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From Modular Spaces to Boundary Value Problems: A
Survey of Recent Advances
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ABSTRACT. This survey explores the recent discovery of the connection between the geometry of modular
spaces and partial differential equations with non-standard growth. Specifically, we demonstrate the solvability
of the non-homogeneous Dirichlet problem for the variable exponent p(·)-Laplacian. We place special emphasis
on the case when the variable exponent p(·) is unbounded and the boundary data is in the variable exponent
Sobolev space W 1,p(·)(Ω).
Tracing the historical development from Riesz’s introduction of the Lp(·)-spaces through the contributions by
Orlicz and Nakano to further advances at the end of the twentieth century, we examine the properties and geo-
metric characteristics of modular spaces. We discuss the uniform convexity of modulars on Lp(·), ℓp(·), and W 1,p(·)

and discuss its essential role in the analysis of the Dirichlet problem for the p(·)-Laplacian when the variable ex-
ponent p is unbounded. It will be evident from our analysis that the Banach space structure is inadequate in
treating this case.

1. INTRODUCTION

The purpose of this survey is twofold: it is intended to report recent advances in the theory of
partial differential equations with non-standard growth and, on the other side, to bring attention to
the overlooked connection between the classical modular space theory and boundary value prob-
lems involving variable exponent spaces.
More precisely, let Ω ⊂Rn be a bounded domain with smooth boundary ∂Ω and p : Ω → (1,∞) be
measurable. We will be concerned with the variable exponent p(·)-Laplacian

(1.1) ∆p(·)u = div
(
|∇u|p(·)−2

∇u
)
.

Our main focus is the recently obtained result (Theorem 5.5) on existence and uniqueness in the
variable exponent Sobolev space W 1,p(·)(Ω) of the solution of the non-homogeneous Dirichlet
problem

(1.2)

{
∆p(·)(w) = div

(
|∇w|p(·)−2∇w

)
= 0 in Ω,

w|∂Ω = ϕ,

with n < p− = inf
x∈Ω

p(x) and p(x) < ∞ a.e. and suitable boundary datum. Notice that we include

the case p+ = sup
x∈Ω

p(x) = ∞.

The point to be brought to the foreground here is that the standard Banach space techniques
traditionally employed for treating boundary value problems are not fully adequate for handling
(1.2).
The reason behind this statement is that the differential operator ∆p(·) acts on C∞

0 (Ω) (in the sequel
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this will symbolize the vector space of infinitely differentiable, compactly supported functions
defined on Ω) as the derivative of the functional

u → D(u) =
∫

Ω

p(x)−1|∇u(x)|p(x)dx,

which is modular in nature (in fact, it is a pseudo-modular in the terminology of [30]). Therefore,
all topological issues involved when dealing with D are modular in principle. As long as the ex-
ponent p(x) is bounded, that is, if p+ < ∞, modular convergence in the sense of D is equivalent to
norm convergence; this is the reason behind the essential difference between the modular topology
and the normal topology being invisible in this case. For p+ < ∞, the problem can be dealt with
the well-known Banach space techniques.
However, when p+ = ∞, the modular topology, and the norm topology part ways, the former being
much weaker than the latter. It is at this point that a departure from the traditional approach is in
order, and a deep understanding of the modular topology is indispensable.

To smoothly expound our ideas, some historical background on the theory of modular spaces
will be presented in Section 2; Section 3 will be devoted to the basic properties of such spaces.
Section 4 will deal with the geometrical properties of modular spaces and their implications. In
Section 5, the background material will be applied to study boundary value problems, and the proof
of the main theorems alluded to in the introduction will be sketched.

2. SOME HISTORICAL CONTEXT

In his groundbreaking work, [36], F. Riesz introduced the Lp(·) class (for a constant p : 1 ≤ p <

∞) as the collection of all Lebesgue-measurable functions f on [a,b] for which
∫ b

a | f (x)|pdx < ∞

[36, p.457] and defined convergence f j → f in the class Lp(·) through the equality [36, p.464]

lim
j→∞

∫ b

a
| f j(x)− f(x)|pdx = 0.

Not surprisingly, thus, rather than working with norms, which were not introduced until the 1930s,
Riesz was dealing with the functional

ρp( f ) =
∫ b

a
| f (x)|pdx.

In 1931, W. Orlicz [33, p.207] ventured one step further and defined the Lp(·)([0,1]) class for a
variable exponent p(x) > 1, itself a measurable function on [0,1]. In the spirit of Riesz, Orlicz
defined convergence in this class using the functional

ρp(·)( f ) =
∫ b

a
| f (x)|p(x)dx,

namely by declaring f j → f if and only if

ρp(·)( f − f j) =
∫ b

a
| f (x)− f j(x)|p(x)dx → 0 as j → ∞.

It is worthwhile to point out a fundamental difference between the functionals ρp and ρp(·), namely,

(ρp( f ))
1
p is a norm on the class Lp(·)([0,1]), whereas no power of ρp(·) is a norm on Lp(·)([0,1]).

Another two decades passed before the structure implied by the properties of ρp(·) was studied ab-
stractly in [31], thus originating the concept of modular space. The significant weakness of mod-
ulars relative to norms represented a disadvantage. This was because modular structures remained
underappreciated for a long period, and their study was mostly directed toward the underlying
normed-space structure. We refer the reader to [30] and the references therein for a detailed ac-
count of the theory of modular spaces up to the early 1980’s. In 1979, Sharapudinov [37] studied
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some topological properties of the space Lp(·)([0,1]).
The next stage in the evolution of the subject was the emergence of an interest in the geomet-
ric aspect of the theory of modular spaces, impulsed by the desire to determine the existence of
fixed points for mappings that are nonexpansive in the modular sense. This question was answered
in [14, Theorem 3.5]. The modular uniform convexity and the applications discussed in [14] were
further developed in [15, 16] for the particular case of Orlicz spaces.
Simultaneously, advances made in material sciences led to the need for suitable mathematical mod-
eling for the hydrodynamics of non-Newtonian fluids. As it turns out, the behavior of such fluids
cannot be described using the classical equations of hydrodynamics; their mathematical description
led naturally to partial differential equations with non-standard growth, whose analysis requires
variable exponent Lebesgue spaces [9,34,35]. The seminal paper [19] summarizing the functional
analytic properties of variable exponent Lebesgue and Sobolev appeared in 1991.
A period of singularly intense research activity on variable exponent function spaces and boundary
value problems involving operators with non-standard growth followed, and to an extent continues
until today, see for example [1,2,6,7,9–11,19,24,25,27,28,39–41] and their included references.
Yet, without exception, only the case p+ < ∞ has been considered, and the unbounded case re-
mained elusive.

We set out to briefly survey recent advances in overcoming this restriction.

3. PRELIMINARIES

Today, it is widely acknowledged that the normed space framework is overly rigid and may
not fully capture certain intricate mathematical nuances that become apparent with a more flexible
approach. One significant example, central to the focus of this work, is the modular nature of the
variable exponent p-Laplacian. Keeping this in perspective, we aim to provide a concise overview
of definitions and established findings. For a deeper exploration of the topics in this section, inter-
ested readers are encouraged to consult [9, 19–21, 26, 29, 30].

Definition 3.1. [30, 31] A convex modular on a real vector space X is a function ρ : X → [0,∞]
that satisfies the following conditions:

(1) ρ(x) = 0 if and only if x = 0;
(2) ρ(αx) = ρ(x), if |α|= 1;
(3) ρ(αx+(1−α)y)≤ αρ(x)+(1−α)ρ(y), for any α ∈ [0,1] and any x,y ∈ X.

Moreover, ρ is considered to exhibit left-continuity if, for all x ∈ X,

lim
r→1−

ρ(rx) = ρ(x).

Remark 3.1. If the condition (1) is replaced with

ρ(0) = 0,

then ρ is said to be a pseudo-modular [30].

A modular function defined on a vector space X naturally induces a modular space.

Definition 3.2. Given a convex modular function ρ on the vector space X, its associated modular
space is defined by:

Xρ = {x ∈ X ; lim
α→0

ρ(αx) = 0}= {x ∈ X ; ρ(αx)< ∞ f or some α > 0}.

The Luxemburg norm, represented as ∥ · ∥ρ and defined on the vector space Xρ , is expressed as
follows:

∥x∥ρ := inf
{

α > 0; ρ

( x
α

)
≤ 1
}
.
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The primary examples addressed in this study are listed below.

Example 3.1. [33] For p : N→ [1,∞), consider the linear space ℓp(·) defined as

ℓp(·) =
{
(xn)⊂ RN; there exists β > 0 for which

∞

∑
n=0

1
p(n)

∣∣∣∣xn

β

∣∣∣∣p(n) <+∞

}
.

The functional ρp : ℓp(·) → [0,∞] given by

ρp(x) = ρp((xn)) =
∞

∑
n=0

1
p(n)

|xn|p(n)

is a convex modular functional. Likewise, the functional

ρ
∗
p(x) = ρ

∗
p((xn)) =

∞

∑
n=0

|xn|p(n)

defines a convex modular on the modular vector space (which coincides with ℓp(·)):

ℓp(·) =
{
(xn)⊂ RN; there exists α > 0 for which

∞

∑
n=0

∣∣∣xn

α

∣∣∣p(n) <+∞

}
.

Notably, the Luxemburg norms associated with ρp and ρ∗
p are equivalent. □

The ℓp(·) spaces have a continuous counterpart, as illustrated in the following example.

Example 3.2. Let Ω ⊂ Rn be a nonempty measurable subset. The notation M (Ω) will stand for
the collection of all extended real-valued Borel-measurable functions defined on Ω. Let P(Ω)
represent the subset of M (Ω) consisting of functions p : Ω −→ [1,∞] such that p(x)< ∞ a.e. The
functional ρp : M (Ω)−→ [0,∞], defined by

ρp(u) =
∫

Ω

1
p(x)

|u(x)|p(x) dx,

is a convex modular on M (Ω). The corresponding modular vector space is denoted by Lp(·)(Ω).
The functional ρ∗

p : M (Ω)−→ [0,∞], defined by

ρ
∗
p(u) =

∫
Ω

|u(x)|p(x) dx

is also a convex modular and, in addition, it holds that

Lp(·)(Ω) =
{

u ∈ M (Ω); there exists β > 0 for which ρ
∗
p

(
u
β

)
<+∞

}
,

i.e., the associated modular vector space for ρ∗
p is Lp(·)(Ω). As in the discrete case, the Luxemburg

norms associated with ρp and ρ∗
p are equivalent.

Yet, one can easily construct a sequence (uk)⊂ Lp(.)(Ω) where ρp(uk)→ 0 but ρ∗
p(uk) ̸→ 0 as k →

∞. Indeed, consider Ω = (0,1/2), p(x) = 1/x, define uk(x) = k
2
k 1( 1

k+1 ,
1
k )
(x), for each k ≥ 1. □

Example 3.3. Let Ω⊂Rn be a nonempty measurable subset. The spaces M (Ω) and P(Ω) are de-
fined as in the Example 3.2. On the set V (Ω)⊂ M (Ω) comprising functions whose distributional
derivatives belong to M (Ω), we have the convex modular ρ1,p : V (Ω)→ [0,∞] defined by

ρ1,p(u) := ρp(u)+ρp (|∇u|) =
∫

Ω

|u(x)|p(x)

p(x)
dx+

∫
Ω

|∇u|p(x)

p(x)
dx,

where |∇u| denotes the Euclidean norm of the gradient of u. The space W 1,p(·)(Ω) is defined as
the class of those functions u ∈ V (Ω), such that there exists λ > 0 satisfying ρ1,p(λu) < ∞. The



From Modular Spaces to Boundary Value Problems: A Survey of Recent Advances 429

Luxemburg norm ∥ · ∥1,p, which corresponds to the modular ρ1,p is equivalent to the Luxemburg
norm resulting from replacing ρp with ρ∗

p , defined as

ρ
∗
1,p(u) := ρ

∗
p(u)+ρ

∗
p (|∇u|) =

∫
Ω

|u(x)|p(x) dx+
∫

Ω

|∇u|p(x) dx.

□

Remark 3.2. It is well known (and easy to verify) that if p is constant on Ω, the variable exponent
function spaces Lp(·)(Ω) and W 1,p(·)(Ω) coincide with their classical counterparts.

It is at this point plain that given a modular vector space Xρ , two modes of convergence are
automatically coexisting. Definition 3.3 clarifies this point.

Definition 3.3. [13] Let ρ be a convex modular function defined on the vector space Xρ . The
following notations will be used for convergence:

(i) xk
ρ→ x iff ρ(xk − x)→ 0 as k → ∞ (modular convergence);

(ii) xk
∥·∥ρ→ x iff ∥xk − x∥ρ → 0 as k → ∞ (norm convergence);

for any sequence (xk) in Xρ .

The two convergence concepts are equivalent if and only if ρ satisfies the following condition
(known as the ∆2-condition): For any sequence (xk)⊂ Xρ , the implication

lim
k→∞

ρ(xk) = 0 =⇒ lim
k→∞

ρ(2xk) = 0

holds.
For further discussions on the ∆2-condition, its significance, and related variants, refer to [13, 30].
In the particular case of the modular spaces ℓp(·), Lp(.)(Ω) and W 1,p(·)(Ω), the ∆2-condition holds
if and only if there exists a positive constant K such that

ρ(2x)≤ K ρ(x), for all x ∈ Xρ .

The latter is equivalent to the boundedness of exponent p(·) on Ω [9,19]. In this work, the following
notation will consistently be used:

p− := inf
x∈Ω

p(x) and p+ := sup
x∈Ω

p(x).

Thus, the ∆2 conditions holds if and only if p+ < ∞.

The modular itself establishes a topology on Xρ (referred to as the modular topology, whose open
sets will be detailed shortly) via the modular convergence discussed earlier. Consequently, if p(·) is
unbounded, the modular topology within any modular vector space such as Lp(·)(Ω) and W 1,p(·)(Ω)
differs from, and is strictly weaker than, the norm topology. To introduce the solution spaces for the
variable exponent p(·)-Laplacian (Definition 3.8), a succinct description of the modular topology
and a brief discussion of its key properties will be presented.

Definition 3.4. [13] The open modular ball Bo
ρ(x,r), centered at x ∈ Xρ with radius r > 0, is

defined as
Bo

ρ(x,r) = {y ∈ Xρ ; ρ(x− y)< r}.
Analogously, the set Bρ(x,r), defined by

Bρ(x,r) = {y ∈ Xρ ; ρ(x− y)≤ r}

will be referred to as the closed modular ball centered at x ∈ Xρ with radius r > 0.
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As shall be apparent in the sequel, the modular topology can be entirely described by modular balls.
The concept of modularly closed subsets in a modular space has been introduced in the literature,
specifically:

Definition 3.5. [13, 30] A subset C of Xρ is said to be ρ-closed if, for any sequence (xk) in C that
ρ-converges to x, it holds that x ∈C.

The terminology is deliberate. Indeed, the family of all complements of ρ-closed subsets of Xρ

forms a topology on Xρ .

Definition 3.6. A subset B ⊆ Xρ is defined to be ρ-open if and only if Xρ \B is ρ-closed.

The following result characterizes the ρ-open subsets:

Proposition 3.1. Let A be a subset of Xρ . The following statements are equivalent
(1) A is ρ-closed;
(2) for any x in Ac = Xρ \A, there exists ε > 0 such that

Bo
ρ(x,ε)⊂ Ac = Xρ \A,

i.e., Bo
ρ(x,ε)∩A = /0.

The proof is straightforward. Consequently, the ρ-open subsets of Xρ can be characterized through
the following proposition; its proof is elementary and will be omitted.

Proposition 3.2. A subset B of Xρ is ρ-open if and only if for any x ∈ B, there exists ε > 0 such
that Bo

ρ(x,ε)⊂ B.

It is simple to confirm that the set of modularly open subsets of Xρ constitutes a topology, which
in the sequel will be denoted by τρ and referred to as the modular topology. It is well established
that modularly closed ρ-balls are ρ-closed, provided the modular ρ satisfies the Fatou property,
a condition satisfied by modulars ρp and ρ1,p. In precise terms, a modular ρ satisfies the Fatou
property if, whenever (yn) ρ-converges to y ∈ Xρ , the inequality

ρ(x− y)≤ liminf
n→∞

ρ(x− yn)

holds for any x ∈ Xρ .

In what follows, the modular topologies associated with ρp and ρ1,p will be denoted by τp and
τ1,p, respectively.

Definition 3.7. [13,30] Let C be a subset of Xρ . The modular closure of C, denoted Cρ , is defined
as the intersection of all ρ-closed subsets of Xρ that contain C.

Remark 3.3. As established in the literature (see [13, 30]), it is well known that

A ⊂ A ⊂ Aρ
,

for any subset A of Xρ , where A represents the closure of A under the Luxemburg-norm topology.
As previously discussed, these closures coincide if the modular satisfies the ∆2-condition. However,
they typically differ, as is the case of τp and τ1,p, when p(·) is unbounded.

Proposition 3.3. [17] The following properties are valid:
(1) If U is a ρ-open subset of Xρ , then U + x = {u+ x;u ∈U} is also ρ-open, for any x ∈ Xρ .

Thus, U +V is ρ-open whenever U or V is ρ-open.
(2) θU is ρ-open whenever U is ρ-open and θ ≥ 1.
(3) For any x ∈ Aρ and any ρ-open subset U such that x ∈U, then U ∩A ̸= /0.
(4) Aρ is convex whenever A is convex.
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These properties facilitate the demonstration of the following elegant result:

Proposition 3.4. [17] Aρ is a ρ-closed vector subspace of Xρ provided A is a vector subspace of
Xρ .

Recall that C∞
0 (Ω) denotes the vector space of infinitely differentiable functions on Ω with compact

support.

Definition 3.8. We denote the ρ1,p-closure of C∞
0 (Ω) in W 1,p(·)(Ω) by V 1,p(·)

0 (Ω) and the ρ1,p-

closure of the subspace of compactly supported functions in W 1,p(·)(Ω) by U1,p(·)
0 (Ω). Hereafter,

V 1,p(·)(Ω) will stand for the set of all u ∈W 1,p(·)(Ω) for which ρ1,p(u)< ∞.

The Luxemburg-norm closure of C∞
0 (Ω) in W 1,p(·)(Ω) is as usual denoted by W 1,p(·)

0 (Ω).

Remark 3.4. It is clear from the preceding definition that W 1,p(·)
0 (Ω) ⊆ V 1,p(·)

0 (Ω) ⊆ U1,p(·)
0 (Ω).

According to Theorem 3.11 in [12], the strict inclusion V 1,p(·)
0 (Ω) ⊊ U1,p(·)

0 (Ω) can occur even
when p+ < ∞.

The following result directly follows from Proposition 3.4.

Theorem 3.1. V 1,p(·)
0 (Ω) and U1,p(·)

0 (Ω) are ρ1,p-closed real vector subspaces of W 1,p(·)(Ω).

Next, additional results are presented for the case of Lebesgue variable exponent spaces. As dis-
cussed earlier, a subset C ⊂ W 1,p(·)(Ω) (C ⊂ Lp(·)(Ω)) is ρ1,p-closed (ρp-closed) if and only if
whenever (xk) ⊆ C and ρ1,p(xk − x) → 0 (ρp(xk − x) → 0) as k → ∞, it holds that x ∈ C. If
(xk) ⊂ Lp(·)(Ω) (W 1,p(·)(Ω)) and lim

k→∞
ρp(xk − x) = 0 ( lim

k→∞
ρ1,p(xk − x)) = 0), (xk) is said to ρp-

converge (ρ1,p-converge) to x. This is denoted as xk
ρp→ x (xk

ρ1,p→ x) as k → ∞.

Lemma 3.1. [19] If (xk)⊆ Lp(·)(Ω) ρp-converges to x ∈ Lp(·)(Ω), then there exists a subsequence
(xk j) that converges to x a.e. in Ω.

Consequently,

Corollary 3.1. [17] If (xk) ⊆ W 1,p(·)(Ω) ρ1,p-converges to x ∈ W 1,p(·)(Ω), then there exists a

subsequence (xk j) that converges to x a.e. in Ω and such that
(

∇xk j

)
converges to ∇x a.e. in Ω.

4. MODULAR UNIFORM CONVEXITY

Modular uniform convexity was initially introduced by Nakano [32] (see also [30]). The original
definition closely followed the classical notion of uniform convexity in Banach spaces introduced
by Clarkson [8]. However, this definition failed to encompass many interesting modulars in mod-
ular vector spaces, as noted in the original work [15].

Definition 4.9. [13] Let ρ be a convex modular on a vector space X. Fix r > 0 and ε > 0. Define

D(r,ε) :=
{
(x,y) ∈ X2

ρ | ρ(x)≤ r, ρ(y)≤ r, ρ

(
x− y

2

)
≥ εr

}
and

δ2(r,ε) = inf
{

1− 1
r

ρ

(
x+ y

2

)
| (x,y) ∈ D(r,ε)

}
.

ρ is said to be uniformly convex (UC2) if for every r > 0 and ε > 0, δ2(r,ε)> 0.

Note that for any r > 0, ε can be selected sufficiently small such that D(r,ε) is non-empty.
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Remark 4.5. [30, 32] The original definition of modular uniform convexity differs slightly from
that in Definition 4.9. Specifically, we define ρ to be (UC1) if for every r > 0 and ε > 0, the
following condition holds:

δ1(r,ε) = inf
{

1− 1
r

ρ

(
x+ y

2

)
; ρ(x)≤ r, ρ(y)≤ r, ρ (x− y)≥ εr

}
> 0.

It is noteworthy that if ρ satisfies (UC1), then it also satisfies (UC2). The converse holds if ρ

satisfies the ∆2-condition.

Another form of modular uniform convexity that will be instrumental throughout is defined as
follows:

Definition 4.10. [9] A convex modular ρ on a vector space X is classified as (UC∗) if for every
ε > 0, there exists δ (ε)> 0 such that for all x,y ∈ Xρ :

ρ

(
x− y

2

)
> ε

ρ(x)+ρ(y)
2

=⇒ ρ

(
x+ y

2

)
≤
(

1−δ (ε)
)

ρ(x)+ρ(y)
2

.

It can be readily verified that if ρ satisfies (UC∗), then ρ also satisfies (UC2). Next the modular
uniform convexity in ℓp(·), Lp(·)(Ω) and W 1,p(·)(Ω) will be investigated.

4.1. Modular uniform convexity of ℓp(·) and Lp(·)(Ω).
To examine the uniform convexity of the modular in ℓp(·) and Lp(·)(Ω), the classical inequalities
established by Clarkson [8] and Sundaresan [38] will be employed:

Lemma 4.2. The following inequalities are valid:
(a) [38] If 1 ≤ p ≤ 2 and a,b ∈ R, |a|+ |b| ̸= 0, it holds that∣∣∣∣a+b

2

∣∣∣∣p + p(p−1)
2p+1

|a−b|2

(|a|+ |b|)2−p ≤ 1
2
(|a|p + |b|p).

(b) [8] If p ≥ 2 and a,b ∈ R, it holds that∣∣∣∣a+b
2

∣∣∣∣p + ∣∣∣∣a−b
2

∣∣∣∣p ≤ 1
2
(|a|p + |b|p).

An early result concerning modular uniform convexity in variable exponent spaces was established
in [4]. The proof of this result will illustrate the main ideas in this section. For completeness, it
will be included below.

Theorem 4.2. [4] For p : N → [1,∞] such that p− = inf
n∈N

p(n) > 1, the modular function ρp :

ℓp(·) → [0,∞] defined by

ρp(x) = ρp((xn)) =
∞

∑
n=0

1
p(n)

|xn|p(n)

possesses the (UC∗) property.

Proof. Assume that p− = inf
n∈N

p(n)> 1. Fix ε > 0. Pick x,y ∈ ℓp(·) in such a way that

ρp

(
x− y

2

)
≥ ε

ρp(x)+ρp(y)
2

= ε r,

where r = (ρp(x)+ρp(y))/2. Without loss of generality, assume r > 0. Since ρp is convex, one
has

ε
ρp(x)+ρp(y)

2
≤ ρp

(
x− y

2

)
≤

ρp(x)+ρp(y)
2

.
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It follows that ε ≤ 1. Now let I = {n ∈ N; p(n)≥ 2} and J = N\ I. For any subset K of N, set

ρp,K(x) = ρp,K((xn)) = ∑
n∈K

1
p(n)

|xn|p(n).

If K = /0, write ρp,K(x) = 0. Note that ρp(z) = ρp,I(z) + ρp,J(z) for any z ∈ ℓp(·). It is clear
from the assumptions that either ρp,I((x− y)/2) ≥ rε/2 or ρp,J((x− y)/2) ≥ rε/2. Suppose that
ρp,I((x− y)/2)≥ rε/2. Then Lemma 4.2 yields

ρp,I

(
x+ y

2

)
+ρp,I

(
x− y

2

)
≤

ρp,I(x)+ρp,I(y)
2

,

which implies that

ρp,I

(
x+ y

2

)
≤

ρp,I(x)+ρp,I(y)
2

− rε

2
.

The inequality

ρp,J

(
x+ y

2

)
≤

ρp,J(x)+ρp,J(y)
2

,

yields

ρp

(
x+ y

2

)
≤

ρp(x)+ρp(y)
2

− rε

2
≤
(

1− ε

2

)
ρp(x)+ρp(y)

2
.

On the other hand, if one assumes ρp,J((x− y)/2)≥ rε/2, then setting C = ε/4,

J1 =
{

n ∈ J; |xn − yn| ≤C(|xn|+ |yn|)
}

and J2 = J \ J1,

it follows that

ρp,J1

(
x− y

2

)
≤ ∑

n∈J1

Cp(n)

p(n)

∣∣∣∣ |xn|+ |yn|
2

∣∣∣∣p(n) ≤ C
2 ∑

n∈J1

|xn|p(n)+ |yn|p(n)

p(n)
,

because the power function is convex and C ≤ 1. Hence

ρp,J1

(
x− y

2

)
≤ C

2

(
ρp,J1(x)+ρp,J1(y)

)
≤ C

2

(
ρp(x)+ρp(y)

)
=Cr.

Since ρp,J((x− y)/2)≥ rε/2 it is readily seen that

ρp,J2

(
x− y

2

)
= ρp,J

(
x− y

2

)
−ρp,J1

(
x− y

2

)
≥ rε

2
−Cr.

For any n ∈ J2, it holds that

p−−1 ≤ p(n)(p(n)−1) and C ≤C2−p(n) ≤
∣∣∣∣ xn − yn

|xn|+ |yn|

∣∣∣∣2−p(n)

,

which implies by Lemma 4.2 that∣∣∣∣xn + yn

2

∣∣∣∣p(n)+ (p−−1)C
2

∣∣∣∣xn − yn

2

∣∣∣∣p(n) ≤ 1
2

(
|xn|p(n)+ |yn|p(n)

)
.

Hence

ρp,J2

(
x+ y

2

)
+

(p−−1)C
2

ρp,J2

(
x− y

2

)
≤

ρp,J2(x)+ρp,J2(y)
2

and this yields

ρp,J2

(
x+ y

2

)
≤

ρp,J2(x)+ρp,J2(y)
2

− r
(p−−1)ε2

8
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because C = ε/4. Thus,

ρp

(
x+ y

2

)
≤ r− r

(p−−1)ε2

8
=

(
1− (p−−1)ε2

8

)
ρp(x)+ρp(y)

2
.

Finally, writing

δ (ε) = min
(

ε

2
,(p−−1)

ε2

8

)
> 0,

it is clear that

ρp

(
x+ y

2

)
≤
(

1−δ (ε)
)

ρp(x)+ρp(y)
2

.

Therefore ρp is (UC∗) which completes the proof of Theorem 4.2. □

An analogous argument yields the following theorem:

Theorem 4.3. [3] Let Ω ⊂Rn be a nonempty measurable subset. Let p : Ω −→ [1,∞] measurable
such that p(x) < ∞ a.e. and p− = inf

x∈Ω
p(x) > 1. The modular function ρp : Lp(·)(Ω) −→ [0,∞],

defined by

ρp(u) =
∫

Ω

1
p(x)

|u(x)|p(x) dx,

satisfies the (UC∗) property.

Remark 4.6. Theorem 4.3 yields a radical improvement over what is known for the Banach space
structure of Lp(·)(Ω). The uniform convexity of the Luxemburg norm ( Definition 3.2) is known to
be equivalent to the condition 1 < p− ≤ p+ < ∞, see [23].

4.2. Modular uniform convexity of W 1,p(·)(Ω).
The case for the uniform convexity of variable exponent Sobolev spaces is much more subtle than
that of the Lebesgue spaces and necessitates more delicate considerations. Let Ω⊂Rn, a nonempty
measurable subset. The spaces V (Ω) and W 1,p(·)(Ω) are introduced in Example 3.3. Recall the
definition of the modular function ρ1,p:

ρ1,p(u) = ρp(u)+ρp (|∇u|) =
∫

Ω

|u(x)|p(x)

p(x)
dx+

∫
Ω

|∇u|p(x)

p(x)
dx,

where |∇u| stands for the Euclidean norm of the gradient of u.
To demonstrate the (UC∗) property of ρ1,p, a variant of Lemma 4.2 where the parameters a and b
are replaced by vectors a and b in Rn has to be established. The proof of this vector form of Lemma
4.2 is rather involved and we refer the reader to [5, 18] for the details it involves. For a ∈ Rn, the
notation |a| represents the Euclidean norm of the vector a.

Lemma 4.3. [5, 18] The subsequent inequalities are valid:

(a) If 1 ≤ p ≤ 2 and a,b ∈ Rn, |a|+ |b| ̸= 0, it holds that∣∣∣∣a+b
2

∣∣∣∣p + p(p−1)
2p+1

|a−b|2

(|a|+ |b|)2−p ≤ 1
2
(|a|p + |b|p).

(b) If p ≥ 2 and a,b ∈ Rn, it holds that∣∣∣∣a+b
2

∣∣∣∣p + ∣∣∣∣a−b
2

∣∣∣∣p ≤ 1
2
(|a|p + |b|p).

Arguing as in the proof of Theorem 4.3, the following Lemma can be proved:
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Lemma 4.4. [5, 18] Let Ω ⊂ Rn be a nonempty measurable subset. Consider a measurable
function p : Ω −→ [1,∞] such that p(x) < ∞ a.e., and assume p− = inf

x∈Ω
p(x) > 1. The pseudo-

modular function ρ : Lp(·)(Ω)−→ [0,∞] defined as

ρ(u) = ρp (|∇u|) =
∫

Ω

|∇u|p(x)

p(x)
dx,

satisfies the (UC∗) property.

Theorem 4.3 in conjunction with Lemma 4.4 yields the following result:

Theorem 4.4. [5, 18] Let Ω ⊂ Rn be a nonempty measurable subset. Consider a measurable
function p : Ω −→ [1,∞] such that p(x) < ∞ a.e., and assume p− = inf

x∈Ω
p(x) > 1. The modular

function ρ1,p : W 1,p(·)(Ω)−→ [0,∞], defined by

ρ1,p(u) = ρp(u)+ρp (|∇u|) =
∫

Ω

|u(x)|p(x)

p(x)
dx+

∫
Ω

|∇u|p(x)

p(x)
dx,

satisfies the (UC∗) property.

Proof. Let ε > 0 and u,v ∈W 1,p(·)(Ω) such that

ρ1,p

(
u− v

2

)
≥ ε

ρ1,p(u)+ρ1,p(v)
2

.

It is clear by definition of ρ1,p that

ρp

(
u− v

2

)
≥ ε

2
ρ1,p(u)+ρ1,p(v)

2
or ρp

(
∇(u)−∇(v)

2

)
≥ ε

2
ρ1,p(u)+ρ1,p(v)

2
.

Without loss of generality, assume that

ρp

(
u− v

2

)
≥ ε

2
ρ1,p(u)+ρ1,p(v)

2
.

Based on Theorem 4.3, one can assert the existence of δ > 0, which depends solely on ε , such that

ρp

(
u+ v

2

)
≤ (1−δ )

ρp(u)+ρp(v)
2

.

Thus

ρ1,p

(
u+ v

2

)
= ρp

(
u+ v

2

)
+ρp

(
∇(u)+∇(v)

2

)
≤ (1−δ )

ρp(u)+ρp(v)
2

+
ρp(∇(u))+ρp(∇(v))

2

=
ρ1,p(u)+ρ1,p(v)

2
−δ

ρp(u)+ρp(v)
2

≤
ρ1,p(u)+ρ1,p(v)

2
−δ

ρp(u− v)
2

≤
ρ1,p(u)+ρ1,p(v)

2
− δε

2
ρ1,p(u)+ρ1,p(v)

2

=

(
1− δε

2

)
ρ1,p(u)+ρ1,p(v)

2
,

which completes the proof of Theorem 4.4. □
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5. APPLICATIONS TO BOUNDARY VALUE PROBLEMS

In this section, the modular concepts previously developed will be applied to deal with the
solvability of the problem (1.2).

5.1. Definitions and set up.
The first task is to recall the definition of a weak solution to the problem (1.2). This is standard:

Definition 5.11. A function w ∈ W 1,p(·)(Ω) is said to be a weak solution to problem (1.2) iff for
each h ∈C∞

0 (Ω), w satisfies the equality

(5.3)
∫

Ω

|∇w(x)|p(x)−2
∇w(x)∇h(x)dx = 0

and the boundary condition (see Definition 3.8)

(5.4) u−ϕ ∈V 1,p(·)
0 (Ω).

Recall from Example 3.3 that for a nonempty domain Ω ⊆ Rn

|∇u|=

(
n

∑
k=1

(
∂u
∂xk

)2
) 1

2

and that one has the (UC∗) convex modular (Theorem 4.4) ρ1,p : W 1,p(·)(Ω)→ [0,∞] given by

ρ1,p(u) = ρp(u)+ρp (|∇u|) =
∫

Ω

|∇u(x)|p(x)

p(x)
dx+

∫
Ω

|u(x)|p(x)

p(x)
dx.

The objective of this section is to prove the following theorem:

Theorem 5.5. Let Ω ⊂Rn be a bounded, smooth domain, p : Ω →R be a continuous function such
that p(x)<∞ a.e. and that n< p−= inf

x∈Ω
p(x). Let ϕ ∈W 1,p(·)(Ω) satisfy

∫
Ω

p(x)−1|∇ϕ(x)|p(x)dx<

∞. Then there exists a unique weak solution w ∈W 1,p(·)(Ω) to the Dirichlet problem{
∆p(·)(w) = div

(
|∇w|p(·)−2∇w

)
= 0 in Ω,

w|∂Ω = ϕ,

that satisfies the condition
∫

Ω

(p(x))−1 |∇w(x)|p(x) dx < ∞ and such that the inequality∫
Ω

|∇w(x)|p(x)−2
∇w(x) ∇(w+ v−ϕ)(x)dx ≤ 0

holds for every v ∈V 1,p(·)
0 (Ω) such that

∫
Ω

(p(x))−1 |∇(v−ϕ)(x)|p(x) dx < ∞.

In what follows, we set out to sketch the proof of this result.

5.2. The Dirichlet energy integral.
Let ϕ be as specified in the previous statement. The proof of Theorem 5.5 relies on the minimiza-
tion of the Dirichlet integral D : V 1,p(·)

0 (Ω)→ [0,∞] defined by

(5.5) D(u) =
∫

Ω

|∇(u−ϕ)(x)|p(x)

p(x)
dx.

It is clear that that D is bounded below and since D(0) =
∫

Ω

|∇ϕ(x)|p(x)

p(x)
dx < ∞, it must hold

inf
{
D(u); u ∈V 1,p(·)

0 (Ω)
}
< ∞.

Moreover, D is differentiable in the following sense:
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Lemma 5.5. For v ∈W 1,p(·)(Ω) and h ∈C∞
0 (Ω) it holds that

lim
t→0+

D (v+ th)−D(v)
t

=
∫

Ω

|∇(v−ϕ)(x)|p(x)−2
∇(v−ϕ)(x)∇h(x)dx.

Proof. The right-hand side is finite since h has compact support and p is continuous in Ω. The
Lemma follows from an elementary estimate of D (v+ th)−D(v) and Lebesgue’s dominated con-
vergence theorem. Details are left to the reader (see [26]). □

Corollary 5.2. If u0 ∈ V 1,p(·)
0 (Ω) is a minimizer of D then u0 it must satisfy (5.3) for every h ∈

C∞
0 (Ω).

Proof. The proof follows immediately by contradiction. □

It is worth observing at this point that the functional D is convex on V 1,p(·)
0 (Ω). Since V 1,p(·)

0 (Ω)

is a linear subspace of W 1,p(·)
0 (Ω), for any v ∈ V 1,p(·)

0 (Ω), t ∈ R and w ∈ C∞
0 (Ω) it holds that

tu0 +(1− t)w ∈ V 1,p(·)
0 (Ω). Assuming u0 ∈ V 1,p(·)

0 (Ω) is a minimizer of D , fix u0 ̸= ω ∈ C∞
0 (Ω)

(hence, D(w)< ∞). Then, for (t j)⊂ (0,1),

D(u0)≤ D((1− t j)u0 + t jw)≤ (1− t j)D(u0)+ t jD(w).

Let t j → 0, to obtain u j = (1− t j)u0 + t jw
ρp→ u0 and D(u j)→ D(u0). In conclusion, there are no

isolated minimizers of D on V 1,p(·)
0 (Ω).

A final observation is indispensable in the discussion of the minimization of D :

Lemma 5.6. [17] The following inclusion is modularly continuous:

I :
(

V 1,p(·)
0 (Ω),τ1,p

)
↪→
(

W 1,p−
0 (Ω),τ1,p−

)
;

recall that p− = inf
x∈Ω

p(x).

Proof. We sketch the proof, we refer the reader to [17] for the details.
It is shown in [17] that the inclusion ip,p− : W 1,p(Ω) ↪→W 1,p−(Ω) is modularly continuous. Conse-
quently, if K ⊆W 1,p−(Ω) is norm- closed and contains C∞

0 (Ω), the set i−1
p,p−(K) must be ρ1,p-closed

and C∞
0 (Ω) ⊆ i−1

pp−(K). Since p− is constant, the family of norm-closed subsets of W 1,p−(Ω) co-
incides with the class of modularly-closed subsets. By definition one concludes that V 1,p

0 (Ω) ⊆
K∩W 1,p(Ω)⊆ K. Thus V 1,p

0 (Ω) is contained in any norm-closed subset of W 1,p−(Ω) that contains
C∞

0 (Ω). Hence,

(5.6) V 1,p
0 (Ω)⊆W 1,p−

0 (Ω).

□

Lemma 5.6 has the following profound implication:

Lemma 5.7. [17] Any sequence (v j) ⊂ V 1,p(·)
0 (Ω), with (∇v j) ρp-Cauchy in

(
Lp(·)(Ω)

)n
, must

ρp-converge in Lp(·)(Ω) to a function v∈V 1,p(·)
0 (Ω). Therefore, (v j) must converge to v∈V 1,p(·)

0 (Ω)

in the modular topology of W 1,p(·)(Ω).

Theorem 5.6 is the key point in the existence of the solution to the problem (1.2).

Theorem 5.6. Under the hypotheses of Theorem 5.5, the functional D possesses a unique mini-
mizer u ∈V 1,p(·)

0 (Ω).
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Proof. We sketch the proof of this result, referring the reader to [17] for the details. Since D has a
finite lower bound, one can extract a minimizing sequence (u j) ⊂ V 1,p(·)

0 (Ω). An argument based

on the uniform convexity of D (Lemma 4.4) yields that
(

∇u j

2

)
is ρp-Cauchy in

(
Lp(·)(Ω)

)n
. On

account of Lemma 5.7,
(u j

2

)
must ρ1,p-converge to a function u ∈ W 1,p(·)(Ω). Since V 1,p(·)

0 (Ω)

is closed in the modular topology of W 1,p(·)(Ω), it follows that u ∈ V 1,p(·)
0 (Ω), which is a vector

subspace of W 1,p(·)(Ω) and hence 2u ∈V 1,p(·)
0 (Ω). Because of Lemma 3.1, no generality is lost by

assuming that
(

∇u j

2

)
converges pointwise a.e. to ∇u. Fatou’s Lemma then yields

∫
Ω

|∇(2u−ϕ)(x)|p(x) dx ≤ liminf
j→∞

∫
Ω

∣∣∇(u j −ϕ)(x)
∣∣p(x) dx.

It will be shown that 2u minimizes F in K. Indeed,

d ≤
∫

Ω

|∇(ϕ −2u)(x)|p(x)

p(x)
dx ≤ liminf

k→∞

∫
Ω

∣∣∇(ϕ −
( uk

2 +u
))

(x)
∣∣p(x)

p(x)
dx

≤ liminf
k→∞

liminf
l→∞

∫
Ω

∣∣∇(ϕ −
( uk

2 + ul
2

))
(x)
∣∣p(x)

p(x)
dx

≤ liminf
k→∞

liminf
l→∞

1
2

(∫
Ω

|∇(ϕ −uk)(x)|p(x)

p(x)
dx+

∫
Ω

|∇(ϕ −ul)(x)|p(x)

p(x)
dx

)

≤ liminf
k→∞

liminf
l→∞

1
2

(
D(uk)+D(ul)

)
= d.

The last inequality proves the claim. The uniqueness statement follows immediately from the
arbitrariness of the minimizing sequence (u j). □

In addition, the minimizer 2u satisfies the following inequality (see [17]):

Theorem 5.7. For any v ∈V 1,p(·)
0 (Ω) such that

∫
Ω

(p(x))−1|∇(v−ϕ)(x)|p(x) dx < ∞, it holds that∫
Ω

|∇(2u−ϕ)(x)|p(x)−2
∇(2u−ϕ)(x) ∇(v−2u)(x)dx ≥ 0.

The following Corollary is immediate:

Corollary 5.3. Let 2u be the unique minimizer of D on V 1,p(·)
0 (Ω) obtained in Theorem 5.6 and set

w = ϕ −2u. Then the inequality

(5.7)
∫

Ω

|∇w(x)|p(x)−2
∇w(x) ∇(ξ +w−ϕ)(x)dx ≤ 0

holds for every ξ ∈V 1,p(·)
0 (Ω) such that

∫
Ω

(p(x))−1 |∇(ξ −ϕ)(x)|p(x) dx < ∞.

5.3. Proof of Theorem 5.5.
Existence in Theorem 5.5 follows immediately from Corollary 5.2 and Theorem 5.6. To see this,
observe that if 2u is the minimizer obtained in Theorem 5.6, then the function w defined by w =

ϕ −2u satisfies (5.3) for every h ∈C∞
0 (Ω) and w−ϕ ∈V 1,p(·)

0 (Ω), as required.
For uniqueness observe that by virtue of condition (5.7) any two solutions w1 and w2 must satisfy

(5.8)
∫

Ω

|∇w1(x)|p(x)−2
∇w1(x)∇(w1 −w2)(x)dx ≤ 0
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and ∫
Ω

|∇w2(x)|p(x)−2
∇w2(x)∇(w2 −w1)(x)dx ≤ 0.

Uniqueness follows from (5.8) coupled with the vector inequality

⟨|a|α−2a−|b|α−2b,a−b⟩ ≥ γ(α)|a−b|α ,
valid for all a ∈Rn, b ∈Rn, where | · | stands for the Euclidean norm and γ(α) is a positive constant
dependig on α [22]. For more details, see [17].
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[35] Růžička, M.; Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, Vol.

1748, Springer-Verlag, Berlin, 2000.
[36] Riesz, F.; Untersuchungen über Systeme integrierbarer Funktionen, Math. Ann. 69 (1910), 449–497. http://

eudml.org/doc/158473.
[37] Sharapudinov, I. I.; Topology of the space L p(t)([0,1]), Math. Notes Acad. Sci. USSR 26 (1978), 796–806.
[38] Sundaresan, K.; Uniform convexity of Banach spaces ℓ({pi}), Studia Math. 39 (1971), 227–231.
[39] Venkatachalam, K.; Marappan, S. K. Results on Impulsive Ψ-Caputo Fractional Integro-Differential Equations with

Boundary Conditions. Bangmod Int. J. Math. Comput. Sci. 2024, 10, 63–76. https://doi.org/10.58715/
bangmodjmcs.2024.10.5

[40] Yiao, J., Wang, X.; On an open problem involving the p(x)-Laplacian—a further study of the multiplicity of weak
solutions to p(x)-Laplacian equations, Nonlinear Anal. Theory Methods Appl. 69 (2008), 1445–1453.

[41] Zhang, Q. H.; Existence of positive solutions for a class of p(x)-Laplacian systems, J. Math. Anal. Appl. 333 (2007),
591–603.

1 DEPARTMENT OF MATHEMATICS, KHALIFA UNIVERSITY, ABU DHABI, UAE
Email address: mohamed.khamsi@ku.ac.ae

2 CENTER OF EXCELLENCE IN THEORETICAL AND COMPUTATIONAL SCIENCE (TACS-COE) AND KMUTTFIXED

POINT RESEARCH LABORATORY, ROOM SCL 802 FIXED POINT LABORATORY SCIENCE LABORATORY BUILDING,
DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, KING MONGKUT’S UNIVERSITY OF TECHNOLOGY THON-
BURI (KMUTT), 126 PRACHA-UTHIT ROAD, BANG MOD, THUNG KHRU, BANGKOK 10140, THAILAND.

Email address: poom.kum@kmutt.ac.th

3 DEPARTMENT OF MATHEMATICAL SCIENCES, THE UNIVERSITY OF TEXAS AT EL PASO, EL PASO, TX 79968,
U.S.A

Email address: osmendez@utep.edu

https://doi.org/10.1201/9781498762618
http://eudml.org/doc/158473
http://eudml.org/doc/158473
https://doi.org/10.58715/bangmodjmcs.2024.10.5
https://doi.org/10.58715/bangmodjmcs.2024.10.5

	1. Introduction
	2. Some historical context
	3. Preliminaries
	4. Modular uniform convexity
	4.1. Modular uniform convexity of p() and Lp()()
	4.2. Modular uniform convexity of W1,p()()

	5. Applications to boundary value problems
	5.1. Definitions and set up
	5.2. The Dirichlet energy integral
	5.3. Proof of Theorem ??

	6. Acknowledgments:
	References

