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On the existence and uniqueness of fixed points in Banach
spaces using the Krasnoselskij iterative method

M.A. HERNÁNDEZ-VERÓN 1 AND N. ROMERO2

ABSTRACT. We analyze the global convergence for the Krasnoselskij method. More specifically, we obtain
domains of global convergence in which we locate and separate fixed points of a given operator. To do that, we
use auxiliary points instead of imposing conditions on the solution, that is generally unknown. Then, we apply
our study to obtain fixed point type results. We finish our study by applying the results to Fredholm integral
equations.

1. INTRODUCTION

In this work we focus our study on locating a fixed point of an operator defined in
a Banach space and separating it from other possible fixed points. Banach contraction
principle is a very important tool in the theory of metric spaces. The Banach contraction
principle says [7]:

Theorem 1.1. LetX be a Banach space. Let T : X → X be a contraction mapping, with Lipschitz
constant k < 1. Then, T has a unique fixed point x∗ ∈ X . Moreover, for every x0 ∈ X, the method
of successive approximations, xn+1 = T (xn), n ∈ N, converges to x∗.

Obviously, this result can be applied only if the operator T has a unique fixed point x∗

in X . In addition, it is not necessary to separate it from other possible fixed points. Note
that, in this case, the method of successive approximations converges globally in X , that
is, this method converges starting at any point, x0 ∈ X ([1], [8]).

If the considered operator T has more than one fixed point, obviously, the previous re-
sult is not applicable. Therefore, we have to restrict to some domain of the space X where
there is only one fixed point of T . In this situation we consider the following theorem.
Notice that this is a fixed point theorem but restricted to K that is a non-empty closed
subset of a Banach space X .

Theorem 1.2. ([13]) If K is a non-empty closed subset of a Banach space X and the operator
T : K → K is a contraction, then T has a unique fixed point x∗ in K. Moreover, for every x0 ∈ K,
the method of successive approximations, xn+1 = T (xn), n ∈ N, converges to x∗.

In practice, to apply Theorem 1.2 it is necessary to have certain information about a
fixed point of the operator, otherwise the location of an non-empty closed subset, K, of
the Banach space X , is complicated. Another major difficulty to apply Theorem 1.2 is the
condition T : K → K, which usually turns out to be quite restrictive.

The main aim of this work is to offer an alternative to Theorem 1.2. Hence, we provide
a procedure that allows us to locate a fixed point of T and separate it from other possible
fixed points. To do this, we study global, semilocal and local convergence of an iterative
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scheme associated to operator T which has always special interest. From the analysis of
global convergence we obtain closed ball where the existence and uniqueness of fixed
point for T is guaranteed. We will also get semilocal convergence by assuming conditions
on initial approximations belonging to the ball in which the fixed point of T is located
and is unique. The local study is based on demanding conditions to a solution, from
certain conditions on the operator T , and provides the convergence ball, that shows the
accessibility to the solution from the initial approximations belonging to the ball.

In this paper, we consider the Krasnoselskij operator ([8]):

(1.1) Tα = (1− α)IΩ + αT,

where IΩ is the identity in Ω being Ω a non-empty open convex domain in the Banach
spaceX and α ∈ (0, 1]. Moreover, we focus our study on the qualitative properties of fixed
point. In particular, in this study we locate and separate the fixed points of T . Note that
operator (1.1) has the same fixed points as T , and has a better asymptotic behavior than
T itself [3]. Therefore, operator (1.1) can be used as an iteration function to approximate
fixed points of T . In our development we consider the operator T : Ω ⊆ X → X , a Fréchet
differentiable operator, where Ω as aforesaid.

Thus, we study the global convergence of the Krasnoselskij method ([2, 3, 10]):

(1.2) xn+1 = Tα(xn) = (1− α)xn + αT (xn), n ∈ N,

with x0 ∈ Ω ⊂ X given, and α ∈ (0, 1]. Notice that, the Successive Approximations
method is obtained for α = 1.

To study the global convergence of Krasnoselskij method (1.2), we consider conver-
gence conditions on the operator (1.1) not usually considered. In addition, we obtain do-
mains of global convergence for Krasnoselskij method (1.2) from auxiliary points x̃ ∈ X ,
see [6]. We obtain closed ball where the existence and uniqueness of fixed point for Tα is
guaranteed and consequently also for T . Moreover, we obtain conditions on x̃ that makes
it easier to find these balls which we be able to isolate a single fixed point of T .

Throughout the paper, we denote by (X, ‖ · ‖) a Banach space and B(x̃, R) := {x ∈
X; ‖x− x̃‖ ≤ R}, with x̃ ∈ X and R > 0.

The paper is organized as follows: In Section 2, we motivate the study considering
different Fredholm integral equations. In Section 3, for α ∈ (0, 1], we obtain a global
convergence result for Krasnoselskij method (1.2) from auxiliary points. Moreover, we
obtain both local and semi-local convergence results for method (1.2), see [11], [14]. And
finally, in Section 4, we apply the results obtained to locate and separate fixed points to
integral equations [9], in several situations.

2. MOTIVATION

An example to motivate our study, we consider a simple Fredholm linear integral equa-
tion [5]:

(2.3) x(s) = 2 s+ λ

∫ 1

0

s e−tx(t) dt, s ∈ [0, 1], λ ∈ R.

So, we take the integral operator

[T1(x)](s) = 2 s+ λ s

∫ 1

0

e−tx(t) dt, s ∈ [0, 1], λ ∈ R.

And, for u, v ∈ C[0, 1], we have

‖T1(u)− T1(v)‖ ≤ |λ|
(∫ 1

0

e−t dt
)
‖u− v‖ ≤ e− 1

e
|λ|‖u− v‖.
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Hence, T1 is a contraction in C[0, 1] if and only if |λ| < e
e−1 = 1.58198 . . . Therefore, in this

situation using Theorem 1.1, we can say that integral equation (2.3) with |λ| < 1.58198 . . .
has a unique solution x∗ in C[0, 1]. Moreover, the method of successive approximations
xn+1 = T1(xn), n ∈ N, converges to x∗ ∈ C[0, 1] for all x0 ∈ C[0, 1].

Next, we modify the linearity of the integral equation (2.3) and lose the uniqueness of
solution in C[0, 1]. So, we choose λ = 1

5 and consider

(2.4) x(s) = s+
s

5

∫ 1

0

e−tx(t)2 dt, x ∈ [0, 1],

which has solutions: x1(s) = 1.03437 . . . s and x2(s) = 30.0983 . . . s. Analogously to the
previous case, we take the operator

[T2(x)](s) = s+
s

5

∫ 1

0

e−tx(t)2 dt, s ∈ [0, 1],

and, for u, v ∈ C[0, 1], it is easy to obtain

‖T2(u)− T2(v)‖ ≤ 1

5

(∫ 1

0

e−t dt
)

(‖u‖+ ‖v‖)‖u− v‖.

Obviously, the operator T2 is not a contraction in C[0, 1]. Therefore, to be able to locate a
solution of the integral equation (2.4), we need to apply Theorem 1.2. Thus, we need to
find a non-empty closed domain where we can apply this result. So we have to get some
information about possible solutions. For this, we try to pre-locate them. Hence, if x∗ is a
possible fixed point of the operator T2, we have from (2.4) the following condition

‖x∗‖ ≤ 1 +
e− 1

5e
‖x∗‖2,

which is satisfied if ‖x∗‖ ≤ (5e −
√

5e(e + 4))/(2e − 2) = 1.17435 . . . or ‖x∗‖ ≥ (5e +√
5e(e + 4))/(2e − 2) = 6.73553 . . .. Therefore, if we consider K = B(0, 2) as the non-

empty closed subset of the space C[0, 1], then

‖T2(u)− T2(v)‖ ≤ 4(e− 1)

5e
‖u− v‖,

with 4(e−1)
5e = 0.5056 . . . < 1, and T2 is a contractive operator in K. Also, as

‖T2(x)‖ ≤ 1 +
e− 1

5e
22 = 1.5057 . . . < 2,

it follows that T2 : K → K. Hence, from Theorem 1.2, integral equation (2.4) has a unique
solution x∗ in B(0, 2). Moreover, the method of successive approximations, xn+1 =

T2(xn), n ≥ 0, converges to x∗ ∈ B(0, 2) for all x0 ∈ B(0, 2).
Next, we consider a small modification in (2.4) by substituting λ = 1

5 for λ = 1
2 . In this

case, we take the following integral operator

[T3(x)](s) = s+
1

2

∫ 1

0

s e−tx(t)2 dt, s ∈ [0, 1].

Obviously, the operator T3 is not a contraction in C[0, 1].
Based on the pre-location of a fixed point, we can think about looking for a non-empty

closed domain of the form B(0, r) ⊂ C[0, 1], so that the operator T3 : B(0, r) → B(0, r) is
a contraction on that ball. But, it is easy to check that this is not possible. Moreover, for
this integral equation it is not possible to locate previously a fixed point. Therefore, we
are not able to find domains such as B(0, r) where we can apply Theorem 1.2. In these
cases, we consider auxiliary points, x̃ ∈ Ω, to be able to locate a fixed point in closed ball
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B(x̃, R). Hence, as we show in section 4, we obtain a precise location of a fixed point and
we separate it from other possible ones with greater accuracy.

3. THE KRASNOSELSKIJ METHOD

Next, we obtain a global convergence result restricted to a certain ball, for Krasnoselskij
method (1.2) and a given α0 ∈ (0, 1]. For this study, we use auxiliary points that allow us
to obtain both local and semi-local convergence results as a consequence. From now on,
we consider T : Ω ⊆ X → X a continuously Fréchet differentiable operator defined on a
non-empty open convex domain Ω of a Banach space (X, ‖·‖). Fixed α0 ∈ (0, 1] and x̃ ∈ Ω
such that ‖T (x̃)− x̃‖ ≤ η̃, with η̃ ∈ R+, we suppose that the following conditions are true:

(K1) There exists qα0
: R+ → R+, a continuous and non-decreasing real function, such

that
‖(1− α0)IΩ + α0T

′(x)‖ ≤ qα0(‖x− x̃‖), for each x ∈ Ω.

(K2) Let be

(3.5) pα0
(t) :=

∫ 1

0

qα0
(τt) dτ.

There exists at least a positive real root for the scalar equation

(3.6) t(1− pα0(t))− α0η̃ = 0,

being r0 the smallest positive real root of equation (3.6).

3.1. Main convergence results.

Theorem 3.3. Suppose that the conditions (K1) and (K2) are verified. If qα0
(r0) < 1 and

B(x̃, r0) ⊆ Ω, then for all x0 ∈ B(x̃, r0) Krasnoselskij method (1.2) converges to x∗, the only
fixed point of T in B(x̃, r0), and xn ∈ B(x̃, r0), n ∈ N. Moreover,

(3.7) ‖xn − x∗‖ ≤
qα0(r0)n

1− qα0
(r0)
‖x1 − x0‖, n ∈ N.

Proof. If x0 ∈ B(x̃, r0), as x̃+ τ(x0 − x̃) ∈ B(x̃, r0) ⊆ Ω, it follows:

x1 − x̃ = (1− α0)(x0 − x̃) + α0(T (x0)− T (x̃)) + α0(T (x̃)− x̃)

=

∫ 1

0

[
(1− α0)IΩ + α0T

′(x̃+ τ(x0 − x̃))
]

(x0 − x̃) dτ + α0(T (x̃)− x̃).

Taking into account, (K1) and (3.6), we have

‖x1 − x̃‖ ≤
∫ 1

0

qα0(τ‖x0 − x̃‖) dτ‖x0 − x̃‖+ α0η̃

≤ pα0(r0)r0 + α0η̃ = r0.

Therefore, x1 ∈ B(x̃, r0).
Now, as T is a differentiable operator we have

x2 − x1 = (1− α0)(x1 − x0) + α0(T (x1)− T (x0))

=

∫ 1

0

[
(1− α0)IΩ + α0T

′(x0 + τ(x1 − x0))
]

(x1 − x0) dτ.
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Taking into account that, x0 + τ(x1 − x0) ∈ B(x̃, r0) ⊆ Ω, it follows

‖x2 − x1‖ ≤ qα0
(r0)‖x1 − x0‖ < ‖x1 − x0‖.

To continue, we suppose that x1, x2, . . . , xn−1 ∈ B(x̃, r0), and

‖xj+1 − xj‖ ≤ qω0
(r0)‖xj − xj−1‖ ≤ qω0

(r0)j‖x1 − x0‖, for j = 1, 2, . . . , n− 1.

By applying an inductive procedure, it follows that

xn − x̃ =

∫ 1

0

[
(1− α0)IΩ + α0T

′(x̃+ τ(xn−1 − x̃))
]

(xn−1 − x̃) dτ − α0(x̃− T (x̃)).

Therefore, as xn−1 ∈ B(x̃, r0), from (K1) and (3.6), we obtain

‖xn − x̃‖ ≤ pα0
(‖xn−1 − x̃‖)‖xn−1 − x̃‖+ α0η̃ ≤ pα0

(r0)r0 + α0η̃ = r0,

and then, xn ∈ B(x̃, r0).
On the other hand, it is easy to check that

xn+1 − xn =

∫ 1

0

[
(1− α0)IΩ + α0T

′(xn−1 + τ(xn − xn−1))
]

(xn − xn−1) dτ,

and taking into account that xn−1 + τ(xn − xn−1) ∈ B(x̃, r0) ⊆ Ω, from (K1), we have

‖xn+1 − xn‖ ≤ qα0(r0)‖xn − xn−1‖.
Consequently, it follows that

‖xn+1 − xn‖ ≤ qα0
(r0)‖xn − xn−1‖ ≤ qα0

(r0)n‖x1 − x0‖, for n ∈ N.
Next, we prove that {xn} is a Cauchy sequence and therefore a convergent sequence.

So, for n,m ∈ N ∪ {0}, we have

‖xn+m − xn‖ ≤
m∑
k=1

‖xn+k − xn+k−1‖

≤

(
m∑
k=1

qα0
(r0)k−1

)
‖xn+1 − xn‖

≤ 1− qα0
(r0)m

1− qα0(r0)
qα0(r0)n‖x1 − x0‖,

and therefore, {xn} is a Cauchy sequence and, there exists x∗ such that limxn = x∗.
Moreover, when m→∞, (3.7) is verified. Applying the continuity of the operator T :

lim
n→∞

xn+1 = lim
n→∞

Tα0
(xn) = lim

n→∞
((1− α0)xn + α0T (xn)) ,

that is,
x∗ = (1− α0)x∗ + α0T (x∗)

and then, it follows that T (x∗) = x∗.
To prove the uniqueness of x∗ we suppose that y∗ is another fixed point of T inB(x̃, r0).

Obviously, y∗ is another fixed point of Tα0. Hence,

x∗ − y∗ = Tα0
(x∗)− Tα0

(y∗) =

∫ 1

0

T ′α0
(y∗ + τ(x∗ − y∗))(x∗ − y∗)dτ,

so (IΩ − G) (x∗ − y∗) = 0 with

G = IΩ −
∫ 1

0

[(1− α0)IΩ + α0T
′(y∗ + τ(x∗ − y∗))] dτ.
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Thus, if G is invertible, then x∗ = y∗. Therefore, we will prove that G is invertible. By the
Banach lemma [7], we only have to prove that ‖IΩ − G‖ < 1. Indeed, from Theorem 3.3,
as y∗ + τ(x∗ − y∗) ∈ B(x̃, r0) ⊆ Ω, then

‖IΩ − G‖ ≤
∫ 1

0

‖(1− α0)IΩ + α0T
′(y∗ + τ(x∗ − y∗))‖

≤
∫ 1

0

qα0(‖y∗ + τ(x∗ − y∗)− x̃‖)dτ ≤ qα0(r0) < 1.

Then, the uniqueness of x∗ is proved. �

Notice that, the previous result proves the existence and the uniqueness of x∗ ∈ B(x̃, r0).
Moreover, for all x0 ∈ B(x̃, r0) the Krasnoselskij method converges to x∗.

So that, from the appropriate choice of the auxiliary point x̃, we can obtain both local
and semilocal convergence results. Thus, if we consider that there exists x̃ = x∗ a fixed
point of T , we obtain the following local convergence result for the Krasnoselskij method.

Corollary 3.1. Let us suppose that there exists x∗ ∈ Ω, a fixed point of T , and (K1) is verified for
x̃ = x∗. If there exists r > 0, such that qα0

(r) < 1 andB(x∗, r) ⊂ Ω, then for each x0 ∈ B(x∗, r)

Krasnoselskij method (1.2) converges to x∗, with xn ∈ B(x∗, r) for all n ∈ N. Moreover,

‖xn − x∗‖ < pα0
(r)nr,

and x∗ is the only fixed point of T in B(x∗, r).

Proof. We consider x0 such that x0 ∈ B(x∗, r), thus

x1 − x∗ = (1− α0)x0 + α0T (x0)− (1− α0)x∗ − α0T (x∗)

=

∫ 1

0

[
(1− α0)IΩ + α0T

′(x∗ + τ(x0 − x∗))
]

(x0 − x∗) dτ.

Therefore, from (K1) for x̃ = x∗, we obtain

‖x1 − x∗‖ ≤ pα0
(‖x0 − x∗‖)‖x0 − x∗‖,

where pα0
is given in (3.5). Furthermore,

pα0
(‖x0 − x∗‖) =

∫ 1

0

qα0
(τ‖x0 − x∗‖) dτ ≤ qα0

(‖x0 − x∗‖) ≤ qα0
(r) < 1.

Consequently, ‖x1 − x∗‖ ≤ pα0
(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r, so x1 ∈ B(x∗, r).

By mathematical induction, it is easy to check that xn ∈ B(x∗, r) and ‖xn − x∗‖ ≤
qα0

(r)n‖x0 − x∗‖, for n ∈ N. Therefore, {xn} converges to x∗.
Moreover, it follows ‖xn − x∗‖ < pα0(r)nr.
To finish, as in Theorem 3.3, the uniqueness of fixed point x∗ is proved. �

Next, taking x̃ = x0, we obtain the following semilocal convergence result.

Corollary 3.2. Let us suppose that conditions (K1)−(K2) are verified for x̃ = x0. If qα0
(r0) < 1

and B(x0, r0) ⊂ Ω, then Krasnoselskij method (1.2) converges to x∗, a fixed point of T , with
xn, x

∗ ∈ B(x0, r0), n ∈ N.
Moreover,

‖xn − x∗‖ ≤
qα0

(r0)n

1− qα0
(r0)
‖x1 − x0‖, n ∈ N,
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and x∗ is the only fixed point of T in B(x0, r0).

Proof. Analogously to the proof of Theorem 3.3, since r0(1 − pα0
(r0)) = α0η0 it follows

that α0η0 < r0. Therefore, as ‖x1 − x0‖ ≤ α0η0, x1 ∈ B(x0, r0). The rest of the proof is
analogous to that of Theorem 3.3. �

Next, we introduce a small modification to condition (K2) .

Theorem 3.4. Let us suppose that T (x̃) 6= x̃ and condition (K1) is verified. If there exists
R ∈ R+, such that

(3.8) η̃ ≤ (1− qα0(R))R

α0
,

with B(x̃, R) ⊂ Ω, then for all x0 ∈ B(x̃, R) Krasnoselskij method (1.2) converges to x∗, the only
fixed point of T in B(x̃, R), and xn ∈ B(x̃, R), n ∈ N.

Moreover,

(3.9) ‖xn − x∗‖ ≤
qα0(R)n

1− qα0
(R)
‖x1 − x0‖, n ∈ N.

Proof. Notice that, η̃ > 0 and, from (3.8), qα0(R) < 1. If x0 ∈ B(x̃, R), we have

x1 − x̃ =

∫ 1

0

[
(1− α0)IΩ + α0T

′(x̃+ τ(x0 − x̃))
]

(x0 − x̃) dτ + ω0(T (x̃)− x̃).

Now, from (K1), taking into account that q is non-decreasing and (3.8), it follows

‖x1 − x̃‖ ≤ qα0(R)R+ (1− qα0(R))R = R,

therefore x1 ∈ B(x̃, R).
On the one hand, as

x2 − x1 =

∫ 1

0

[
(1− α0)IΩ + α0T

′(x0 + τ(x1 − x0))
]

(x1 − x0) dτ,

we have

‖x2 − x1‖ ≤
∫ 1

0

qα0
(‖x0 + τ(x1 − x0)− x̃‖) dτ‖x1 − x0‖ ≤ qα0

(R)‖x1 − x0‖ < ‖x1 − x0‖,

since x0 + τ(x1 − x0) ∈ B(x̃, R) and qω0
(R) < 1.

Next, by mathematical induction it is easy to prove that

xn ∈ B(x̃, R) and ‖xn+1 − xn‖ ≤ qω0
(R)n‖x1 − x0‖, for n ∈ N.

On the other hand, for n,m ∈ N ∪ {0}, we have

‖xn+m − xn‖ ≤
1− qα0

(R)m

1− qα0
(R)

qα0
(R)n‖x1 − x0‖,

and therefore {xn} is a Cauchy sequence in a Banach space X . Hence, there exists x∗ ∈
B(x0, r0) such that limxn = x∗. By the continuity of T , it follows that T (x∗) = x∗. Besides,
when m→∞, (3.9) is verified.

The uniqueness of x∗ inB(x0, r0) it follows as Theorem 3.3. So, the result is proved. �
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Notice that, in this situation, the condition imposed on the parameter η̃ in (3.8) leads
us to look for the value of R which, obviously, is a similar process to the one considered
in condition (K2) of Theorem 3.3. Observe that if the condition (3.8) does not hold for all
α ∈ (0, 1], we can find a value α0 such that we can ensure the convergence of Krasnoselskij
method (1.2).

If condition (3.8) holds for R ∈ (a, b), then we consider the ball B(x̃, ã), with ã a value
close to a, to obtain a better domain of existence for the fixed point, while we take the ball
B(x̃, b̃), with b̃ a value close to b, to obtain a better uniqueness domain. The last situation
also give us the best global convergence domain for the Krasnoselskij method.

Finally, from this result, the corresponding local and semilocal results for the Kras-
noselskij method can be obtained, as the Corollaries 3.1 and 3.2.

3.2. Other types of conditions. Now we focus on Theorem 3.3 condition (i), analyzing
its level of restriction for the operator T . As we have already indicated in the intro-
duction, this condition (i) arises from requiring a certain condition to the iteration func-
tion Tα. More specifically, the Fréchet derivative operator of Tα is given by [T ′α(x)]y =
(1− α)Iα(y) + α[T ′(x)]y.

Next, we consider the convergence conditions usually considered in the study of the
convergence of iterative processes [12]. Obviously, all of them given on the operator T .
Now, we consider a contraction condition for the Fréchet differentiable operator T .

Theorem 3.5. Let us suppose that ‖T ′(x)‖ ≤ M < 1 for x ∈ Ω. If there exists x̃ ∈ Ω with

‖T (x̃) − x̃‖ ≤ η̃, such that B(x̃,
η̃

1−M
) ⊂ Ω, then, there exists x∗ the only fixed point of T in

B(x̃,
η̃

1−M
), such that for each x0 ∈ B(x̃,

η̃

1−M
) the sequence {xn} given by the Krasnoselskij

method (1.2) for any α ∈ (0, 1], converges to x∗. Moreover,

(3.10) ‖x∗ − xn‖ ≤
Mn

1−M
‖x1 − x0‖, n > 1.

Proof. Consider any α ∈ (0, 1]. It is easy to check that

‖(1− α)IΩ + αT ′(x)‖ ≤ 1− α(1−M),

so, in this case qα(t) is a constant real function with qα(t) = 1− α(1−M) < 1.

Now, there exists r0 =
η̃

1−M
the smallest positive real root of equation t(1− pα(t))−

αη̃ = 0 with pα(r0) < 1 and B(x̃, r0) ⊂ Ω, and by applying Theorem 3.3 the result is
proved. �

As we have just seen, we can obtain a fixed point result restricted to a closed ball.
Obviously, this result gives us a more precise location of the fixed point than if we apply
the Restricted Fixed Point Theorem to the domain K and without requiring T : K → K.

Next, we consider a Lipschitz condition for the operator T ′.

Theorem 3.6. Let us suppose that there exists a K > 0 such that

‖T ′(x)− T ′(y)‖ ≤ K‖x− y‖ for all x, y ∈ Ω.

If there exists x̃ ∈ Ω such that ‖T (x̃)− x̃‖ ≤ η̃ and ‖T ′(x̃)‖ ≤ L with L ≤ 1−
√

2Kη̃, such that
B(x̃, R) ⊂ Ω where

R =
1− L−

√
(1− L)2 − 2Kη̃

K
,
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then, there exists x∗ the only fixed point of T in B(x̃, R), such that Krasnoselskij method (1.2), for
α ∈ (0, 1], converges to x∗, for all x0 ∈ B(x̃, R).

Moreover,

‖xn − x∗‖ ≤
qα(R)n

1− qα(R)
‖x1 − x0‖, n ∈ N,

where qα(t) = 1− α(1− L) + αKt.

Proof. Given x̃ ∈ Ω and α ∈ (0, 1], from Lipschitz condition on T ′, we have

‖(1− α)IΩ + αT ′(x)‖ ≤ 1− α+ α(‖T ′(x̃‖+K‖x− x̃‖) ≤ 1− α(1− L) + αK‖x− x̃‖,

therefore qα(t) = 1 − α(1 − L) + αKt and pα(t) = 1 − α(1 − L) +
αK

2
t, and applying

Theorem 3.3, we obtain that r0 = R with qα(R) < 1 and the result is proved. �

Notice that, if K = 0 then T is a linear operator. Hence, T has an unique fixed point.
Finally, we consider T an operator twice continuously differentiable Fréchet with sec-

ond derivative φ-bounded.

Theorem 3.7. Fixed, α0 ∈ (0, 1], let us suppose the following conditions:
(I) ‖T ′′(x)‖ ≤ φ(‖x‖) for x ∈ Ω, where φ is a non-decreasing real function

with φ : R+ → R+.
(II) There exists x̃ ∈ Ω, with ‖T (x̃)− x̃‖ ≤ η̃, such that ‖T ′(x̃)‖ ≤ L < 1.

(III) There exists at least a positive real root of scalar equation

t(1− pα0
(t))− α0η̃ = 0,

where pα0(t) = 1−α0(1−L) +α0

∫ 1

0
φ(‖x̃‖+ τt)τt dτ, and we denote by

R the smallest positive real root.

If B(x̃, R) ⊂ Ω and qα0
(R) < 1, for qα0

(t) = 1 − α0(1 − L) + α0φ(‖x̃‖ + t)t, then, there
exists x∗ the only fixed point of T inB(x̃, R), such that Krasnoselskij method (1.2), for α0 ∈ (0, 1],
converges to x∗ for all x0 ∈ B(x̃, R).

Moreover,

‖x∗ − xn‖ ≤
qω0

(R)n

1− qω0(R)
‖x1 − x0‖, n ∈ N.

Proof. By Taylor’s series, we have

[T ′α0
(x)](y) = (1− α0)y + [T ′(x)](y) = (1− α0)y + [T ′(x̃) + T ′′(x̃+ τ(x− x̃))(x− x̃)](y),

for all x, y ∈ Ω, τ ∈ [0, 1]. Then,

‖(1− α0)IΩ + α0T
′(x)‖ ≤ 1− α0(1− ‖T ′(x̃)‖) + α0‖T ′′(x̃+ τ(x− x̃))‖‖x− x̃‖

≤ 1− α0(1− ‖T ′(x̃)‖) + α0φ(‖x̃+ τ(x− x̃)‖)‖x− x̃‖

≤ 1− α0(1− ‖T ′(x̃)‖) + α0φ(‖x̃‖+ ‖x− x̃‖)‖x− x̃‖.

Therefore, ‖(1−α0)IΩ+α0T
′(x)‖ ≤ qα0(‖x−x̃‖) with qα0(t) = 1−α0(1−L)+α0φ(‖x̃‖+t)t,

and applying Theorem 3.3, the result is proved. �
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4. NUMERICAL EXAMPLES

In this section, we check the good applicability of the fixed point type results that we
have obtained with three numerical examples. These results will allow us to locate and
separate fixed points in situations where Theorem 1.2 is not applicable.

We consider the operator T2 given in Section 2:

[T2(x)](s) = s+
1

5
s

∫ 1

0

e−tx(t)2 dt, s ∈ [0, 1].

As we have already seen in Section 2, operator T2 is not contractive in C[0, 1], however
from Theorem 1.2, has a unique fixed point x∗ in B(0, 2).

Now, applying Corollary 3.2, we obtain a more precise location of a fixed point of T2.
We consider x0(s) = s, and taking into account the pre-location of fixed points of T2 we

take Ω = B(0, 2). Therefore, we obtain ‖T (x0)− x0‖ ≤ η0 =
2e− 5

5e
and

‖(1−α0)IΩ+α0T
′(x)‖ ≤ qα0

(‖x−x0‖) = 1+
(2(e− 1)‖x− x0‖ − (4 + 3e))α0

5e
, for each x ∈ Ω,

being qα0 a continuous and non-decreasing real function. Hence,

pα0
(t) = 1 +

(e(t− 3)− (t+ 4))α0

5e

and r0 = 0.0361011 is the smallest positive real root of

t(1− pα0
(t))− α0η0 = 0, α0 ∈ (0, 1].

Moreover, qα0
(r0) = 1 − 0.885175α0 < 1 and B(s, 0.0361011) ⊂ B(0, 2). Thus, Krasnosel-

skij method (1.2) for α0 ∈ (0, 1], converges to x∗ = 1.03437 . . . s a fixed point of T2, with
xn, x

∗ ∈ B(s, 0.0361011), for n ∈ N. Notice that, there is no restriction for the parameter
α0. Furthermore,

(4.11) ‖x∗ − xn‖ ≤
qα0

(r0)n

1− qα0(r0)
‖x1 − x0‖, n ∈ N

and x∗ is the only fixed point of T2 in B(s, 0.0361011).
And from here, the numerical results that appear in Table 1 are followed, where we

show the number of iterations, indicated by n, necessary to converge to x∗ with the Kras-
noselskij method applied to T2. We consider stopping criterion ‖xn − x∗‖ < 10−3 and
α0 = 0.5, 0.9, 1. Moreover, we show the error for the last iteration in each case as well as
the a priori estimates (4.11).

ω0 n ‖xn − x∗‖ a priori estimates (4.11)
0.5 8 2.24107 . . .× 10−4 6.76424 . . .× 10−4

0.9 3 1.39216 . . .× 10−4 3.39013 . . .× 10−4

1 2 1.4906 . . .× 10−4 4.78461 . . .× 10−4

TABLE 1. Numerical results for the Krasnoselskij method applied to T2,
from x0(s) = s.

Notice that, in this case, when α0 is close to 1 the Krasnoselskij method applied to
operator T2 behaves better than the other cases.
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Next, we study the location of a fixed point for the operator T3, considered in Section
2, and given by

[T3(x)](s) = s+
s

2

∫ 1

0

e−tx(t)2 dt, s ∈ [0, 1].

As already indicated in Section 2, this operator is not contractive in C[0, 1]. T3 does not
admit the possible pre-location of its fixed points, nor is it possible to locate domains of
the form B(0, r) in which it is contractive. Therefore, neither the application of Theorem
1.2 seems simple. However, applying Theorem 3.4 we will be able to locate a fixed point of
this operator and separate it from other possible fixed points. In addition, we approximate
a fixed point using the Krasnoselskij method, obtaining global convergence. For this, we
consider the auxiliary point x̃(s) = s in Ω = C[0, 1]. Hence, it is easy to check that

‖x̃− T3(x̃)‖ ≤ 2e− 5

2e
= η̃.

On the other hand, fixed α0 ∈ (0, 1], T ′3(x) = T ′3(x̃) + T ′′3 (x̃)(x− x̃) for each x ∈ Ω. And, it
follows

‖(1− α0)IΩ + α0T
′
3(x)‖ ≤ 1− α0 +

e− 2

e
α0 + α0

e− 1

e
‖x− x̃‖.

Thus, qα0
(t) = 1+α0

(
−2

e
+

e− 1

e
t

)
. Next, taking into account (3.8), we obtain that there

existsR ∈ (0.121909 . . . 1.04204 . . .) satisfying this condition. Therefore, from Theorem 3.4,
we obtain that T3 has a fixed point in B(s, 0.13) and this is the only in B(s, 1.04).

In the previous development, we have seen that there is no restriction for the parameter
α0, so we can apply the Krasnoselskij method for any value α0 ∈ (0, 1]. Proceeding as in
the previous example, in Table 2, we show the number of iterations, indicated by n, that
the Krasnoselskij method needs to converges to x∗ = 1.09655 . . . s with T3(x∗) = x∗ and
stopping criterion ‖xn − x∗‖ < 10−5 and α0 = 0.3, 0.9, 1. Moreover, we show the error for
the last iteration in each case as well as the a priori estimates (4.11) of the error provided
by Theorem 3.3. Notice that, as above, the Krasnoselskij method applied to T3 behaves
better as long as the value of α0 is close to 1.

ω0 n ‖xn − x∗‖ a priori estimates (4.11)
0.3 35 4.61142 . . .× 10−6 2.36606 . . .× 10−5

0.9 9 4.79792 . . .× 10−7 1.67272 . . .× 10−5

1 9 1.49066 . . .× 10−8 3.5308 . . .× 10−9

TABLE 2. Numerical results for the Krasnoselskij method applied to T3,
from x0(s) = s.

Next, we consider another type of condition for our study. So, we consider a non-linear
integral equation of Fredholm type considered in [4],

x(s) = sin(πs) + cos(πs)λ

∫ 1

0

sin(πt)x(t)3 dt, s ∈ [0, 1], λ ∈ R \ {0}.

In this case, we take the operator T : C[0, 1]→ C[0, 1] given by

[T (x)](s) = sin(πs) + cos(πs)λ

∫ 1

0

sin(πt)x(t)3 dt, s ∈ [0, 1], λ ∈ R \ {0}.

Then, we have

‖T ′(x)‖ ≤ 3|λ|
π
‖x‖2
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Hereafter, we consider M = 0.9. Thus, we have ‖T ′(x)‖ ≤ M < 1 in Ω = B

(
0,

√
Mπ

3|λ|

)
.

Moreover, we take x̃(s) = sin(πs) and obtain

‖T (x̃)− x̃‖ ≤ |λ|
π
‖x̃‖3 ≤ |λ|

π
= η̃.

Now, it is easy to check that B
(

sin(πs),
10|λ|
π

)
⊂ Ω if |λ| ∈ (0, 0.271341). Therefore,

by Theorem 3.5, for each |λ| ∈ (0, 0.271341), there exists only one fixed point of T in

B

(
sin(πs),

10|λ|
π

)
.

5. CONCLUSIONS

In this study we have addressed two issues related to the Fixed Point Theorem. On the
one hand, we obtain a more precise location of fixed points than Theorem 1.2 by means of
closed balls. To do that, we consider the Krasnoselskij method to approximate the fixed
point, instead of the method of successive approximations. Moreover, by using auxiliary
points, we obtain procedures to obtain domains of global convergence in which we locate
and separate fixed points.
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