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Conjectures about wheels without one edge

ŠTEFAN BEREŽNÝ AND MICHAL STAŠ

ABSTRACT. The main aim of the paper is to give the crossing number of the join product G∗ + Dn for
the graph G∗ isomorphic to 4-regular graph on six vertices except for two distinct edges with no common vertex
such that two remaining vertices are still adjacent, and where Dn consists of n isolated vertices. The proofs are
done with the help of well-known exact values for crossing numbers of join products of four subgraphs Hk of
G∗ with discrete graphs. Further, we give a conjecture concerning crossing numbers of the join products of Dn

with Wm \ e for both types edges e of wheels Wm of m+ 1 vertices.

1. INTRODUCTION

The crossing number is an important parameter of a graph, as it provides information
about the complexity of the graph and the difficulty of visualizing it. In addition, the
crossing numbers are related to many other graph parameters and algorithms, such as
graph coloring, graph embedding, and planarity testing. In general reducing the number
of crossings on graph edges can be useful in various applications, including circuit design,
network visualization, cartography or social choice theory. Simple graphs are widely
used to represent complex networks such as social, communication, and transportation
networks. Reducing the number of edge crossings in network visualizations helps under-
stand the network’s underlying structure and identify important nodes and connections.
Note that examining number of crossings of simple graphs is an NP-complete problem by
Garey and Johnson [6].

The crossing number cr(G) of a simple graphGwith the vertex set V (G) and the edge set
E(G) is the minimum possible number of edge crossings in a drawing of G in the plane
(for the definition of a drawing see Klešč [19]). It is easy to see that a drawing with min-
imum number of crossings (an optimal drawing) is always a good drawing, meaning that
no edge crosses itself, no two edges cross more than once, and no two edges incident with
the same vertex cross. Let D be a good drawing of the graph G. We denote the number
of crossings in D by crD(G). Let Gi and Gj be edge-disjoint subgraphs of G. We de-
note the number of crossings between edges of Gi and edges of Gj by crD(Gi, Gj), and
the number of crossings among edges of Gi in D by crD(Gi). It is easy to see that for
any three mutually edge-disjoint subgraphs Gi, Gj , and Gk of G, the following equations
hold:

crD(Gi ∪Gj) = crD(Gi) + crD(Gj) + crD(Gi, Gj) ,

crD(Gi ∪Gj , Gk) = crD(Gi, Gk) + crD(Gj , Gk) .

Throughout this paper, some parts of proofs will be based on Kleitman’s result [16]
on crossing numbers for some complete bipartite graphs Km,n on m + n vertices with
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a partition V (Km,n) = V1 ∪ V2 and V1 ∩ V2 = ∅ containing an edge between every pair of
vertices from V1 and V2 of sizes m and n, respectively. He showed that

(1.1) cr(Km,n) =
⌊m
2

⌋⌊m− 1

2

⌋⌊n
2

⌋⌊n− 1

2

⌋
, if min{m,n} ≤ 6.

For an overview of several exact values of crossing numbers for specific graphs or
some families of graphs, see Clancy [4]. The main goal of this survey is to summarize all
such published results for crossing numbers along with references also in an effort to give
priority to the author who published the first result. Chapter 4 of such survey is devoted
to the issue of crossing numbers of join product with all simple graphs of order at most
six mainly due to unknown values of cr(Km,n) for both m,n more than six in (1.1). The
join product of two graphs Gi and Gj , denoted Gi + Gj , is obtained from vertex-disjoint
copies of Gi and Gj by adding all edges between V (Gi) and V (Gj). For |V (Gi)| = m and
|V (Gj)| = n, the edge set of Gi+Gj is the union of the disjoint edge sets of the graphs Gi,
Gj , and the complete bipartite graph Km,n. Let Pn and Cn be the path and the cycle on n
vertices, respectively, and let Dn denote the discrete graph (sometimes called empty graph)
on n vertices. Besides, let Wm and Sm denote the wheel and the star of m + 1 vertices,
respectively. The exact values for crossing numbers of G+Dn for all graphs G of order at
most four are given by Klešč and Schrötter [25], and also for some connected graphs G of
order five and six [1, 2, 3, 5, 9, 10, 11, 12, 13, 14, 17, 18, 19, 21, 22, 23, 24, 28, 29, 31, 34, 39, 40].
The aim of this paper is to extend known results concerning this topic to new connected
graphs. Note also that cr(G + Dn) are known only for some disconnected graphs G [26,
27, 33]. For this purpose, we present a new technique regarding the use of knowledge
from the subgraphs whose values of crossing numbers are already known.

Section 2 is devoted to the graph G∗ isomorphic to 4-regular graph on six vertices
except for two distinct edges with no common vertex such that two remaining vertices
are still adjacent. In the rest of the paper, we will use the following notation of the vertex
set V (G∗) = {v1, v2, . . . , v6}. Many possible drawings of G∗ are partially solved using its
clearly established cycle C?

5 as a subgraph whose edges do not cross each other in any
optimal drawing of G∗+Dn. The main aim of the paper is to establish cr(G∗+Dn) for all
integers n. The crossing number of G∗ +Dn equal to 6

⌊
n
2

⌋⌊
n−1
2

⌋
+ n+

⌊
n
2

⌋
is determined

in Theorem 2.6 with the proof that is strongly based on Lemma 2.2. This lemma includes
well-known values of cr(Hk + Dn) for four subgraphs Hk of G∗ (with planar drawings
shown in Fig. 2) presented in Theorems 2.1, 2.2, 2.3, and 2.4. The paper concludes by
giving a new conjecture concerning crossing numbers of the join products of Dn with
Wm \ e obtained by removing one edge (of both possible types) from the wheel Wm of
m + 1 vertices. In the proofs of the paper, we will often use the term “region” also in
nonplanar subdrawings. In this case, crossings are considered to be vertices of the “map”.

2. THE CROSSING NUMBER OF G∗ +Dn

The join productG∗+Dn (sometimes the notationG∗+nK1 used) consists of one copy
of the graphG∗ and n vertices t1, . . . , tn, and any vertex ti is adjacent to every vertex of the
graph G∗. We denote the subgraph induced by six edges incident with the fixed vertex ti
by T i, which yields that

(2.2) G∗ +Dn = G∗ ∪
( n⋃

i=1

T i

)
.

We consider a good drawing D of G∗ +Dn. By the rotation rotD(ti) of a vertex ti in D
we understand the cyclic permutation that records the (cyclic) counterclockwise order in
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which edges leave ti, as defined by Hernández-Vélez et al. [8] or Woodall [41]. We use the
notation (123456) if the counter-clockwise order of edges incident with the fixed vertex ti
is tiv1, tiv2, tiv3, tiv4, tiv5 and tiv6. We recall that rotation is a cyclic permutation. In the
given drawing D, it is highly desirable to separate n subgraphs T i into three mutually
disjoint subsets depending on how many times edges of G∗ could be crossed by T i in D.
For i = 1, . . . , n, let RD = {T i : crD(G∗, T i) = 0} and SD = {T i : crD(G∗, T i) = 1}. Edges
of G∗ are crossed by each remaining subgraph T i at least twice in D. Note that if D is
a good drawing of G∗ + Dn with the empty set RD ∪ SD, then

∑n
i=1 crD(G∗, T i) ≥ 2n

enforces at least 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ n+

⌊
n
2

⌋
crossings in D provided by

crD(G∗ +Dn) = crD(K6,n) + crD(G∗,K6,n) + crD(G∗) ≥

≥ 6
⌊n
2

⌋⌊n− 1

2

⌋
+ 2n ≥ 6

⌊n
2

⌋⌊n− 1

2

⌋
+ n+

⌊n
2

⌋
.

According to the expected result of the main Theorem 2.6, this leads to a consideration of
the nonempty set RD ∪ SD in all good drawings of G∗ +Dn.

Let us discuss all possible drawings of G∗ induced by D. In the rest of the paper,
let v6 be the vertex notation of one vertex of degree 4 in all considered good subdrawings
D(G∗). The graphG∗ contains a cycleC5 induced on the remaining five vertices of degrees
2, 3, 3, 3, and 3 as a subgraph (for brevity, we will write C?

5 ). As we can always redraw
a crossing of two edges of C?

5 in an effort to get a new drawing of C?
5 (with vertices in

a different order) with less number of edge crossings, the proof of Lemma 2.1 can be
omitted.

Lemma 2.1. For n ≥ 1, the edges of C?
5 do not cross each other in any optimal drawing of the join

product G∗ +Dn.

A similar idea has already been presented in the proof for W5 + Dn by Berežný and
Staš [2]. Based on the arguments above, we will assume that edges of the cycle C?

5 do not
cross each other in all considered subdrawingsD(G∗), and let v1, v2, v3, v4, and v5 be their
vertex notation in the appropriate order of C?

5 . We only need to consider possibilities of
crossings between subdrawings of C?

5 and four remaining edges incident with the ver-
tex v6. If we would like to obtain an optimal drawing D of G∗ +Dn, then in addition the
setRD∪SD must be nonempty. Thus, we will only consider subdrawings of the graphG∗

induced by D for which there is a possibility of obtaining a subgraph T i ∈ RD ∪ SD. Let
us first consider a good subdrawing of G∗ in which the edges of C?

5 are crossed at most
once. In this case, we obtain three non isomorphic drawings shown in Fig. 1(a)-(c). If we
consider a good subdrawing of G∗ in which two different edges of C?

5 are crossed once,
then we obtain two possibilities that are shown in Fig. 1(d) and (e). Two crossings on only
one edge of C?

5 can be achieved in Fig. 1(f)-(h). Finally, the drawing with three crossings
on C?

5 is shown in Fig. 1(i).
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FIGURE 1. Nine possible non isomorphic drawings of the graph G∗ with
no crossing among edges of C?

5 and also with a possibility of obtaining a
subgraph T i whose edges can cross G∗ at most once.

In the proof of the main Theorem 2.6 of this section, the following Lemma 2.2 related
to some restricted subdrawings of G∗ +Dn will be also required. It includes well-known
exact values for crossing numbers of join products of four subgraphs Hk of G∗ with dis-
crete graphs, and their planar drawings are shown in Fig. 2. The four mentioned results
are described in Theorems 2.1, 2.2, 2.3 and 2.4.

H1 H2 H3 H4

FIGURE 2. Four graphs Hk on six vertices with well-known values of
cr(Hk +Dn).

Theorem 2.1 (see [32], Theorem 3.4). cr(H1 +Dn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2
⌊
n
2

⌋
for n ≥ 1.
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Theorem 2.2 (see [35], Theorem 6). cr(H2 +Dn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2
⌊
n
2

⌋
for n ≥ 1.

Theorem 2.3 (see [33], Theorem 3.4). cr(H3 +Dn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2
⌊
n
2

⌋
for n ≥ 1.

Theorem 2.4 (see [34], Corollary 3). cr(H4 +Dn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2
⌊
n
2

⌋
for n ≥ 1.

For k = 1, 2, 3, 4, let G∗ −Hk denote the graph difference of graphs G∗ and Hk.

Lemma 2.2. For n ≥ 1, let D be a good drawing of G∗ +Dn with the empty set RD. If |SD| ≥⌈
n
2

⌉
and each subgraph T i ∈ SD can cross only some edge of G∗ − Hk, then there are at least

6
⌊
n
2

⌋⌊
n−1
2

⌋
+ n+

⌊
n
2

⌋
crossings in D.

Proof. As the graph G∗ consists of two edge-disjoint subgraphs G∗ − Hk and Hk, let us
consider that crD(

⋃n
j=1 T

j , G∗−Hk) ≥
⌈
n
2

⌉
is fulfilling in the good drawingD ofG∗+Dn.

The edges of Hk +Dn must be crossed at least 6
⌊
n
2

⌋⌊
n−1
2

⌋
+2
⌊
n
2

⌋
times in D according to

Theorems 2.1, 2.2, 2.3, and 2.4. Consequently, we have

crD(G∗ +Dn) = crD(Hk +Dn) + crD(Hk +Dn, G
∗ −Hk) + crD(G∗ −Hk) ≥

≥ 6
⌊n
2

⌋⌊n− 1

2

⌋
+ 2
⌊n
2

⌋
+
⌈n
2

⌉
= 6
⌊n
2

⌋⌊n− 1

2

⌋
+ n+

⌊n
2

⌋
.

�

Theorem 2.5 (see [20], Theorem 2.3). If m ≥ 2, n ≥ 3 and min{m,n} ≤ 6, then cr(Pm +
Cn) =

⌊
m
2

⌋⌊
m−1
2

⌋⌊
n
2

⌋⌊
n−1
2

⌋
+ 1.

Lemma 2.3. cr(G∗ +D1) = 1 and cr(G∗ +D2) = 3.

Proof. Fig. 3 offers the subdrawing of G∗+D1 with one crossing, and so cr(G∗+D1) ≤ 1.
The graph G∗ +D1 contains a subgraph that is a subdivision of the join product P2 + C3,
and therefore, cr(G∗+D1) ≥ cr(P2+C3) = 1 by Theorem 2.5. The verification proceeds in
a similar way also for the graphG∗+D2 using a subgraph that is a subdivision of P4+C3.
This completes the proof of Lemma 2.3. �
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FIGURE 3. The good drawing of G∗ +Dn with 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ n+

⌊
n
2

⌋
crossings.
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Theorem 2.6. cr(G∗ +Dn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ n+

⌊
n
2

⌋
for n ≥ 1.

Proof. In Fig. 3, the edges of K6,n cross each other

6

(
dn2 e
2

)
+ 6

(
bn2 c
2

)
= 6
⌊n
2

⌋⌊n− 1

2

⌋
times, each subgraph T i, i = 1, . . . ,

⌈
n
2

⌉
on the right side crosses edges of G∗ exactly once

and each subgraph T i, i =
⌈
n
2

⌉
+1, . . . , n on the left side crosses edges ofG∗ exactly twice.

Thus, 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ n +

⌊
n
2

⌋
crossings appear among edges of the graph G∗ +Dn in this

drawing. We prove the reverse inequality by induction on n. Lemma 2.3 confirms this
result for n = 1 and n = 2. Suppose now that there is an optimal drawing D of G∗ +Dn

with

(2.3) crD(G∗ +Dn) < 6
⌊n
2

⌋⌊n− 1

2

⌋
+ n+

⌊n
2

⌋
for some n ≥ 3,

and let

(2.4) cr(G∗ +Dm) = 6
⌊m
2

⌋⌊m− 1

2

⌋
+m+

⌊m
2

⌋
for any positive integer m < n.

The assumption (2.3) together with crD(K6,n) ≥ 6
⌊
n
2

⌋⌊
n−1
2

⌋
thanks to (1.1) imply the

following relation with respect to edge crossings of G∗ in D:

crD(G∗) +
∑

T i∈RD

crD(G∗, T i) +
∑

T i∈SD

crD(G∗, T i) +
∑

T i 6∈RD∪SD

crD(G∗, T i) < n+
⌊n
2

⌋
.

In the case, if the set RD is empty and s = |SD|, then

(2.5) crD(G∗) + 1s+ 2(n− s) < n+
⌊n
2

⌋
,

which forces s ≥ crD(G∗) +
⌈
n
2

⌉
+ 1. Now, we will deal with the possibilities of obtaining

a subgraph T i ∈ RD ∪ SD in the considered drawing D and we will show that in all cases
a contradiction with the assumption (2.3) can be obtained.

Case 1: crD(G∗) = 0. Without loss of generality, we can consider the planar subdrawing
D(G∗) induced byD with the vertex notation in such a way as shown in Fig. 1(a). Because
no face is incident to all vertices in D(G∗), there is no possibility to obtain a subdrawing
of G∗ ∪ T i for a T i ∈ RD. As the set RD is empty, there are at least

⌈
n
2

⌉
+ 1 subgraphs

T i by which the edges of G∗ are crossed just once. Let us denote by H1 the subgraph of
G∗ with the vertex set V (G∗), and the edge set E(G∗) \ {v2v3, v3v4, v4v5}. By Theorem 2.1,
the edges of H1 + Dn are crossed at least 6

⌊
n
2

⌋⌊
n−1
2

⌋
+ 2
⌊
n
2

⌋
times in D. Clearly, each

subgraph T i ∈ SD must cross one edge of the cycle C?
5 , and therefore, there is at least one

subgraph T i ∈ SD by which the edge v1v2 or v1v5 of C?
5 is crossed. In the rest of the proof,

let the edge v1v2 of C?
5 be crossed by a T i ∈ SD. It is not difficult to verify over all possible

regions of D(G∗ ∪ T i) that the edges of G∗ ∪ T i are crossed at least five and four times by
each subgraph T j ∈ SD, j 6= i, and T k 6∈ SD, respectively. Thus, by fixing the subgraph
G∗ ∪ T i, we have

crD(G∗ +Dn) = crD (K6,n−1) + crD(K6,n−1, G
∗ ∪ T i) + crD(G∗ ∪ T i) ≥

≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 5(s− 1) + 4(n− s) + 1 = 6

⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 4n+

+s− 4 ≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 4n+

⌈n
2

⌉
+ 1− 4 ≥ 6

⌊n
2

⌋⌊n− 1

2

⌋
+ n+

⌊n
2

⌋
.
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Case 2: crD(G∗) ≥ 1. At first, we can consider the nonplanar subdrawing D(G∗)
induced byD given in Fig. 1(b). The setRD is also empty, and so s ≥

⌈
n
2

⌉
+2. Let us denote

byH2 the subgraph ofG∗ with the vertex set V (G∗), and the edge setE(G∗)\{v1v5, v5v6}.
The edges ofH2+Dn are crossed at least 6

⌊
n
2

⌋⌊
n−1
2

⌋
+2
⌊
n
2

⌋
times inD due to Theorem 2.2,

which yields that there is at least one subgraph T i ∈ SD by which the edge v1v2 of C?
5

must be crossed. Consequently, the same fixation of the subgraph G∗ ∪ T i as in Case 1
can be applied. For four drawings of G∗ given in Fig. 1(c)-(f), Lemma 2.2 contradicts the
assumption (2.3) using two its subgraphs H3 and H4. Moreover, if we consider some
subdrawing D(G∗) given in Fig. 1(g)-(i), then the set RD cannot be empty also due to
Lemma 2.2 for the subgraph H3 of G∗ with the edge set E(G∗) \ {v1v2, v1v5, v4v6}.

Now, let us turn to the possibility of obtaining a subdrawingG∗∪T i for some T i ∈ RD,
that is, the set RD must be nonempty. Without lost of generality, let Tn be a subgraph by
which the edges ofG∗ are not crossed. For the drawing ofG∗ given in Fig. 1(g), the reader
can easily see that the subgraph G∗ ∪ Tn is uniquely represented by rotD(tn) = (123645).
If there is a subgraph T j , j 6= n such that crD(G∗ ∪ Tn, T j) < 4, then the vertex tj must
be placed in the outer region of subdrawing D(G∗) with three vertices v1, v2 and v5 of G∗

on its boundary, and crD(G∗ ∪ Tn, T j) = 3 enforces crD(Tn, T j) = 0. Thus, by fixing the
subgraph Tn ∪ T j , we have

crD(G∗ +Dn) = crD(G∗ +Dn−2) + crD(Tn ∪ T j) + crD(K6,n−2, T
n ∪ T j)+

+crD(G∗, Tn ∪ T j) ≥ 6
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ n− 2 +

⌊n− 2

2

⌋
+ 0 + 6(n− 2) + 3 =

= 6
⌊n
2

⌋⌊n− 1

2

⌋
+ n+

⌊n
2

⌋
,

where edges of Tn ∪ T j are crossed by each other subgraph T k at least six times using
crD(K6,3) ≥ 6 thanks to (1.1). In the following, let the edges of Tn be crossed by each other
subgraph T j at least once. It is not difficult to verify over possible regions of D(G∗ ∪ Tn)
that edges of G∗ ∪ Tn are crossed by each other subgraph T j , j 6= n at least four times
and just four crossings could be achieved for some subgraphs by which the edge v3v4 of
G∗ is crossed. This implies crD(G∗ ∪ Tn,

⋃n−1
j=1 T

j) ≥ 5(n− 1)− α, where α is the number
of such subgraphs forcing at least one crossing on the edge v3v4. By fixing the subgraph
G∗ ∪ Tn, we have at least

(2.6) 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 5(n− 1)− α+ crD(G∗ ∪ Tn)

crossings in D. As α <
⌈
n
2

⌉
using the subgraph H1 from Case 1, both considered subcases

contradict the assumption (2.3) in D. For the drawing of G∗ given in Fig. 1(h), the edges
of G∗ ∪ Tn are crossed by each other subgraph T j , j 6= n at least four times and just four
crossings can be achieved for some subgraphs by which the edge v2v3 of G∗ is crossed.
Thus, the same idea of the subgraphH1 from Case 1 can also be applied. Finally, the edges
of G∗ ∪ Tn are crossed by each other subgraph T j , j 6= n at least five times if we consider
the last possible drawing of G∗ given in Fig. 1(i).

We have shown that there are at least 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ n +

⌊
n
2

⌋
crossings in each good

drawing D of G∗ +Dn, and the proof of Theorem 2.6 is done. �

3. SOME CONSEQUENCES OF THE MAIN RESULT

Each wheel Wm of m+ 1 vertices consists of two edge-disjoint subgraphs C?
m and S?

m.
First, we deal with the possibility of deleting one edge eS from the star S?

m ofWm. Berežný
and Staš [2] gave a conjecture regarding the crossing number of Wm +Dn equal to Z(m+
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1)Z(n) + [Z(m) − 1]
⌊
n
2

⌋
+ n, where Z(n) =

⌊
n
2

⌋⌊
n−1
2

⌋
is Zarankiewicz’s number, see

also [4]. Now, we are able to postulate that

(3.7) cr(Wm \ eS +Dn) = Z(m+ 1)Z(n) + [Z(m− 1)− 1]
⌊n
2

⌋
+ n,

for all integers m ≥ 4, n ≥ 1.
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FIGURE 4. The good drawing of Wm +Dn with exactly Z(m+ 1)Z(n) +
[Z(m)− 1]

⌊
n
2

⌋
+ n crossings.

For m ≥ 4, the upper bound for the conjecture (3.7) can be reached by removing the
edge v1vm+1 from the drawing in Fig. 4 because eS = v1vm+1 is crossed by each sub-
graph T i on the left side exactly dm2 e − 1 times. Note that for m = 3, the optimal drawing
of W3 \ eS + Dn with 2

⌊
n
2

⌋⌊
n−1
2

⌋
+
⌊
n
2

⌋
crossings could be obtained if we remove the

edge vdm2 evdm2 e+1. This special situation is first caused by the fact that the wheel W3 is
isomorphic to the complete graph K4, see also Klešč and Schrötter [25].

Recently, our conjecture (3.7) was proved for the graph W4 \ eS + Dn by Asano [1].
Theorem 2.6 also confirms the validity of this conjecture for W5 \ eS + Dn. On the other
hand, the graphs Wm \ eS +D1 and Wm \ eS +D2 contain a subgraph that is a subdivision
of the graph Wm−1 +D1 and Wm−1 +D2, respectively. The crossing numbers of the join
products of Wm with the discrete graphs D1 and D2 have been well-known by Berežný
and Staš [2].

Theorem 3.7 (see [2], Theorem 4.2). cr(Wm + D1) = 1 and cr(Wm + D2) = Z(m) + 1 for
m ≥ 3.

These facts allow us to determine another results for the join product of Wm \ eS with
the discrete graph on one and two vertices if m is at least four.

Corollary 3.1. cr(Wm \ eS + D1) = 1 and cr(Wm \ eS + D2) = Z(m − 1) + 1 for m ≥ 4,
m ∈ Z.



Conjectures about wheels without one edge 53

One can easily verify that these results also confirm the validity of our conjecture for
the graphs Wm \ eS +D1 and Wm \ eS +D2.

Now, let us turn to the possibility of deleting one edge eC from the cycle C?
m of Wm.

Harboth [7] gave an upper bound on the crossing number of the complete n-partite graph
Kx1,...,xn by which

(3.8) cr(K1,m,n) ≤ Z(m+ 1)Z(n) + Z(m)
⌊n
2

⌋
for all integers m,n ≥ 1.

Assuming the validity of Zarankiewicz’s conjecture that cr(Km,n) = Z(m)Z(n), the cross-
ing numbers of the complete tripartiteK1,m,n have been well-known by Yang and Wang [38].

Theorem 3.8 (see [38], Corollary 2). If Zarankiewicz’s conjecture is true, then

(3.9) cr(K1,m,n) = Z(m+ 1)Z(n) + Z(m)
⌊n
2

⌋
holds for all positive integers m and n.

Based on the arguments above, we are able to postulate that

(3.10) cr(Wm \ eC +Dn) = Z(m+ 1)Z(n) + Z(m)
⌊n
2

⌋
for all integers m ≥ 3, n ≥ 1.

Again for allm ≥ 3, the upper bound for the conjecture (3.10) can be reached by removing
the edge vdm2 evdm2 e+1 from the drawing in Fig. 4 because eC = vdm2 evd

m
2 e+1 is crossed by

each subgraph T i on the right side exactly once. On the other hand, the complete bipartite
graph K1,m is a subgraph of Wm \ eC , and therefore, cr(K1,m +Dn) ≤ cr(Wm \ eC +Dn).
This together with the exact value of cr(K1,m,n) by Theorem 3.8 imply the following result.

Corollary 3.2. If Zarankiewicz’s conjecture is true, then

(3.11) cr(Wm \ eC +Dn) = Z(m+ 1)Z(n) + Z(m)
⌊n
2

⌋
holds for all integers m ≥ 3, n ≥ 1.

Note that Norin and Zwols [30] obtained the best known asymptotic lower bound for
the crossing number of Km,n with m ≥ 9 in the form

lim
n→∞

cr(Km,n)⌊
m
2

⌋⌊
m−1
2

⌋⌊
n
2

⌋⌊
n−1
2

⌋ ≥ 0.905m

m− 1

which implies that Zarankiewicz’s conjecture mentioned above is ”asymptotically at least
90, 5% true”. Some useful remarks about Zarankiewicz’s conjecture were also stated by
Staš and Valiska [36], where another conjecture concerning CF-connectivity for Km,n fol-
lows from this one.

4. CONCLUSIONS

We expect that similar forms of discussions can be used to estimate unknown values of
the crossing numbers of other graphs on six vertices with a much larger number of edges
in the join products with discrete graphs, and also with paths and cycles. Especially for
the graph W5 \ e obtained by removing one edge (of both possible types) from W5 in the
join products with paths and cycles.
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[23] Klešč, M.; Schrötter, Š. The crossing numbers of join of paths and cycles with two graphs of order

five. In Lecture Notes in Computer Science: Mathematical Modeling and Computational Science; Springer:
Berlin/Heidelberg, Germany, 7125 (2012), 160–167.
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[35] Staš, M. The crossing numbers of join products of eight graphs of order six with paths and cycles. Carpathian
Mathematical Publications 15 (2023), no. 1, 66–77.
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