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Approximation by polynomials with constant coefficients
and the Thresholding Greedy Algorithm

MIGUEL BERASATEGUI 1, PABLO M. BERNÁ 2 , AND DAVID GONZÁLEZ3

ABSTRACT. Greedy bases are those bases where the Thresholding Greedy Algorithm (introduced by S. V.
Konyagin and V. N. Temlyakov) produces the best possible approximation up to a constant. In 2017, P. M. Berná
and Ó. Blasco gave a characterization of these bases using polynomials with constant coefficients. In this paper,
we continue this study improving some optimization problems and extending some results to the context of
quasi-Banach spaces.

1. INTRODUCTION

Since 1999, one of the most important algorithms in the field of non-linear approxi-
mation theory in quasi-Banach spaces is the Thresholding Greedy Algorithm (Gm)m∈N,
where, for a given element f in the space X, the algorithm selects the largest coefficients
of f (in modulus) respect to a given basis (xj)∞j=1 in the space. This algorithm was intro-
duced by S. V. Konyagin and V. N. Temlyakov in [13] and the convergence of the TGA
has been extensively studied from different perspectives by various researchers, such as
F. Albiac, J. L. Ansorena, D. Kutzarova, N. J. Kalton, S. J. Dilworth and P. Wojtaszczyk
([4, 10, 11, 16]), among others. Thanks to these studies, in the literature we can find the so
called greedy-like bases, that is, bases where the TGA converges in some way.

One of the most important contributions to the theory of greedy-like bases was intro-
duced in [13], where the authors established the notion of a greedy basis as the one for
which the TGA produces the best possible approximation up to a constant, that is, for
every f ∈ X and m ∈ N,

∥f −Gm(f)∥ ≈ inf {∥f − ∑
n∈A

anxn∥ ∶ ∣A∣ ≤m, an ∈ C ∀n ∈ A} .(1.1)

In [7], P. M. Berná and Ó. Blasco proved an equivalent version of greediness showing that
a basis is greedy if and only if for every f ∈ N and m ∈ N,

∥f −Gm(f)∥ ≲ inf

⎧⎪⎪⎨⎪⎪⎩

XXXXXXXXXXX
f − ∑

j∈A

αxj

XXXXXXXXXXX
∶ α ∈ C, ∣A∣ ≤m

⎫⎪⎪⎬⎪⎪⎭
,(1.2)

The element y = ∑j∈A αxj is called a polynomial with constant coefficients.
In this paper, we further advance the theory initiated by P. M. Berná and Ó. Blasco.

Specifically, we extend the theory of [7] to the context of quasi-Banach spaces, examining
whether the characterizations of greedy-like bases using polynomials of constant coeffi-
cients are applicable in this setting. Furthermore, we aim to relax the condition (1.2) even
further by proving that a basis is greedy if and only if (1.2) is satisfied for a specific value
of α.
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The structure of the paper is as follows: in Section 2, we introduce the main definitions
that we use and the main results that we prove. In Section 3, we prove some techincal
results concerning some properties about symmetry and unconditionality, where respect
to the last one, we provide a new characterization in terms of elements with possitive
coefficients. In Sections 4 and 5, we prove Theorems 2.3 and 2.4 where we characterize
greediness and almost-greediness in terms of polynomials of constant coefficients with α
fixed.

2. NOTATION AND MAIN DEFINITIONS

A quasi-norm on a vector space X over F = R or C is a map ∥ ⋅ ∥ ∶ X → [0,+∞) verifying
the following three conditions:

N1) ∥f∥ ≥ 0 for all f ≠ 0 and ∥f∥ = 0 if and only if f = 0,
N2) ∥tf∥ = ∣t∣∥f∥ for all t ∈ F and all f ∈ X,
N3) there is c > 0 such that for all f, g ∈ X, ∥f + g∥ ≤ c(∥f∥ + ∥g∥).

Then, it is well known that the collection

{f ∈ X ∶ ∥f∥ < 1

n
} , n ∈ N,

is a base of neighbourhoods of zero, so the quasi-norm induces a metrizable linear topol-
ogy and if X is complete, we say that (X, ∥ ⋅ ∥) is a quasi-Banach space.

Given 0 < p ≤ 1, we remind that a map ∥ ⋅ ∥ ∶ X → [0,+∞) is a p-norm if the map verifies
the conditions N1), N2) and

N4) for all f, g ∈ X, ∥f + g∥p ≤ ∥f∥p + ∥g∥p.
Of course, N4) implies N3) with c = 21/p−1 and every quasi-Banach space whose quasi-
norm is a p-norm is called a p-Banach space and thanks to the Aoiki-Rolewicz’s Theory
(see [5, 15]), every quasi-Banach space becomes p-Banach under a suitable renorming.

In the case of p-Banach spaces, we define the following geometrical constants

Ap ∶= (2p − 1)−1/p(2.3)

and

Bp ∶=
⎧⎪⎪⎨⎪⎪⎩

21/pAp if F = R,
41/pAp if F = C.

(2.4)

The following is a useful result from [3] that allows us to circumvent in some context
the lack of convexity when 0 < p < 1.

Lemma 2.1. [3, Corollaries 2.3, 2.4] Let X be a p-Banach space for some 0 < p ≤ 1. Let (aj)j∈A
be any collection of scalars in F and (fj)j∈A any collection of vectors in X with A ⊂ N a finite set.
Then:

XXXXXXXXXXX
∑
j∈A

ajfj

XXXXXXXXXXX
≤Bpmax

j∈A
∣aj ∣max

B⊂A

XXXXXXXXXXX
∑
j∈B

fj

XXXXXXXXXXX
;

XXXXXXXXXXX
∑
j∈A

ajfj

XXXXXXXXXXX
≤Apmax

j∈A
∣aj ∣ sup

⎧⎪⎪⎨⎪⎪⎩

XXXXXXXXXXX
∑
j∈A

εjfj

XXXXXXXXXXX
∶ ∣εj ∣ = 1

⎫⎪⎪⎬⎪⎪⎭
.

Now, we consider that we have a basis X = (xn)n∈N in a quasi-Banach space X over
the field F = R or F = C, that is, X is a collection of elements of the space satisfying the
following conditions:

● [xn ∶ n ∈ N] = X, where [E] denotes the closure of the linear span generated by the
elements of the subspace E ⊂ X;
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● there is a unique sequence of biorthogonal functions X ∗ = (x∗n)n∈N such that
x∗n(xm) = δn,m;

● there are are c1, c2 > 0 such that

sup
n∈N

∥xn∥ ≤ c1 < ∞, sup
n∈N

∥x∗n∥∗ ≤ c2 < ∞.

If additionally X ∗ has the property that x∗n(f) = 0 for all n ∈ N entails that f = 0, we
say that X ∗ is total or, equivalently, that X is a Markushevich basis. In the sequel, unless
specified we will not assume that X is a Markushevich basis - though our results will
impliy this property in all cases (see [3, Corollary 4.5]).

Given a basis X and f ∈ X, we define a greedy ordering as a map π ∶ N → N such that
supp(f) ⊂ π(N) (where the support of f is the collection of n ∈ N where x∗n(f) ≠ 0)
and such that if j < k, then either ∣x∗π(j)(f)∣ > ∣x∗π(k)(f)∣ or ∣x∗π(j)(f)∣ = ∣x∗π(k)(f)∣ and
π(j) < π(k). Using this map and m ∈ N, we define a greedy sum of f of order m like the sum

Gm[X ,X](f) = Gm(f) ∶=
m

∑
i=1

x∗π(i)(f)xπ(i).

The Thresholding Greedy Algorithm (TGA) is the collection (Gm)m∈N.
Recall that the projection operator is defined as follows: given a finite set A ⊂ N and f ∈ X,

PA[X ,X](f) = PA(f) ∶= ∑
n∈A

x∗n(f)xn.

Then, a greedy sum is a projection over a greedy set Am(f), where Am(f) is a set verifying
the following two conditions: the cardinality is exactly m and

min
n∈Am(f)

∣x∗n(f)∣ ≥ max
n/∈Am(f)

∣x∗n(f)∣.

Of course, unconditionality guarantees the convergence of the TGA, where we say that
a basis is K-unconditional with K > 0 if

∥PA(f)∥ ≤K∥f∥, ∀∣A∣ < ∞,∀f ∈ X.

However, in the literature, there are examples of conditional bases where the TGA con-
verges. For that reason, we have the following definition to study the convergence of the
algorithm.

Definition 2.1. We say that a basis X in a quasi-Banach space X is quasi-greedy if there is C > 0
such that for all f ∈ X,

∥f − PA(f)∥ ≤C∥f∥,(2.5)

whenever A is a finite greedy set of f . The smallest constant verifying (2.5) is denoted by Cq and
we say that X is Cq-quasi-greedy.

P. Wojtaszczyk proved in [16] (also the proof could be found in [3]) that a basis is quasi-
greedy if and only if the TGA converges, that is,

lim
m→+∞

∥f −
m

∑
n=1

x∗π(n)(f)xπ(n)∥ = 0.

An stronger notion than quasi-greediness is greediness, that is, the case when the TGA
produces the best possible approximation up to a constant. To define it precisely, we need
the best mth approximation error of f ∈ X:

σm[X ,X](f) = σm(f) ∶= inf

⎧⎪⎪⎨⎪⎪⎩

XXXXXXXXXXX
f − ∑

j∈A

ajxj

XXXXXXXXXXX
∶ aj ∈ F∀j ∈ A, ∣A∣ ≤m

⎫⎪⎪⎬⎪⎪⎭
.
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Definition 2.2. We say that a basis X in a quasi-Banach space X is greedy if there is C > 0 such
that for all f ∈ X and m ∈ N,

∥f − PA(f)∥ ≤Cσm(f),(2.6)

whenever A is a finite greedy set of f of cardinality m. The smallest constant verifying (2.6) is
denoted by Cg and we say that X is Cg-greedy.

In [13], the authors characterized greediness in terms of unconditionality and democ-
racy. To formalize the last notion, we need the following notation:

1ε,A[X ,X] = 1ε,A ∶= ∑
j∈A

εjxj ; ε = (εj)j∈A ∈ EA; E ∶= {λ ∈ F∶ ∣λ∣ = 1}.

In general, ε ∈ EA is called a sign and, for f ∈ X,

ε(f) ≡ {sign(x∗n(f))}, n ∈ N.

Thus, a basis X is D-democratic with D > 0 if

∥1A∥ ≤D ∥1B∥ ,

for any pair of finite sets with ∣A∣ ≤ ∣B∣, where 1A = 1ε,A with ε ≡ 1. A similar charac-
terization could be obtained by substituting superdemocracy for democracy, where X is
Ds-superdemocratic with Ds > 0 if

∥1ε,A∥ ≤Ds ∥1η,B∥ ,

for any pair of finite sets A and B with ∣A∣ ≤ ∣B∣, ε ∈ EA and η ∈ EB .

Theorem 2.1 ([3, 13]). A basis X in a quasi-Banach space X is greedy if and only if X is uncon-
ditional and democratic or superdemocratic.

In [7], the authors introduced a new way to study greedy bases using polynomials of
constant coefficients, where a polynomial of this type is basically an element of X of the
form α1ε,A = ∑j∈A αεjxj where α ∈ F and ε ∈ EA.

Theorem 2.2 ([7]). Let X be a basis in a Banach space X. The basis is greedy if and only if there
is C > 0 such that for all f ∈ X,

∥f − PA(f)∥ ≤C inf{∥f − α1ε,B∥ ∶ α ∈ F, ∣B∣ = ∣A∣, ε ∈ EB},(2.7)

whenever A is a finite greedy set of f .

The purpose of this paper is to relax the optimization problem given in (2.7) trying to
to fix the coefficient α. That is, in the approximation error

inf{∥f − α1ε,B∥ ∶ α ∈ F, ∣B∣ = ∣A∣, ε ∈ EB},

we are taking the infimum over the sets, over the signs ε and over α. Here, we show that
we can fix the value of α and take only the infimum over the sets since we can also fix the
sign. For that, we introduce the following two new approximation errors:

● For each m ∈ N and each f ∈ X, let

ρm[X ,X] = ρm(f) ∶= inf {∥f − α1ε,A∥ ∶α = min
n∈Am(f)

∣x∗n(f)∣, ∣A∣ =m,ε ∈ EA} .

● For each m ∈ N and each f ∈ X, let

%m[X ,X] = %m(f) ∶= inf {∥f − α1A∥ ∶α = min
n∈Am(f)

∣x∗n(f)∣, ∣A∣ =m} .
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Definition 2.3. We say that a basis X is relaxed greedy for polynomials with constant coefficients
(RGPCC for short) if there is C > 0 such that for all m ∈ N and f ∈ X,

∥f − PA(f)∥ ≤Cρm(f), ∀A greedy set of cardinalitym.(2.8)

The smallest constant verifying (2.8) is denoted by Cpg and we say that X is Cpg-RGPCC.

Definition 2.4. We say that a basis X is unsigned-relaxed greedy for polynomials with constant
coefficients (URGPCC for short) if there is C > 0 such that for all m ∈ N and f ∈ X,

∥f − PA(f)∥ ≤C%m(f), ∀A greedy set of cardinalitym.(2.9)

The smallest constant verifying (2.9) is denoted by Cpgu and we say that X is Cpgu-URGPCC.

Here we will show the following result:

Theorem 2.3. Let X be a basis in a quasi-Banach space X. The following are equivalent:
i) X is greedy.

ii) X is RGPCC.
iii) X is URGPCC.

Quantitatively, if X is a p-Banach space with 0 < p ≤ 1, then

Cpgu ≤Cpg ≤Cg.

Moreover, if F = R, then

Cg ≤ min{A2
pC

2
pg,C

p
pgu(1 +AppC2p

pgumin{Bpp ,AppC2p
pgu})1/p}.(2.10)

If F = C, there is a constant L0 = L0(Cpgu, p) such that

Cg ≤ min{A2
pC

2
pg,L0}.(2.11)

Additionally, we prove similar results for almost-greedy bases.

Definition 2.5. We say that a basis X in a quasi-Banach space X is almost-greedy if there is C > 0
such that for all f ∈ X,

∥f − PA(f)∥ ≤C inf{∥f − PB(f)∥ ∶ ∣B∣ ≤ ∣A∣},(2.12)

whenever A is a finite greedy set of f . The least constant verifying (2.12) is denoted by Cag and
we say that X is Cag-almost-greedy.

Related to these bases and following the idea about polynomials of constant coeffi-
cients, S. J. Dilworth and D. Khurana proved in [9] that a basis in a Banach space is almost-
greedy if and only if there is C > 0 such that

∥f − PA(f)∥ ≤C∥f − a1B∥(2.13)

for all f ∈ X, A a greedy set of f , B ⊂ N, ∣B∣ ≤ ∣A∣, all a ∈ F and A < B or B < A, where
A < B means that maxj∈A j < mini∈B i.
Our next theorem improves the above result.

Theorem 2.4. Let X be a basis for a p-Banach space X. The following are equivalent:
i) X is almost greedy.

ii) X is quasi-greedy and superdemocratic.
iii) There is C > 0 such that

∥f − PA(f)∥ ≤C∥f − a1ε,B∥

for all f ∈ X, A a greedy set of f , B ⊂ N, ∣B∣ ≤ ∣A∣ and A ∩B = ∅, ε ∈ EB , and all a ∈ F.
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iv) There is C > 0 such that

∥f − PA(f)∥ ≤C∥f −min
n∈A

∣x∗n(f)∣1ε,B∥

for all f ∈ X, A a greedy set of f , B ⊂ N, ∣B∣ ≤ ∣A∣ and A < B or B < A and all ε ∈ EB .
v) There is C > 0 such that

∥f − PA(f)∥ ≤C∥f −min
n∈A

∣x∗n(f)∣1B∥

for all f ∈ X, A a greedy set of f , B ⊂ N, ∣B∣ = ∣A∣ and A < B or B < A.

In Theorem 2.4, the equivalence between i and ii is well known (see [11, Theorem 3.3],
[3, Theorem 6.3]), our contribution here are the other points, in particular iii and v.

3. TECHNICAL RESULTS

In this section, we focus our attention on some characterizations and relations between
unconditionality and symmetry-like properties.

As we have commented, in Theorem 2.1 it was proven that a basis in a Banach space is
greedy if and only if it is democratic and unconditional and the behaviour of the constants
is as follows:

max{K,D} ≤Cg ≤K(1 +D).

In the last decade, researchers have worked on improving this estimate since there are
examples of 1-democratic and 1-unconditional bases that are not 1-greedy. In 2006, F.
Albiac and P. Wojtaszczyk found necessary and sufficient conditions under which Cg = 1.
Concretely, they introduced the notion of Property (A), extended and renamed in [12] by
the so called symmetry for largest coefficients.

Definition 3.6. We say that a basisX in a quasi-Banach space is symmetric for largest coefficients
(SLC for short) if there is C > 0 such that

∥f + 1ε,A∥ ≤C∥f + 1η,B∥,(3.14)

for all f ∈ X such that supp(f) ∩ (A ∪ B) = ∅, for all finite sets A and B such that ∣A∣ ≤ ∣B∣
and A ∩B = ∅ and all choices of signs ε ∈ EA and η ∈ EB . The least constant verifying (3.14) is
denoted by ∆ and we say that X is ∆-SLC.

Using this concept, in [12] we can find the following.

Theorem 3.5. A basis in a Banach space is greedy if and only if the basis is symmetric for largest
coefficients and unconditional. Quantitatively,

max{∆,K} ≤Cg ≤ ∆K.

Remark 3.1. In the case of p-Banach spaces, in [3] we find the same result with the following
behaviour:

max{∆,K} ≤Cg ≤ A2
p∆K,

where Ap is defined as in (2.3). Also, changing the symmetry for largest coefficients by democracy
for general p-Banach spaces, we have the bounds (see [3])

Cg ≤K(1 +AppDpmin{Bpp ,AppKp})1/p,

where Bp is defined as in (2.4).
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In this line, we modify the proof of [1, Proposition 2.11] to show that in order to prove
that a basis is unconditional, it is enough consider approximations by vectors with non-
negative coefficients. This result will be used in the proof of Theorem 2.3.

We use the following notation: for a given basis X ,

XR(X) ∶= {f ∈ X∶x∗n(f) ∈ R ∀n ∈ N} ;

X+(X) ∶= {f ∈ X∶x∗n(f) ∈ R≥0 ∀n ∈ N} .

Lemma 3.2. Let X be a basis for a p-Banach space X over F and C > 0. Suppose that for every
f ∈ span{X}, g ∈ span{X} ∩X+(X) with supp(f) ∩ supp(g) = ∅,

∥f∥ ≤C∥f + g∥.(3.15)

Then ∥f∥ ≤ K∥f + g∥ for every f, g ∈ X with supp(f) ∩ supp(g) = ∅, with K = C2 if F = R and
K depending only on C and p if F = C. Thus, X is K-unconditional.

Proof. By a standard density argument (or use Lemma 3.4 below), it is enough to prove
that (3.15) holds with K instead of C for f ∈ span{X}, g ∈ span{X} with supp(f) ∩
supp(g) = ∅. If F = R, choose disjointly supported f, g ∈ span{X}, and write g = g1 − g2
with g1, g2 ∈ X+(X) ∩ span{X}, and f, g1, g2 pairwise disjointly supported. We have

∥f∥ ≤C∥f + g1∥ =C∥ − f − g1∥ ≤C2∥ − f − g1 + g2∥ =C2∥f + g∥,

and the proof is complete.
Now suppose F = C, and let K1 ∶= (1 +Cp)

1
p . By p-convexity and hypothesis

∥g∥ ≤ (∥g + f∥p + ∥f∥p)
1
p ≤K1∥g + f∥

∀g ∈ span{X} ∩X+(X), f ∈ span{X}, supp(f) ∩ supp(g) = ∅.(3.16)

We claim that there is K2 depending only on p and C such that, for every A ⊂ N with
0 < ∣A∣ < ∞, f ∈ span{X} with supp(f) ∩A = ∅, and (εn)n∈A ∈ EA,

∥1ε,A∥ ≤K2 ∥1ε,A + f∥ .(3.17)

To prove our claim, first choose a finite nonempty set A ⊂ N, f ∈ span{X} with supp(f) ∩
A = ∅, and (εn)n∈A ∈ EA so that

∣εn − 1∣ ≤ (2
1
pK1Bp)

−1
∀n ∈ A.

Pick B ⊂ A so that ∥1D∥ ≤ ∥1B∥ for all D ⊂ A. By (3.16) and Lemma 2.1,

∥1B∥p ≤Kp
1 ∥1B + 1ε,A∖B + f∥p

≤Kp
1 ∥1ε,B + 1ε,A∖B + f∥p +Kp

1 ∥1ε,B − 1B∥p

≤Kp
1 ∥1ε,A + f∥

p +Kp
1B

p
p (2

1
pK1Bp)

−p
∥1B∥p

≤Kp
1 ∥1ε,A + f∥

p + 1

2
∥1B∥p ,

so

∥1B∥p ≤2Kp
1 ∥1ε,A + f∥

p
.

Another application of Lemma 2.1 gives

∥1ε,A∥p ≤∥1A∥p + ∥1ε,A − 1A∥p ≤ ∥1A∥p +Bpp (2
1
pK1Bp)

−p
∥1B∥p ≤ 3

2
∥1B∥p .
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Hence,

∥1ε,A∥p ≤3Kp
1 ∥1ε,A + f∥

p
.(3.18)

Now let {ν1, . . . , νj1} ⊂ E be a set of minimum cardinality with the property that, for every

ε ∈ E there is 1 ≤ j ≤ j1 such that ∣ε − νj ∣ ≤ (2
1
pK1Bp)

−1
, and fix A ⊂ N a finite nonempty

set, f ∈ span{X} with supp(f) ∩ A = ∅, and (εn)n∈A ∈ EA. Choose I ⊂ {1, . . . , j1} and

(Aj)j∈I a partition of A such that ∣εn − νj ∣ ≤ (2
1
pK1Bp)

−1
for each n ∈ Aj and each j ∈ I .

By (3.18),

∥1ε,A∥p ≤∑
j∈I

∥ν−1j 1ε,Aj
∥p ≤ ∑

j∈I

3Kp
1 ∥ν

−1
j 1ε,Aj + ν−1j 1ε,A∖Aj + ν−1j f∥p

=3∣I ∣Kp
1 ∥1ε,A + f∥

p ≤ 3j1K
p
1 ∥1ε,A + f∥

p
.

Note that K1 only depends on C and p, whereas j1 only depends on K1 and p. Thus,
we have proven (3.17) with K2 ∶= (3j1)

1
p K1. To complete the proof of the lemma, fix

f, g ∈ span{X} ∖ {0} with disjoint support. Let A ∶= supp(g), and define Y = (yn)n∈N by

yn =
⎧⎪⎪⎨⎪⎪⎩

∣x∗n(g)∣xn if n ∈ A;

xn if n /∈ A.

Then Y is a basis for X and, since each yn is the product of xn by a positive scalar, (3.15)
also holds substituting Y and X+(Y) for X and X+(X) respectively. Since K2 depends
only on C and p, the same argument given above shows that (3.17) holds for Y as well.
Therefore,

∥g∥ = ∥1ε(g),A[Y,X]∥ ≤K2 ∥1ε(g),A[Y,X] + f∥ =K2∥g + f∥.
This completes the proof of the lemma, with K =K2. �

Remark 3.2. While we have defined our basis to be bounded with bounded dual basis,
neither condition is required in the proof of Lemma 3.2.

With respect to the symmetry for largest coefficients, in [8], the authors proved that
in the case of Schauder bases in Banach spaces, in the definition of the SLC property it
is enough to consider elements f ∈ X with finite support (their proofs hold for general
Markushevich bases).

The same result holds in the context of general bases of p-Banach spaces. First of all,
we consider the extension for Schauder bases, where the proof is immediate.

Lemma 3.3. Let X be a Schauder basis of a p-Banach space X. Suppose D is a finite subset of N,
and f ∈ X satisfies supp(f) ∩D = ∅. Then, for any ε > 0 there exists a finitely supported y ∈ X
such that ∥f − y∥ < ε, supp(y) ∩D = ∅, and maxj ∣x∗j (f)∣ = maxj ∣x∗j (y)∣.
Proof. Choose n0 ∈ N so that ∣x∗n0

(f)∣ = ∥f∥`∞ , and n1 ≥ n0 so that ∥f − Sn1(f)∥ < ε, and let
y ∶= Sn1(f). �

For general bases, the result can be obtained by adapting the proofs of [6, Lemma 7.1]
or [14, Lemma 2.2]. Nevertheless, we give a proof for the sake of completion.

Lemma 3.4. Let X be a basis of a p-Banach space X and let f ∈ X. The following hold:
i) For every D ⊂ N finite such that supp (f − PD (f)) /= ∅ and every ε > 0 there exists g ∈

span{X} such that

∥f − g∥ < ε, PD(g) = PD(f), max
j∈Dc

∣x∗j (f)∣ = max
j∈Dc

∣x∗j (g)∣.(3.19)

In particular, if D ∩ supp(f) = ∅, then D ∩ supp(g) = ∅ and maxj ∣x∗j (g)∣ = maxj ∣x∗j (f)∣.
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ii) If supp(f) = ∅, for every D ⊂ N finite and every ε > 0 there exists g ∈ span{X} such that
∥f − g∥ < ε, maxj ∣x∗j (g)∣ < ε, and PD(g) = PD(f) = 0.

Proof. Set

c ∶= 1 + sup
n∈N

{∥x∗n∥ + ∥xn∥}.

To prove (3.19), first we consider the caseD∩supp(f) = ∅. We may assume that maxj ∣x∗j (f)∣ =
1 (then ∥f∥ ≥ 1/c) and ε < 1/(2c). Set δ > 0 so that

0 < δ ≤ ε

3c2∥f∥
; (δp + ( cδ

1 − cδ
)
p

(∥f∥p + δp))
1
p

< ε.

As span{X} is dense in X, there exists h ∈ span{X} such that ∥f − h∥ < δ/∥P cD∥. Let
u = P cD(h), then ∥f − u∥ = ∥P cD(f − h)∥ < δ. For every j, ∣x∗j (f − u)∣ < cδ, hence C =
maxj ∣x∗j (u)∣ ∈ (1 − cδ,1 + cδ). Now let g = u/C. Then maxj ∣x∗j (g)∣ = 1, and

∥f − g∥ ≤ (∥f − u∥p + ∣1 −C−1∣p∥u∥p)
1
p < (δp + ( cδ

1 − cδ
)
p

(∥f∥p + δp))
1
p

< ε.

This completes the proof of (3.19) when PD(f) = 0.
Now suppose PD(f) /= 0, and let f1 ∶= f − PD(f). By the previous case, there is g1 ∈
span{X} so that (3.19) holds for f1, g1, D and ε. Now let g ∶= g1 + PD(f); it is clear that
(3.19) holds.
Let us now prove ii: If B is a Markushevich basis, then f = 0 so we can take g = 0.
Otherwise, pick n0 /∈D, choose δ > 0 so that

δ (1 + cp)
1
p < ε,

and let f0 ∶= f + δxn0
. By i, there is g ∈ span{X} such that ∥g − f0∥ ≤ δ, maxj ∣x∗j (g)∣ = δ and

PD(g) = PD(f) = 0. We have

∥f − g∥ ≤ (∥g − f0∥p + ∥f0 − f∥p)
1
p ≤ (δp + cpδp)

1
p = δ (1 + cp)

1
p < ε.

�

4. PROOF OF THEOREM 2.3

Lemma 4.5. Let X be a basis in a p-Banach space X. Suppose that X is Cpg-RGPCC. Then X is
K-unconditional and ∆-symmetric for largest coefficients with

max{K,∆} ≤Cpg.

Proof. Fix f, g ∈ span{X} such that supp(f) ∩ supp(g) = ∅. Let A ∶= supp(g), B ∶= supp(f)
and t0 ∶= 1 +maxn∈N (∣x∗n(g)∣ + ∣x∗n(f)∣). Pick n0 ∈ N ∖ (A ∪B), and let εn = sign(x∗n(g)) for
all n ∈ A and εn0 = 1. Note that A0 = A ∪ {n0} is the only greedy set of h ∶= f + g + t01ε,A0

of cardinality ∣A0∣ = ∣A∣ + 1, and that minn∈A0 ∣x∗n(h)∣ = t0. Thus,

∥f∥ = ∥h − PA0(h)∥ ≤ Cpg ρ∣A∣+1 (h) ≤Cpg∥h − t01ε,A0∥ =Cpg∥f + g∥,

which proves that X is K-unconditional with K ≤Cpg .
Now fix f ∈ X with finite support and ∣x∗n (f)∣ ≤ 1 for all n ∈ N and pick A,B ⊂ N

nonempty, finite, disjoint and disjoint from supp(f) with ∣A∣ = ∣B∣, ε ∈ EA and η ∈ EB .
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Given 0 < ε < 1, we have

∥f + 1ε,A∥p =∥f + 1ε,A + (1 + ε)1η,B − (1 + ε)1η,B∥p

≤Cp
pgρ

p
∣B∣

(f + 1ε,A + (1 + ε)1η,B)
≤Cp

pg∥f + 1ε,A + (1 + ε)1η,B − (1 + ε)1ε,A∥p

≤Cp
pg(∥f + 1η,B∥p + εp∥1ε,A∥p + εp∥1η,B∥p).

Letting ε tend to zero we obtain

∥f + 1ε,A∥p ≤Cp
pg∥f + 1η,B∥p.

Hence, by Lemma 3.4, X is ∆-SLC with ∆ ≤Cpg . �

Our next task is obtain greediness under hypotheses that are formally weaker than
those of Lemma 4.5, to complete our characterization of greediness.

Lemma 4.6. Let X be a basis for a p-Banach space X. Suppose that X is Cpgu-URGPCC. Then
X is unconditional and democratic. Quantitatively, if F = R, then

max{K,D} ≤C2
pgu.

If F = C, there is L = L(Cpgu, p) such that

K ≤ L and D ≤C2
pgu.

Proof. First, we prove that it that X is unconditional. Fix f ∈ span{X}, g ∈ span{X}∩X+ so
that supp(f) ∩ supp(g) = ∅. Set t0 ∶= 1+maxn∈N (x∗n(g) + ∣x∗n(f)∣), and pick n0 > supp(f) ∪
supp(g). Note that A ∶= supp(g) ∪ {n0} is the only greedy set of h ∶= f + g + t01A of
cardinality ∣A∣, and that minn∈A ∣x∗n(h)∣ = t0. Thus,

∥f∥ = ∥h − PA(h)∥ ≤Cpgu%∣A∣ (h) ≤Cpgu∥h − t01A∥ = Cpgu∥f + g∥.(4.20)

By Lemma 3.2, X is K-unconditional with K = C2
pgu if F = R and K ≤ L if F = C. To prove

that it is democratic, pick A,B ⊂ N with 0 < ∣A∣ ≤ ∣B∣ < ∞ and A /= B, and choose B0 ⊂ B so
that ∣B0∣ = ∣A∣. Given 0 < ε < 1, we have

∥1A∥p =∥1A∩B0 + 1A∖B0 + (1 + ε)1B0∖A − (1 + ε)1B0∖A∥p

≤Cp
pgu%

p
∣B0∖A∣

(1A∩B0 + 1A∖B0 + (1 + ε)1B0∖A)
≤Cp

pgu∥1A∩B0 + 1A∖B0 + (1 + ε)1B0∖A − (1 + ε)1A∖B0∥p

≤Cp
pgu∥1B0∥p +Cp

pguε
p∥1B0∖A∥p +Cp

pguε
p∥1A∖B0∥p.

Letting ε tend to zero we obtain ∥1A∥ ≤ Cpgu∥1B0∥. If B0 = B, there is nothing else to
prove. Otherwise, an application of (4.20) with f = 1B0 and g = 1B∖B0 gives ∥1B0∥ ≤
Cpgu∥1B∥. It follows that

∥1A∥ ≤C2
pgu∥1B∥,

so the basis is D-democratic with D ≤C2
pgu. �

Proof of Theorem 2.3. First, we show i) ⇔ ii). For that, of course, if X is Cg-greedy, then
it is trivial that X is Cpg-RGPCC with Cpg ≤ Cg . Now, if X is Cpg-RGPCC, then, using
Lemma 4.5, the basis is K-unconditional and ∆-SLC with max{K,∆} ≤Cpg . Hence, using
now Remark 3.1, the basis is Cg-greedy with Cg ≤ A2

pC
2
pg . Now, we show that i) ⇔ iii).

Again, if X is Cg-greedy, then it is trivial that X is Cpgu-URGPCC with Cpgu ≤ Cg . Now,
using Lemma 4.6, the basis is D-democratic and K-unconditional with D ≤ C2

pgu and K
depends on Cpgu and p. Then, using now Remark 3.1, the basis is greedy and the constant
is as it appears in (2.10) and (2.11). �
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5. PROOF OF THEOREM 2.4

In this section, we prove Theorem 2.4. In addition to the classical characterization of
almost greedy bases as those that are quasi-greedy and democratic or superdemocratic
([11, Theorem 3.3], [3, Theorem 6.3]), we will use the following result from the literature
(see [11, Lemma 2.2], [3, Theorem 4.3])

Theorem 5.6. [3, Theorem 4.13] If X is a Cq-quasi-greedy basis in a p-Banach space with
0 < p ≤ 1, then for all f ∈ X and A a greedy set of f ,

min
n∈A

∣x∗n(f)∣ ∥1ε(f),A∥ ≤C∥f∥.(5.21)

The minimum constant C for which the above inequality holds is denoted Γt, and it’s no greater
than C2

qηp(Cq), where

ηp(u) = min
0<t<1

(1 − tp)−1/p(1 − (1 +A−1
p u

−1t)−p)−1/p ∀u > 0.

Bases for which (5.21) holds have been recently named ‘truncation quasi-greedy’ (see
[2]), but have been known since the early days of the theory (see [11]) (it is known that
there are bases satisfying (5.21) that are not quasi-greedy, see for example [2] or [11, Propo-
sition 4.8]).

Proof of Theorem 2.4. i)⇐⇒ ii) follows from [11, Theorem 3.3], [3, Theorem 6.3] , whereas
iii)Ô⇒ iv)Ô⇒ v) is immediate.

ii)Ô⇒ iii) Let Ds, Cq and Γt be the superdemocracy, quasi-greedy and truncation
quasi-greedy constants of X respectively. Given f , A, B, and ε as in the statement, set
b ∶= minn∈A ∣x∗n(f)∣. We may assume b > 0 and we consider two cases:

Case 1: If ∣a∣ ≤ 2b, let D ⊂ N be a greedy set of g ∶= f −a1ε,B of minimum cardinality that
contains A. Then

min
n∈D

∣x∗n(g)∣ =b,

so

∥f − PA(f)∥p ≤Cp
q∥f∥p ≤Cp

q∥g∥p +Cp
q2
p (2−1∣a∣∥1ε,B∥)p

≤Cp
q∥g∥p +Cp

qD
p
s2
p (2−1∣a∣∥1ε(g),D∥)p

≤Cp
q(1 + 2pDp

sΓ
p
t )∥g∥

p.(5.22)

Case 2: If ∣a∣ > 2b, set g as before, and let D be a greedy set of g of minimum cardinality
containing B. Then

d ∶= min
n∈D

∣x∗n(g)∣ =min
n∈B

∣x∗n(g)∣ ≥
∣a∣
2
.

Thus,

∥a1ε,B∥ ≤2Dsd∥1ε(g),D∥ ≤ 2DsΓt∥g∥.
Hence,

∥f − PA(f)∥p ≤Cp
q∥f∥p ≤Cp

q∥g∥p +Cp
q (∥a1ε,B∥)p

≤Cp
q(1 + 2pDp

sΓ
p
t )∥g∥

p.(5.23)

Combining (5.22) and (5.23), we obtain iii with

C ≤Cp
q(1 + 2pDp

sΓ
p
t ).
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v)Ô⇒ ii)
Choose a finite set A, ε ∈ EA, and f ∈ X so that

∣{n ∈ supp(f) ∶ ∣x∗n(f)∣ ≥ 1}∣ ≥ ∣A∣.(5.24)

We claim that

∥1ε,A∥ ≤ BpC22
1
p−1∥f∥.(5.25)

To prove the claim, first assume that f has finite support and apply Lemma 2.1 to find
A0 ⊂ A such that

∥1ε,A∥ ≤ Bp∥1A0∥.

Pick B a greedy set of f with ∣B∣ = ∣A0∣. Note that minn∈B ∣x∗n(f)∣ ≥ 1 since B is a greedy
set with ∣A∣ ≥ ∣B∣ and (5.24) is satisfied. Let f1 ∶= f

minn∈B ∣x∗n(f)∣
, and g ∶= f1 − PB(f1), and

choose D > supp(f) ∪A so that ∣D∣ = ∣A0∣. By hypothesis and p-convexity,

∥1A0∥p =∥1A0 + 1D − 1D∥p ≤Cp∥1D∥p ≤ 2−pCp ∥1D + g∥p + 2−pCp ∥1D − g∥p .

On the other hand, as B is a greedy set of both 1D + f1 and 1D − f1, we have

∥1D + g∥ = ∥1D + f1 − PB(1D + f1)∥ ≤C∥1D + f1 − 1D∥ ≤C∥f∥;
∥1D − g∥ = ∥1D − f1 − PB(1D − f1)∥ ≤C∥1D − f1 − 1D∥ ≤C∥f∥.

Combining the above inequalities we obtain (5.25) for f with finite support, and the gen-
eral case follows at once by Lemma 3.4. In particular, it follows that X is superdemocratic.
To prove that it is also quasi-greedy, fix f ∈ X and A a greedy set of f , and pick B ⊂ N with
B > A, and ∣A∣ = ∣B∣. By hypothesis and (5.25) we have

∥f − PA(f)∥p ≤Cp∥f −min
n∈A

∣x∗n(f)∣1B∥p ≤Cp∥f∥ +Cpmin
n∈A

∣x∗n(f)∣p∥1B∥p

≤Cp∥f∥p +BppC3p21−p∥f∥p,

and the proof is complete. �

6. CONCLUSIONS

In this article, we have focused on the characterization of two types of greedy-like
bases: greedy bases and almost-greedy bases. On the one hand, for the case of Schauder
bases in Banach spaces, in [7] the authors characterize greedy bases as those bases where
there is C > 0 such that for every f in the space and m ∈ N,

∥f −Gm(f)∥ ≤ C inf
α,∣A∣=m

∥f − α1A∥.

In our paper, we improve this result by proving that it is not necessary to take any element
of the form y = α1A. Concretely, for general semi-normalized Markushevich bases in
quasi-Banach spaces, we prove that a basis is greedy if and only if

∥f −Gm(f)∥ ≤ C inf
∣A∣=m

∥f − min
n∈Am(f)

∣x∗n(f)∣1A∥.

On the other hand, for the case of almost-greediness, in [9], the authors proved that a
Schauder basis in a Banach space is almost-greedy if and only if there is C > 0 such that
for every element f and m ∈ N,

∥f −Gm(f)∥ ≤ C inf {∥f − α1A∥, α ∈ F, ∣A∣ =m,A < Am(f) or Am(f) < A} .
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In our paper, as for greediness, we improve this result proving that for general semi-
normalized Markushevich bases in quasi-Banach spaces, a basis is almost-greedy if and
only if there is C > 0 such that for every element f and m ∈ N,

∥f −Gm(f)∥ ≤ C inf {∥f − min
n∈Am(f)

∣x∗n(f)∣1A∥, ∣A∣ =m,A < Am(f) or Am(f) < A} .

Furthermore, we show more equivalences substituting 1A for 1ε,A where ε is a collec-
tion of signs and for all the results we proved, we also used a new characterization of
unconditionality and some extensions of density results about the symmetry for largest
coefficients.
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[7] Berná, P. M.; Blasco, Ó. Characterization of greedy bases in Banach spaces. J. Approx. Theory 215 (2017),

28–39.
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