| for all A ⊆ G is a left-invariant

finitely additive probability measure on G.
(2) Suppose that G is an amenable gyrogroup with left-invariant finitely additive

probability measure µ. Let H be a subgyrogroup of G with µ(H) > 0. Then,
the function ν : P(H)→ [0, 1], defined by the formula

ν(A) =
µ(A)

µ(H)

for all A ∈ P(H), is a left-invariant finitely additive probability measure on H .
(3) Suppose that G is an amenable gyrogroup with left-invariant finitely additive

probability measure µ. Let N be a normal subgyrogroup of G. Then, the func-
tion ν : P(G/N)→ [0, 1], defined by the formula

ν(A) = µ
(⋃

A
)

for all A ∈ P(G/N), is a finitely additive probability measure on G/N . It follows
from Proposition 2.2 that ν is left-invariant.

(4) Let ν1 and ν2 be left-invariant finitely additive probability measures on N and
G/N , respectively. For each A ⊆ G, define fA : G→ [0, 1] by the formula

fA(x) = ν1(N ∩ (	x⊕A))

for all x ∈ G. Let x, y ∈ G such that x ⊕ N = y ⊕ N . Then, 	y ⊕ x = n ∈ N . It
follows that

	y ⊕A = (n� x)⊕A
= (n� (	x))⊕A
= (n⊕ gyr [n, x](	x))⊕A
= n⊕ (gyr [n, x](	x)⊕ gyr [gyr [n, x](	x), n](A))

= n⊕ (gyr [n, x](	x)⊕ gyr [	gyr [n, x]x, n](A))

(?)
= n⊕ (gyr [n, x](	x)⊕ gyr [n, x](A))

= n⊕ gyr [n, x](	x⊕A),

where (?) follows from part (3) of Theorem 2.1. Then,

fA(y) = ν1(N ∩ (	y ⊕A))

= ν1(N ∩ (n⊕ gyr [n, x](	x⊕A))

= ν1(n⊕ (N ∩ (gyr [n, x](	x⊕A)))

= ν1(N ∩ (gyr [n, x](	x⊕A))

= ν1(gyr [n, x](N ∩ (	x⊕A)))

= ν1(N ∩ (	x⊕A))

= fA(x).

This shows that the function f̂A : G/N → [0, 1], defined by the formula

f̂A(x⊕N) = fA(x)
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for all x ∈ G, is well-defined. Define a function µ : P(G)→ R by the formula

µ(A) =

∫
f̂Adν2

for all A ∈ P(G) (see, for example, [1] for a treatment on integration with respect
to finitely additive measures). Since 0 ≤ f̂A ≤ 1 for all A ⊆ G, µ is a function
from P(G) to [0, 1]. Moreover, µ(G) =

∫
f̂Gdν2 =

∫
1G/Ndν2 = 1. To see finite

additivity, let A and B be disjoint subsets of G. Then, for each x ∈ G,

fA∪B(x) = ν1(N ∩ (	x⊕ (A ∪B))) = ν1((N ∩ (	x⊕A)) ∪ (N ∩ (	x⊕B)))

= ν1(N ∩ (	x⊕A)) + ν1(N ∩ (	x⊕B))

= fA(x) + fB(x).

It follows that f̂A∪B = f̂A + f̂B , and so

µ(A ∪B) =

∫
f̂A∪Bdν2 =

∫
f̂A + f̂Bdν2 =

∫
f̂Adν2 +

∫
f̂Bdν2 = µ(A) + µ(B).

Finally, let x ∈ G, and let A ⊆ G. Then, for each y ∈ G,

fx⊕A(y) = ν1(N ∩ (	y ⊕ (x⊕A)))

= ν1(N ∩ ((	y ⊕ x)⊕ gyr [	y, x](A))

= ν1(N ∩ ((	gyr [	y, x](	x⊕ y))⊕ gyr [	y, x](A))

= ν1(N ∩ (	(	x⊕ y)⊕A))

= fA(	x⊕ y).

It follows that

f̂x⊕A(y ⊕N) = fx⊕A(y) = fA(	x⊕ y) = f̂A((	x⊕N)⊕ (y ⊕N))

= f̂A ◦ L	x⊕N (y ⊕N).

This implies that µ(x⊕A) =
∫
f̂x⊕Adν2 =

∫
f̂A ◦ L	x⊕Ndν2 =

∫
f̂Adν2 = µ(A).

(5) For each i ∈ I , let µi denote a left-invariant finitely additive probability measure
on Gi, and define

Mi = {µ ∈ PM(G) | µ(x⊕A) = µ(A) for all a ∈ Gi and A ∈ P(G)}.

Notice that Mi is non-empty since the function A 7→ µi(A ∩ Gi) is in Mi. Recall
that a net (fi)i∈J in [0, 1]P(G) converges to a function f ∈ [0, 1]P(G) if and only if
fi(A)→ f(A) for allA ∈ P(G). It follows thatMi is closed in [0, 1]P(G) for all i ∈ I .
Observe that if Gi, Gj ⊆ Gk, then Mk ⊆ Mi ∩Mj . Thus, the collection {Mi}i∈I
has the finite intersection property. Since [0, 1]P(G) is compact by Tychonoff’s The-
orem, there exists an element µ ∈

⋂
i∈I

Mi. This proves that G is amenable. �

It is well known that every subgroup of an amenable group is amenable, and every
abelian group is amenable. Unfortunately, it is not clear whether these results are true in
the case of gyrogroups. Therefore, we propose the following questions.

Question. Is every subgyrogroup of an amenable gyrogroup amenable?

Question. Is every gyrocommutative gyrogroup amenable?

We conclude this section with an example of an infinite amenable gyrogroup.
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Example 3.1. Let G be any non-trivial finite gyrogroup. For each n ∈ N, define

Gn =

n∏
i=1

G×
∞∏

i=n+1

{e}.

Then, Gn is a finite subgyrogroup of the direct product
∞∏
i=1

G. Now, the indexed collection

{Gn}n∈N forms a direct system of amenable gyrogroups whose direct union is⋃
n∈N

Gn =

{
(xn)n∈N ∈

∞∏
i=1

G | (xn)n∈N has finite non-identity terms

}
,

which is an amenable gyrogroup by part (5) of Theorem 3.6.

3.2. Tarski’s Theorem for gyrogroups. Suppose that a group G acts on a non-empty set
X . Let E be a subset of X . We say that E is G-paradoxical if there are pairwise disjoint
subsets A1, A2, . . . , An, B1, B2, . . . , Bm of E and elements g1, g2, . . . , gn, h1, h2, . . . , hm of
G such that

E =

n⋃
i=1

gi ·Ai =

m⋃
i=1

hi ·Bi.

Theorem 3.7 (Tarski’s Theorem). Suppose that a group G acts on a non-empty set X , and let
E ⊆ X . Then, there is a finitely additive G-invariant measure µ : P(X) → [0,∞] with the
property that µ(E) = 1 if and only if E is not G-paradoxical.

Recall that every group acts on itself by left-translation. This leads to an immediate con-
sequence of Tarski’s Theorem: a groupG is amenable if and only ifG is notG-paradoxical.
Although each gyrogroup does not act on itself by left-gyrotranslation in general (see, for
instance, [17]), it does admit a weaker action on itself. This action is strong enough to
allow us to generalize Tarski’s Theorem and its consequence to gyrogroups.

Definition 3.7. Let G be a gyrogroup, and let X be a non-empty set. A gyrogroup semi-
action of G on X is a function · : G×X → X such that the following properties hold:

(1) e · x = x for all x ∈ X .
(2) 	g · (g · x) = x for all g ∈ G, x ∈ X .

A few concrete examples of gyrogroup semi-actions are given as follows.

Example 3.2. Let G be an arbitrary gyrogroup.
(1) Then, the map defined by g · x = g ⊕ x for all g, x ∈ G is a gyrogroup semi-action

of G on itself.
(2) Let X be a set of functions from G to a set such that if f ∈ X , then f ◦ La ∈ X for

all a ∈ G (for example, X can be chosen to be Sym (G), l∞(G), or Prob(G)). Then,
the map defined by a · f = f ◦ La for all a ∈ G, f ∈ X is gyrogroup semi-action of
G on X .

Observe that every gyrogroup semi-action of G on X gives rise to a function φ : G →
Sym(X) defined by

φ(g)(x) = g · x
for all g ∈ G and for all x ∈ X . This function satisfies the property that (1) φ(e) = idX and
(2) φ(	g) = (φ(g))−1 for all g ∈ G. Clearly, any function from G to Sym (X) satisfying the
above properties also gives rise to a gyrogroup semi-action of G on X . From now on, we
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will simply write g instead of φ(g), and let 〈G〉 denote the subgroup of Sym(X) generated
by φ(G). Then, it follows that

〈G〉 = {g1 ◦ g2 ◦ · · · ◦ gn | g1, g2, . . . , gn ∈ G,n ∈ N}.
Note that the group 〈G〉 acts on X in the usual way.

Theorem 3.8. [Tarski’s Theorem for gyrogroup semi-actions] Suppose that a gyrogroup G semi-
acts on a setX , and letE ⊆ X . Then, there is a finitely additiveG-invariant measure µ : P(X)→
[0,∞] with the property that µ(E) = 1 if and only if E is not 〈G〉-paradoxical.

Proof. It is easy to see that if µ : P(X)→ [0,∞] is a finitely additive measure with µ(E) =
1, then µ is G-invariant if and only if µ is 〈G〉-invariant. Hence, the theorem follows
directly from Tarski’s Theorem. �

We end this section with a few remarks on the notion of gyrogroup semi-actions. Sup-
pose that a gyrogroupG semi-acts on a setX . In contrast to the case of gyrogroup actions,
the relation

x ∼ y ⇐⇒ y = g · x for some element g ∈ G
does not define an equivalence relation on X . We can remedy the situation by defining
x ∼ y if and only if there are element g1, g2, . . . , gn ∈ G such that

y = gn · (· · · (g2 · (g1 · x)) · · · ).
It is easy to see that ∼ is an equivalence relation on X . Now, we can define the orbit of
x ∈ X , written orb(x), to be the equivalence class of x under ∼. However, the orbit of x
we have just defined is actually the same thing as the orbit of x induced by the action of
〈G〉 on X .

Example 3.3. The group R semi-acts on l∞(R), the group of real-valued bounded func-
tions on R, by defining

a · f =


f ◦ La+1 if a > 0

f if a = 0

f ◦ La−1 if a < 0

for all a ∈ R and for all f ∈ l∞(R). For each real number x, let bxce denote the biggest
even number that less than or equal to x. Define a function f : R→ R by the formula

f(x) = x− bxce.
Clearly, f is bounded on R. Moreover, f is a periodic function with period 2. It follows
that 1 · f = f = 3 · f , but (1 + 3) · f 6= f . This shows that the set {a ∈ R | a · f = f} is not a
subgroup of R.

The next example demonstrates that the Orbit-Stabilizer Theorem (cf. Theorem 3.9
of [17]) cannot be generalized to the case of gyrogroup semi-actions, at least not in an
obvious way.

Example 3.4. Consider the group of integers modulo 10, denoted by Z10. The group Z10

semi-acts on the set of real-valued functions on Z10 by the formula

a · f =

{
f if a = 0

f ◦ La+5 if a 6= 0.

Then,
orb(10) = {10, 11, . . . , 19},

{a · 10 | a ∈ Z10} = orb(10) \ {15},
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and
{a ∈ Z10 | a · 10 = 10} = {10, 15}.

Here, 1a is the characteristic function of {a}.

3.3. Characterizations of amenable gyrogroups. In this section, we give a few character-
izations of amenability on gyrogroups. Recall that for each function f with a gyrogroup
G as its domain, we define a · f to be the function f ◦ La for all a ∈ G.

Definition 3.8. A mean m on a gyrogroup G is said to be left-invariant if

m(f ◦ La) = m(f)

for all f ∈ l∞(G) and for all a ∈ G.

Theorem 3.9. Let G be a gyrogroup. Then, the following statements are equivalent:
(1) G is amenable.
(2) G is not 〈G〉-paradoxical.
(3) G admits a left-invariant mean.
(4) (Reiter’s condition) For each finite subsetE ofG and for each ε > 0, there exists a function

ν ∈ Prob(G) such that ‖s · ν − ν‖1 ≤ ε for all s ∈ E.
(5) (Fφlner’s condition) For each finite subset E of G and for each ε > 0, there exists a non-

empty finite subset F of G such that

|(g ⊕ F )∆F | ≤ ε|F |
for all g ∈ E.

Proof. The equivalence of (1) and (2) follows from Tarski’s Theorem for gyrogroup semi-
actions.

(1) =⇒ (3): Let µ be a left-invariant finitely additive probability measure on G. By
Theorem 2.3, there is a mean m ∈M(G) such that

µ(A) = m(1A)

for all A ⊆ G. It follows that for each g ∈ G,

m(1A ◦ Lg) = m(1	g⊕A) = µ(	g ⊕A) = µ(A) = m(1A).

It follows that m(f ◦ Lg) = m(f) for all f ∈ E = span({1A | A ⊆ X}) and for all g ∈ G.
Suppose that f ∈ l∞(X). Since E is dense in l∞(X), there is a sequence (fn)n∈N in E such
that fn → f . It can be seen that fn ◦ Lg → f ◦ Lg for all g ∈ G. Thus,

m(f) = lim
n→∞

m(fn) = lim
n→∞

m(fn ◦ Lg) = m(f ◦ Lg)

for all g ∈ G. This shows that m is a left-invariant mean on G.
(3) =⇒ (4): Let µ be a left-invariant mean on G. Suppose that E is a finite subset of G

and ε > 0. Since Prob(G) is weak*-dense in M(G), there exists a net (µi)i∈I in Prob(G)
such that mµi

weak*-converges to µ. Then, for each s ∈ G, ms·µi−µi
weak*-converges to

0 in l∞(G)∗. It follows from Theorem 2.5 that s · µi − µi weakly converges to 0 in l1(G).
This means that the weak closure of the set{⊕

s∈E
s · ν − ν | ν ∈ Prob(X)

}
in
⊕
s∈E

l1(G) contains 0, where
⊕
s∈E

l1(G) is equipped with the maximum norm given by∥∥∥∥⊕
s∈E

νs

∥∥∥∥
max

= max
s∈E
‖νs‖1. By definition, this weak closure is also norm closed. Thus, there

exists a function ν ∈ Prob(G) such that ‖s · ν − ν‖1 ≤ ε for all s ∈ E.
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(4) =⇒ (5): Let E be a finite subset of G, and let ε > 0.Without loss of generality, we
may assume that E is symmetric. Suppose that ν ∈ Prob(G) with ‖s · ν − ν‖1 ≤ ε

2|E| for
all s ∈ E. Observe that if f, h ∈ l1(G) with 0 ≤ f, h ≤ 1, then for each t ∈ G,

|f(t)− h(t)| =
∫ 1

0

|1{f>r}(t)− 1{h>r}(t)|dr,

where {f > r} = {x ∈ G | f(x) > r}. It follows that

‖s · ν − ν‖1 =
∑
t∈G
|s · ν(t)− ν(t)|

=
∑
t∈G

∫ 1

0

|1{s·ν>r}(t)− 1{ν>r}(t)|dr

=

∫ 1

0

∑
t∈G
|1{s·ν>r}(t)− 1{ν>r}(t)|dr

=

∫ 1

0

∑
t∈G
|1{s·ν>r}∆{ν>r}(t)|dr

=

∫ 1

0

|{s · ν > r}∆{ν > r}|dr

=

∫ 1

0

| 	 s⊕ {ν > r}∆{ν > r}|dr.

Consider∫ 1

0

∑
s∈E
| 	 s⊕ {ν > r}∆{ν > r}|dr =

∑
s∈E

∫ 1

0

| 	 s⊕ {ν > r}∆{ν > r}|dr

=
∑
s∈E
‖s · ν − ν‖1

< ε

= ε
∑
t∈G
|ν(t)|

= ε
∑
t∈G

∫ 1

0

|1{ν>r}(t)− 1{0>r}(t)|dr

= ε
∑
t∈G

∫ 1

0

|1{ν>r}(t)− 1∅(t)|dr

= ε
∑
t∈G

∫ 1

0

|1{ν>r}(t)|dr

= ε

∫ 1

0

∑
t∈G
|1{ν>r}(t)|dr

= ε

∫ 1

0

|{ν > r}|dr.

It is easy to see that there exists a number r ∈ (0, 1) such that {ν > r} is a non-empty finite
set, and ∑

s∈E
| 	 s⊕ {ν > r}∆{ν > r}| ≤ ε|{ν > r}|.
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This shows that
| 	 s⊕ {ν > r}∆{ν > r}| ≤ ε|{ν > r}|

for all s ∈ E.
(5) =⇒ (1): For ε > 0 and a symmetric finite subset E of G, define

ME,ε = {µ ∈ PM(G) | |µ(A)− µ(g ⊕A)| ≤ ε for all g ∈ E,A ⊆ G}.
We will show that eachME,ε is non-empty and closed in [0, 1]P(G), and the collection of
suchME,ε has the finite intersection property. Thus, by compactness of [0, 1]P(G), there
exists an element µ in

⋂
ε>0,E symmetric finite

ME,ε. The function µ is a left-invariant finitely

additive probability measure on G.

Claim. ME,ε is closed in [0, 1]P(G).

Proof of the claim. Let (µi)i∈I be a net inME,ε that converges to µ ∈ [0, 1]P(G). This means
that µi(A)→ µ(A) for all A ∈ P(G). It follows that µ ∈ME,ε.

Claim. ME,ε is non-empty.

Proof of the claim. Let F be a non-empty finite subset of G such that

|(g ⊕ F )∆F | ≤ ε|F |
for all g ∈ E. Define µ : P(G)→ [0, 1] by the formula

µ(A) =
|A ∩ F |
|F |

for all A ∈ P(G). It is easy to see that µ ∈ PM(G). Now, let g ∈ E, and let A ∈ P(G).
Consider the case when |A ∩ F | ≥ |(g ⊕A) ∩ F |. Since

g ⊕ (A ∩ F ) = ((g ⊕ (A ∩ F )) ∩ F ) ∪ ((g ⊕ (A ∩ F )) \ F )

⊆ ((g ⊕A) ∩ F ) ∪ ((g ⊕ F ) \ F )

⊆ ((g ⊕A) ∩ F ) ∪ ((g ⊕ F )∆F )

and

|A ∩ F | = |g ⊕ (A ∩ F )|
≤ |(g ⊕A) ∩ F |+ |(g ⊕ F )∆F |
≤ |(g ⊕A) ∩ F |+ ε|F |,

it follows that 0 ≤ |A ∩ F | − |(g ⊕ A) ∩ F | ≤ ε|F |. Suppose that |(g ⊕ A) ∩ F | ≥ |A ∩ F |.
Since

	g ⊕ ((g ⊕A) ∩ F ) = ((	g ⊕ ((g ⊕A) ∩ F )) ∩ F ) ∪ ((	g ⊕ ((g ⊕A) ∩ F )) \ F )

⊆ ((	g ⊕ (g ⊕A)) ∩ F ) ∪ ((	g ⊕ F ) \ F )

⊆ (A ∩ F ) ∪ ((	g ⊕ F )∆F )

and

|(g ⊕A) ∩ F | = | 	 g ⊕ ((g ⊕A) ∩ F )|
≤ |A ∩ F |+ |(	g ⊕ F )∆F |
≤ |A ∩ F |+ ε|F |,

it follows that 0 ≤ |(g ⊕A) ∩ F | − |A ∩ F | ≤ ε|F |. Therefore, |µ(A)− µ(g ⊕A)| ≤ ε.
This shows that the collection {ME,ε | ε > 0, E is a symmetric finite subset of G} has

the finite intersection property becauseME1∪E2,min{ε1,ε2} ⊆ ME1,ε1 ∩ME2,ε2 whenever
E1 and E2 are symmetric finite subsets of G and ε1, ε2 > 0. This completes the proof. �
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