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Positive solutions for multipoint boundary value problem
of fractional differential equation with parameter

ZHI LIU AND WEIBING WANG

ABSTRACT. We discuss the existence of positive solutions for a fractional multipoint boundary value problem
with parameter. By applying the Guo-Krasnosel’skii fixed point theorem and Schauder’s fixed point theorem,
we obtain sufficient conditions for the existence of at least one or two positive solutions. Our main results
highlight the influence of the parameter in different ranges on the existence of positive solutions.

1. INTRODUCTION

In this paper, we are concerned with the following nonlinear fractional multipoint
boundary value problem

(1.1)
{

−u(m)(t) +M CDαu(t) = f(t, u(t)), t ∈ (0, 1),
u(0) = u′(0) = · · · = u(m−2)(0) = 0, u(1)−

∑q
i=1 γiu(ηi) = b,

where m − 1 < α < m, m ≥ 2, q ≥ 1 are integers, b ≥ 0 is a parameter, and CDα is the
Caputo fractional derivative of α order

CDαu(t) =
1

Γ(m− α)

∫ t

0

(t− s)m−α−1u(m)(s)ds.

Throughout this paper, we always suppose that:
(H1) f : [0, 1]× [0,∞) → [0,∞) is continuous,
(H2) γi > 0(1 ≤ i ≤ q), 0 < η1 < η2 < · · · < ηq < 1, 0 < ψ :=

∑q
i=1 γiη

m−1
i < 1 and

M > 0.
Fractional differential equations have gained importance due to their broad application

in various fields of science and engineering, such as control theory, physics, chemistry, etc.
For more details, see [10, 16, 18] and its references. Recently, many scholars pay attention
to the existence and multiplicity of solutions or positive solutions of nonlinear fractional
differential equations. The main tools used are techniques of nonlinear analysis including
fixed point theorems [2, 4, 23, 25], Leray-Shauder theory [1, 8, 22], monotone iterative
method [5, 12, 24], etc.

In [9], Jia and Zhang studied the following fractional multipoint boundary value prob-
lem with changing sign nonlinearity

(1.2)
{
Dα

0+u(t) + λf(t, u(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(i)(1) =
∑m−2
j=0 ηju

′(ξj),

where n − 1 < α ≤ n, Dα
0+ is the Riemann-Liouville derivative, 1 ≤ i ≤ n − 2, 0 < ξ1 <

ξ2 < · · · < ξm−2 < 1, λ is a parameter. By means of the Guo-Krasnosel’skii fixed point
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theorem, the authors obtained an interval of λ such that (1.2) has at least one positive
solution for any λ lying in the interval.

In [21], Xu and Zhang discussed the following fractional differential equation

(1.3)
{
Dα

0+u(t) + f(t, u(t)) = 0, t ∈ (0, 1),

u(0) = 0, u(1) =
∑m−2
i=1 βiu(ηi),

where 1 < α < 2, 0 < η1 < η2 < · · · < ηm−2 < 1 with
∑m−2
i=1 βiη

α−1
i < 1. By the Leray-

Schauder alternative principle and Guo-Krasnosel’skii fixed point theorem, the authors
obtained the existence of multiple positive solutions for (1.3). For other works about mul-
tipoint boundary value problems for fractional differential equations, we refer the reader
to [11, 14, 19].

Recently, the differential equations with mixing ordinary derivative and fractional de-
rivative have been confirmed to be applicable for describing specific physical phenom-
ena. In modelling the motion of a rigid body immersed in a Newtonian fluid, Torvik and
Bagley [17] established the following equation

(1.4) Au′′(t) +BD
3
2u(t) + Cu(t) = f(t),

where A,B,C are real numbers, f(t) is the known function, which is called Bagley-Torvik
fractional differential equation. After that, there are many important results related to this
equation. For example, Staněk [15] considered the following Bagley-Torvik equation

(1.5)
{
u′′(t) +ACDαu(t) = f(t, u(t),CDµu(t), u′(t)), t ∈ [0, T ],
u′(0) = 0, u(T ) + au′(T ) = 0,

where A ∈ R\{0}, α ∈ (1, 2), µ ∈ (0, 1). The author obtained the existence of solutions to
the problem (1.5) by the Leray-Schauder alternative principle. For more information on
Bagley-Torvik equations we refer to [6, 13, 20].

Fazli et al. [5] studied the following fractional differential equation with nonlinear
boundary conditions

(1.6)
{
u(m)(t) +M CDαu(t) = f(t, u(t)), t ∈ [0, T ],
gk(u

(k)(t0), u
(k)(t1), · · · , u(k)(tr)) = 0, k = 0, 1, · · · ,m− 1,

where m− 1 < α < m, m ∈ N, 0 = t0 < t1 < · · · < tr = T . Under appropriate conditions,
the authors showed the existence of extremal solutions for (1.6) by the upper and lower
solutions method and monotone iterative technique.

As far as we know, few papers have considered the existence of positive solutions for
higher-order fractional differential equations which contain ordinary derivative and frac-
tional derivative. Motivated by the above works, we investigate the existence, nonexis-
tence and multiplicity of positive solutions for (1.1). Here, a function u ∈ Cm−1[0, 1] ∩
Cm(0, 1) is said to be a positive solution of (1.1) if u satisfies (1.1) and u > 0 on (0, 1].

The organization of this paper is as follows. In Section 2, we give the properties of
Green’s function of the corresponding linear problem and some required Lemmas that
will be used in the sequel. The main results are given in Section 3. Finally, an example is
presented to demonstrate the applicability of our main results.

2. PRELIMINARIES

Definition 2.1. ([7]). The two-parameter Mittag-Leffler function En1,n2
(ξ) is defined by

En1,n2
(ξ) =

∞∑
k=0

ξk

Γ(kn1 + n2)
, n1, n2 > 0, ξ ∈ R.

Lemma 2.1. ([7]). If n1, n2 > 0, En1,n2(ξ) is convergent for ξ ∈ R and En1,n2(ξ) > 0 for ξ ≥ 0.
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Lemma 2.2. Let M,ω > 0 and λ be a positive integer. Then it holds
d

dt
tλEω,λ+1(Mtω) = tλ−1Eω,λ(Mtω), ∀t > 0.

Proof. By a direct calculation, we get

d

dt
tλEω,λ+1(Mtω) =

d

dt
tλ
(

1

Γ(λ+ 1)
+

Mtω

Γ(ω + λ+ 1)
+

M2t2ω

Γ(2ω + λ+ 1)
+ · · ·

)
=
d

dt

(
tλ

Γ(λ+ 1)
+

Mtω+λ

Γ(ω + λ+ 1)
+

M2t2ω+λ

Γ(2ω + λ+ 1)
+ · · ·

)
=tλ−1

(
1

Γ(λ)
+

Mtω

Γ(ω + λ)
+

M2t2ω

Γ(2ω + λ)
+ · · ·

)
=tλ−1Eω,λ(Mtω),

which completes the proof. □

Lemma 2.3. Let h ∈ C[0, 1], then the following boundary value problem

(2.7)
{

−u(m)(t) +M CDαu(t) = h(t), t ∈ (0, 1),
u(0) = u′(0) = · · · = u(m−2)(0) = 0, u(1)−

∑q
i=1 γiu(ηi) = b

has a unique solution u ∈ Cm−1[0, 1] ∩ Cm(0, 1) given by

(2.8) u(t) =

∫ 1

0

G(t, s)h(s)ds+
tm−1

1− ψ

q∑
i=1

γi

∫ 1

0

G(ηi, s)h(s)ds+
btm−1

1− ψ
,

where

(2.9) G(t, s) =

 (t− ts)m−1Em−α,m(M(1− s)m−α)
−(t− s)m−1Em−α,m(M(t− s)m−α), 0 ≤ s ≤ t ≤ 1,

(t− ts)m−1Em−α,m(M(1− s)m−α), 0 ≤ t ≤ s ≤ 1.

Proof. We first show that (2.7) has at most a solution. Let u1, u2 be two solutions of (2.7)
and v = u1 − u2. Clearly,

(2.10)
{

−v(m)(t) +M CDαv(t) = 0, t ∈ (0, 1),
v(0) = v′(0) = · · · = v(m−2)(0) = 0, v(1)−

∑q
i=1 γiv(ηi) = 0.

From the Laplace transform formula of ordinary derivative and Lemma 2.9 of [7], we have

L[v(m)](s) = smV (s)−
m−1∑
k=0

sm−k−1v(k)(0),

(2.11) L[CDαv](s) = sαV (s)−
m−1∑
k=0

sα−k−1v(k)(0),

where L denotes the Laplace transform operator, V denotes the Laplace transform of v.
Doing Laplace transform to (2.10), we get

−(smV (s)− v(m−1)(0)) +M(sαV (s)− sα−mv(m−1)(0)) = 0,

V (s) =
v(m−1)(0)−Msα−mv(m−1)(0)

sm −Msα
=
v(m−1)(0)

sm
.

Using the following formula (see [3])

(2.12)
∫ ∞

0

e−pttαk+β−1E
(k)
α,β(±at

α)dt =
k!pα−β

(pα ∓ a)k+1
,
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by the inverse Laplace transform, we obtain

v(t) =
v(m−1)(0)

Γ(m)
tm−1.

It follows from v(1) −
∑q
i=1 γiv(ηi) = 0 and (H2) that v = 0. Hence, (2.7) has at most a

solution.
Next, we show that (2.8) is a solution of (2.7). Substituting (2.9) into (2.8), we get

u(t) =−
∫ t

0

(t− s)m−1Em−α,m(M(t− s)m−α)h(s)ds

+ tm−1

∫ 1

0

(1− s)m−1Em−α,m(M(1− s)m−α)h(s)ds

+
ψtm−1

1− ψ

∫ 1

0

(1− s)m−1Em−α,m(M(1− s)m−α)h(s)ds

− tm−1

1− ψ

q∑
i=1

γi

∫ ηi

0

(ηi − s)m−1Em−α,m(M(ηi − s)m−α)h(s)ds+
btm−1

1− ψ

=−
∫ t

0

(t− s)m−1Em−α,m(M(t− s)m−α)h(s)ds+
Ctm−1

Γ(m)
,(2.13)

where

C =
Γ(m)

1− ψ

(∫ 1

0

(1− s)m−1Em−α,m(M(1− s)m−α)h(s)ds

−
q∑
i=1

γi

∫ ηi

0

(ηi − s)m−1Em−α,m(M(ηi − s)m−α)h(s)ds+ b

)
.

Differentiating (2.13), by Lemma 2.2, we have

u′(t) = −
∫ t

0

(t− s)m−2Em−α,m−1(M(t− s)m−α)h(s)ds+
Ctm−2

Γ(m− 1)
,

...

u(m−2)(t) = −
∫ t

0

(t− s)Em−α,2(M(t− s)m−α)h(s)ds+ Ct,

u(m−1)(t) = −
∫ t

0

Em−α,1(M(t− s)m−α)h(s)ds+ C,

u(m)(t) =−M(m− α)

∫ t

0

(t− s)m−α−1E
(1)
m−α,1(M(t− s)m−α)h(s)ds− h(t)

=−M

∫ t

0

(t− s)m−α−1Em−α,m−α(M(t− s)m−α)h(s)ds− h(t),

where E(1)
m−α,1(M(t − s)m−α) =

∑∞
k=1

k(M(t−s)m−α)k−1

Γ(k(m−α)+1) . According to the continuity of
Em−α,j(j = 1, 2, · · · ,m,m− α) and h, we can check that

u ∈ Cm−1[0, 1] ∩ Cm(0, 1),

u(0) = u′(0) = · · · = u(m−2)(0) = 0, u(m−1)(0) = C.

Doing Laplace transform to (2.13), from (2.12) we obtain

U(s) =
−H(s)

sm −Msα
+

C

sm
,
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where U,H denote the Laplace transform of u, h. It follows from (2.11) that

L[CDαu](s) = sαU(s)− sα−mu(m−1)(0) =
−H(s)

sm−α −M
.

By doing inverse Laplace transform to above equality, we have

CDαu(t) = −
∫ t

0

(t− s)m−α−1Em−α,m−α(M(t− s)m−α)h(s)ds.

Hence,
−u(m)(t) +M CDαu(t) = h(t).

It is easily verified that u(1)−
∑q
i=1 γiu(ηi) = b. Therefore, (2.8) is a solution of (2.7). This

completes the proof. □

Lemma 2.4. (1) For any t, s ∈ [0, 1],

0 ≤ G(t, s) ≤ N(s) := (1− s)m−1Em−α,m(M(1− s)m−α).

(2) For any θ ∈ (0, 12 ), s ∈ [0, 1],

min
t∈[θ,1−θ]

G(t, s) ≥ KθN(s), Kθ :=
Mk0θk0(m−α)+2m−2

Γ(k0(m− α) +m)Em−α,m(M)
∈ (0, 1),

where k0 = [ 1
m−α ] + 1, [x] denotes the integer part of the number x.

Proof. (1) is obvious. Here we only prove (2). For 0 ≤ s ≤ t ≤ 1, we get

G(t, s) =(t− ts)m−1Em−α,m(M(1− s)m−α)− (t− s)m−1Em−α,m(M(t− s)m−α)

=(t− ts)m−1

(
1

Γ(m)
+
M(1− s)m−α

Γ(2m− α)
+ · · ·+ (M(1− s)m−α)k0

Γ(k0(m− α) +m)
+ · · ·

)
− (t− s)m−1

(
1

Γ(m)
+
M(t− s)m−α

Γ(2m− α)
+ · · ·+ (M(t− s)m−α)k0

Γ(k0(m− α) +m)
+ · · ·

)
≥ Mk0

Γ(k0(m− α) +m)

(
tm−1(1− s)k0(m−α)+m−1 − (t− s)k0(m−α)+m−1

)
.

Setting f(x) = dm−1(1−x)k0(m−α)+m−1 − (d−x)k0(m−α)+m−1, x ∈ [0, d], where 0 < d ≤ 1
is a constant, we obtain

f ′(x) = (k0(m− α) +m− 1)
(
(d− x)k0(m−α)+m−2 − dm−1(1− x)k0(m−α)+m−2

)
=(k0(m− α) +m− 1)

(
(d− x)m−1(d− x)k0(m−α)−1 − (d− dx)m−1(1− x)k0(m−α)−1

)
.

It is easy to check that f ′(x) ≤ 0 for any x ∈ [0, d], which implies that

min
x∈[0,d]

f(x) = f(d) = dm−1(1− d)k0(m−α)+m−1.

Hence, for any t ∈ [θ, 1− θ], we get

G(t, s)

N(s)
≥ Mk0tm−1(1− t)k0(m−α)+m−1

Γ(k0(m− α) +m)(1− s)m−1Em−α,m(M(1− s)m−α)

≥ Mk0θk0(m−α)+2m−2

Γ(k0(m− α) +m)Em−α,m(M)
= Kθ.

It follows from the definition of Em−α,m that Γ(k0(m−α)+m)Em−α,m(M) ≥Mk0 , which
implies that Kθ ∈ (0, 1) for any θ ∈ (0, 12 ).
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In addition, for 0 ≤ t ≤ s ≤ 1, t ∈ [θ, 1− θ], we have

G(t, s) =tm−1(1− s)m−1Em−α,m(M(1− s)m−α)

=tm−1N(s) ≥ θm−1N(s) ≥ KθN(s).

This completes the proof. □

Lemma 2.5. If h ∈ C+[0, 1] := {x ∈ C[0, 1] : x(t) ≥ 0, t ∈ [0, 1]} , then the unique solution u
of (2.7) is nonnegative and satisfies

min
t∈[θ,1−θ]

u(t) ≥ Kθ∥u∥.

Proof. Clearly, u ≥ 0. From (2.8) and Lemma 2.4, we obtain that for any t ∈ [0, 1],

u(t) =

∫ 1

0

G(t, s)h(s)ds+
tm−1

1− ψ

q∑
i=1

γi

∫ 1

0

G(ηi, s)h(s)ds+
btm−1

1− ψ

≤
∫ 1

0

N(s)h(s)ds+
1

1− ψ

q∑
i=1

γi

∫ 1

0

G(ηi, s)h(s)ds+
b

1− ψ
,

and so

∥u∥ ≤
∫ 1

0

N(s)h(s)ds+
1

1− ψ

q∑
i=1

γi

∫ 1

0

G(ηi, s)h(s)ds+
b

1− ψ
.

On the other hand, for any t ∈ [θ, 1− θ], we have

u(t) =

∫ 1

0

G(t, s)h(s)ds+
tm−1

1− ψ

q∑
i=1

γi

∫ 1

0

G(ηi, s)h(s)ds+
btm−1

1− ψ

≥Kθ

∫ 1

0

N(s)h(s)ds+
θm−1

1− ψ

q∑
i=1

γi

∫ 1

0

G(ηi, s)h(s)ds+
bθm−1

1− ψ

≥Kθ

(∫ 1

0

N(s)h(s)ds+
1

1− ψ

q∑
i=1

γi

∫ 1

0

G(ηi, s)h(s)ds+
b

1− ψ

)
.

Consequently, the conclusion is obviously true. □

3. MAIN RESULTS

Let E = C[0, 1] with the norm ∥u∥ = maxt∈[0,1]|u(t)|. Define the cone P ⊂ E by

P =

{
u ∈ C+[0, 1] : min

t∈[θ0,1−θ0]
u(t) ≥ Kθ0∥u∥

}
and the operator A : E → E by

(3.14) Au(t) =

∫ 1

0

G(t, s)f(s, u(s))ds+
tm−1

1− ψ

q∑
i=1

γi

∫ 1

0

G(ηi, s)f(s, u(s))ds+
btm−1

1− ψ
,

where θ0 ∈ (0, 12 ) such that ∀ηi ∈ [θ0, 1− θ0] and Kθ0 =
Mk0θ

k0(m−α)+2m−2
0

Γ(k0(m−α)+m)Em−α,m(M) . From
Lemma 2.3, u is a solution of (1.1) if u is a fixed point of the operator A.

Lemma 3.6. The operator A : P → P is completely continuous.
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Proof. It follows from Lemma 2.5 that A(P ) ⊆ P. Due to the continuity of G and f , the
operator A : P → P is continuous. Let X ⊂ P be bounded, that is, there exists a constant
L > 0 such that ∥u∥ ≤ L for all u ∈ X . Let Q = max0≤t≤1,0≤u≤L |f(t, u)|+1. From Lemma
2.4, we deduce that for any u ∈ X ,

|Au(t)| ≤ Q

∫ 1

0

N(s)ds+
Q
∑q
i=1 γi

1− ψ

∫ 1

0

N(s)ds+
b

1− ψ
:=W1.

Hence, the set A(X) is bounded in E.
Denote

W2 =
Q
∑q
i=1 γi

1− ψ

∫ 1

0

N(s)ds+
b

1− ψ
.

For any t1, t2 ∈ [0, 1], t1 < t2, we have

|(Au)(t2)− (Au)(t1)|

≤Q
∣∣∣∣∫ 1

0
(G(t2, s)−G(t1, s))ds

∣∣∣∣+W2(t
m−1
2 − tm−1

1 )

≤Q
∣∣∣∣∫ t2

0
(t2 − s)m−1Em−α,m(M(t2 − s)m−α)ds−

∫ t1

0
(t1 − s)m−1Em−α,m(M(t1 − s)m−α)ds

∣∣∣∣
+Q

∣∣∣∣∫ 1

0
(tm−1

2 − tm−1
1 )(1− s)m−1Em−α,m(M(1− s)m−α)ds

∣∣∣∣+W2(t
m−1
2 − tm−1

1 )

≤Q
∣∣∣∣∫ t1

0
((t2 − s)m−1Em−α,m(M(t2 − s)m−α)− (t1 − s)m−1Em−α,m(M(t1 − s)m−α))ds

∣∣∣∣
+Q

∫ t2

t1

(t2 − s)m−1Em−α,m(M(t2 − s)m−α)ds+W1(t
m−1
2 − tm−1

1 )

≤Q
∣∣∣∣∫ t1

0
((t2 − s)m−1Em−α,m(M(t2 − s)m−α)− (t1 − s)m−1Em−α,m(M(t1 − s)m−α))ds

∣∣∣∣
+
QEm−α,m(M)

m
(t2 − t1)

m +W1(t
m−1
2 − tm−1

1 ).

Since tm−1Em−α,m(Mtm−α) ∈ C[0, 1], it holds that

|(Au)(t2)− (Au)(t1)| → 0 as |t1 − t2| → 0.

Therefore, A is equicontinuous. By the Arzela-Ascoli theorem, it follows that the operator
A : P → P is completely continuous. This completes the proof. □

Theorem 3.1. ([2]). Let P be a cone in Banach space E. Assume that Ω1,Ω2 are open and
bounded subsets of E with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let A: P ∩ (Ω2 \ Ω1) → P be a completely
continuous operator such that, either

(1) ∥Au∥ ≤ ∥u∥, if u ∈ P ∩ ∂Ω1, and ∥Au∥ ≥ ∥u∥, if u ∈ P ∩ ∂Ω2, or
(2) ∥Au∥ ≥ ∥u∥, if u ∈ P ∩ ∂Ω1, and ∥Au∥ ≤ ∥u∥, if u ∈ P ∩ ∂Ω2.

Then, A has a fixed point in P ∩ (Ω2 \ Ω1).

Define

F0 = lim sup
u→0+

f(t, u)

u
, F∞ = lim sup

u→∞

f(t, u)

u
,

f0 = lim inf
u→0+

f(t, u)

u
, f∞ = lim inf

u→∞

f(t, u)

u
.

In the rest of this section, Ωl = {u ∈ P : ∥u∥ < l} , where l is a positive constant.

Theorem 3.2. Assume that the following conditions are satisfied:
(H3) F0 = F∞ = 0,
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(H4) There exists a constant c1 > 0 such that for any u ∈ [Kθ0c1, c1],

f(t, u) ≥ c1m1, m1 >
1

Kθ0

(
1− ψ + θm−1

0

∑q
i=1 γi

1− ψ

∫ 1−θ0

θ0

N(s)ds

)−1

.

Then (1.1) has at least two positive solutions u1, u2 with 0 < ∥u1∥ < c1 < ∥u2∥ for b small
enough and at least one positive solution for any b ∈ [0,∞).

Proof. Since F0 = 0, there exists ρ1 ∈ (0, c1) such that f(t, u) ≤ R1u for ∀u ∈ [0, ρ1], where
R1 satisfies

0 < R1 <
1

2

(
1− ψ +

∑q
i=1 γi

1− ψ

∫ 1

0

N(s)ds

)−1

.

Let b satisfy

0 ≤ b ≤ (1− ψ)ρ1
2

.

Using Lemma 2.4, we obtain that for any u ∈ ∂Ωρ1 ,

Au(t) =

∫ 1

0

G(t, s)f(s, u(s))ds+
tm−1

1− ψ

q∑
i=1

γi

∫ 1

0

G(ηi, s)f(s, u(s))ds+
btm−1

1− ψ

≤
∫ 1

0

N(s)f(s, u(s))ds+

∑q
i=1 γi

1− ψ

∫ 1

0

N(s)f(s, u(s))ds+
b

1− ψ
(3.15)

≤ R1
1− ψ +

∑q
i=1 γi

1− ψ

∫ 1

0

N(s)ds∥u∥+ ρ1
2
<
ρ1
2

+
ρ1
2

= ∥u∥,

which implies that

(3.16) ∥Au∥ < ∥u∥, u ∈ ∂Ωρ1 .

Define the function f̃(t, u) = maxz∈[0,u] {f(t, z)}, which is nondecreasing on [0,∞) with
respect to u. By F∞ = 0, it is deduced that

lim sup
u→∞

f̃(t, u)

u
= 0.

Hence, there exists ρ2 ≥ max{2c1, 2b
1−ψ} such that f̃(t, u) ≤ R1u for ∀u ≥ ρ2. For any

u ∈ ∂Ωρ2 , we have

Au(t) =

∫ 1

0

G(t, s)f(s, u(s))ds+
tm−1

1− ψ

q∑
i=1

γi

∫ 1

0

G(ηi, s)f(s, u(s))ds+
btm−1

1− ψ

≤
∫ 1

0

N(s)f̃(s, ∥u∥)ds+
∑q
i=1 γi

1− ψ

∫ 1

0

N(s)f̃(s, ∥u∥)ds+ b

1− ψ

≤ R1
1− ψ +

∑q
i=1 γi

1− ψ

∫ 1

0

N(s)ds∥u∥+ ρ2
2
<
ρ2
2

+
ρ2
2

= ∥u∥.

This shows that

(3.17) ∥Au∥ < ∥u∥, u ∈ ∂Ωρ2 .
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Finally, by Lemma 2.5, we have mint∈[θ0,1−θ0] u(t) ≥ Kθ0∥u∥ = Kθ0c1 for any u ∈ ∂Ωc1 .
It follows from Lemma 2.4 that for any u ∈ ∂Ωc1 ,

∥Au∥ = max
t∈[0,1]

{∫ 1

0
G(t, s)f(s, u(s))ds+

tm−1

1− ψ

q∑
i=1

γi

∫ 1

0
G(ηi, s)f(s, u(s))ds+

btm−1

1− ψ

}

≥ min
t∈[θ0,1−θ0]

{∫ 1

0
G(t, s)f(s, u(s))ds+

tm−1

1− ψ

q∑
i=1

γi

∫ 1

0
G(ηi, s)f(s, u(s))ds+

btm−1

1− ψ

}

≥Kθ0

∫ 1−θ0

θ0

N(s)f(s, u(s))ds+
Kθ0θ

m−1
0

∑q
i=1 γi

1− ψ

∫ 1−θ0

θ0

N(s)f(s, u(s))ds(3.18)

≥c1m1Kθ0

(
1− ψ + θm−1

0

∑q
i=1 γi

1− ψ

∫ 1−θ0

θ0

N(s)ds

)
> c1 = ∥u∥,

which implies that

(3.19) ∥Au∥ > ∥u∥, u ∈ ∂Ωc1 .

By (3.16), (3.17), (3.19) and Theorem 3.1, the operator A has at least two fixed points
u1 ∈ Ωc1 \ Ωρ1 , u2 ∈ Ωρ2 \ Ωc1 with 0 < ∥u1∥ < c1 < ∥u2∥ for b small enough. For any
t∗ ∈ (0, 1), there exists θ∗ ∈ (0, 12 ) such that t∗ ∈ [θ∗, 1− θ∗]. By Lemma 2.5, we have

uj(t∗) ≥ Kθ∗∥uj∥ > 0,

where j = 1, 2. Hence uj > 0 on (0, 1). Moreover, uj(1) =
∑q
i=1 γiuj(ηi) + b > 0. Thus

u1, u2 are two positive solutions of (1.1). In addition, from (3.17) and (3.19), we obtain that
(1.1) has at least one positive solution for any b ∈ [0,∞). This completes the proof. □

Theorem 3.3. Assume that the following conditions are satisfied:
(H5) f0 = f∞ = ∞,
(H6) There exists a constant c2 > 0 such that for any u ∈ [0, c2],

f(t, u) ≤ c2m2, 0 < m2 <
1

2

(
1− ψ +

∑q
i=1 γi

1− ψ

∫ 1

0

N(s)ds

)−1

.

Then (1.1) has at least two positive solutions u3, u4 with 0 < ∥u3∥ < c2 < ∥u4∥ for b small
enough and no positive solution for b large enough.

Proof. (1) We prove that (1.1) has at least two positive solutions for sufficiently small b.
Since f0 = ∞, there exists ν1 ∈ (0, c2) such that f(t, u) ≥ R2u for ∀u ∈ [0, ν1], where R2

satisfies

R2 >
1

K2
θ0

(
1− ψ + θm−1

0

∑q
i=1 γi

1− ψ

∫ 1−θ0

θ0

N(s)ds

)−1

.

From (3.18) and Lemma 2.5, we obtain that for any u ∈ ∂Ων1 ,

∥Au∥ ≥ Kθ0

∫ 1−θ0

θ0

N(s)f(s, u(s))ds+
Kθ0θ

m−1
0

∑q
i=1 γi

1− ψ

∫ 1−θ0

θ0

N(s)f(s, u(s))ds

≥ R2K
2
θ0

(
1− ψ + θm−1

0

∑q
i=1 γi

1− ψ

∫ 1−θ0

θ0

N(s)ds

)
∥u∥ > ∥u∥.

It implies that

(3.20) ∥Au∥ > ∥u∥, u ∈ ∂Ων1 .

By f∞ = ∞, there exists ω1 > c2 such that f(t, u) ≥ R2u for ∀u ≥ ω1. Choosing a
positive constant ν2 ≥ ω1

Kθ0
, we have mint∈[θ0,1−θ0] u(t) ≥ Kθ0∥u∥ ≥ ω1 for any u ∈ ∂Ων2 .
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Similar to the proof of (3.20), it follows that

(3.21) ∥Au∥ > ∥u∥, u ∈ ∂Ων2 .

Finally, let b satisfy

0 ≤ b ≤ (1− ψ)c2
2

.

Using (3.15), we get that for any u ∈ Ωc2 ,

Au(t) ≤
∫ 1

0

N(s)f(s, u(s))ds+

∑q
i=1 γi

1− ψ

∫ 1

0

N(s)f(s, u(s))ds+
b

1− ψ

≤ c2m2

(
1− ψ +

∑q
i=1 γi

1− ψ

∫ 1

0

N(s)ds

)
+
c2
2
<
c2
2

+
c2
2

= ∥u∥,

which means that

(3.22) ∥Au∥ < ∥u∥, u ∈ ∂Ωc2 .

By (3.20), (3.21), (3.22) and Theorem 3.1, the operator A has at least two fixed points
u3 ∈ Ωc2 \ Ων1 , u4 ∈ Ων2 \ Ωc2 with 0 < ∥u3∥ < c2 < ∥u4∥ for b small enough. Similar to
the proof of the positivity of u1, u2, we get that u3, u4 are two positive solutions of (1.1).

(2) We verify that (1.1) has no positive solution for b large enough.
Suppose that there exists a sequence {bn} satisfying 0 < b1 < b2 < · · · < bn < · · · and

limn→∞ bn = ∞, such that for any positive integer n, the boundary value problem{
−u(m)(t) +M CDαu(t) = f(t, u(t)), t ∈ (0, 1),
u(0) = u′(0) = · · · = u(m−2)(0) = 0, u(1)−

∑q
i=1 γiu(ηi) = bn

has a positive solution un. By (3.14), we have

un(1) =

∫ 1

0

G(1, s)f(s, un(s))ds+
1

1− ψ

q∑
i=1

γi

∫ 1

0

G(ηi, s)f(s, un(s))ds+
bn

1− ψ

≥ bn
1− ψ

→ ∞, (n→ ∞).

Hence ∥un∥ → ∞ as n → ∞. Since f∞ = ∞, there exists ω2 > 0 such that f(t, u) ≥ 2R2u
for ∀u ≥ ω2. Let n be large enough such that ∥un∥ ≥ ω2

Kθ0
. Then

∥un∥ ≥ Kθ0

∫ 1−θ0

θ0

N(s)f(s, un(s))ds+
Kθ0θ

m−1
0

∑q
i=1 γi

1− ψ

∫ 1−θ0

θ0

N(s)f(s, un(s))ds

≥ 2R2K
2
θ0

(
1− ψ + θm−1

0

∑q
i=1 γi

1− ψ

∫ 1−θ0

θ0

N(s)ds

)
∥un∥ > 2∥un∥,

a contradiction. This completes the proof. □

Theorem 3.4. Assume that f∞ = ∞ and condition (H6) holds. If f(t, u) is nondecreasing with
respect to u, then there exists a positive constant b∗ such that (1.1) has at least one positive solution
for b ∈ [0, b∗] and no positive solution for b ∈ (b∗,∞).

Proof. Let B = {b ≥ 0 : (1.1) has at least one positive solution} and b∗ = supB. From
(3.21), (3.22), we obtain that (1.1) has at least one positive solution for b small enough,
which means that we only need to consider the case b > 0 in what follows. By the second
part of the proof of Theorem 3.3, we can deduce b∗ < ∞. Thus 0 < b∗ < ∞. From the
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definition of b∗, we know that for any b ∈ (0, b∗), there exists a constant c ∈ B : c > b such
that boundary value problem

(3.23)
{

−u(m)(t) +M CDαu(t) = f(t, u(t)), t ∈ (0, 1),
u(0) = u′(0) = · · · = u(m−2)(0) = 0, u(1)−

∑q
i=1 γiu(ηi) = c

has a positive solution uc. Next, we consider the following boundary value problem

(3.24)
{

−u(m)(t) +M CDαu(t) = F (t, u(t)), t ∈ (0, 1),
u(0) = u′(0) = · · · = u(m−2)(0) = 0, u(1)−

∑q
i=1 γiu(ηi) = b,

where

F (t, u(t)) =


f(t, uc(t)), u(t) > uc(t),

f(t, u(t)), 0 ≤ u(t) ≤ uc(t),

f(t, 0), u(t) < 0.

Define the operator Ã : E → E as follows:

Ãu(t) =

∫ 1

0

G(t, s)F (s, u(s))ds+
tm−1

1− ψ

q∑
i=1

γi

∫ 1

0

G(ηi, s)F (s, u(s))ds+
btm−1

1− ψ
.

Since the function F is continuous and bounded, there is a constant D > 0 such that
∥Ãu∥ ≤ D for any u ∈ E. Let Ω = {u ∈ E : ∥u∥ ≤ D}, it is clear that Ã(Ω) ⊆ Ω. Similar
to Lemma 3.6, we obtain that Ã : Ω → Ω is completely continuous. By the Schauder’s
fixed point theorem, (3.24) has a solution ub ∈ Ω. Obviously, ub > 0 on (0, 1] since F ≥ 0.
Setting z = uc − ub, from (3.23) and (3.24), we have{

−z(m)(t) +M CDαz(t) = f(t, uc(t))− F (t, ub(t)) ≥ 0, t ∈ (0, 1),
z(0) = z′(0) = · · · = z(m−2)(0) = 0, z(1)−

∑q
i=1 γiz(ηi) = c− b ≥ 0.

Denote p(t) = f(t, uc(t)) − F (t, ub(t)). By the continuity of f, F, uc, ub, we easily get p ∈
C+[0, 1]. From Lemma 2.3, we have

z(t) =

∫ 1

0

G(t, s)p(s)ds+
tm−1

1− ψ

q∑
i=1

γi

∫ 1

0

G(ηi, s)p(s)ds+
(c− b)tm−1

1− ψ
.

Obviously, z ≥ 0, i.e., ub ≤ uc. As a consequence, ub is a positive solution of (1.1).
Finally, we show that b∗ ∈ B. Let 0 < b1 < b2 < · · · < bn → b∗ and xn be the positive

solution of (1.1) with b = bn. Then

xn =

∫ 1

0

G(t, s)f(s, xn(s))ds+
tm−1

1− ψ

q∑
i=1

γi

∫ 1

0

G(ηi, s)f(s, xn(s))ds+
bnt

m−1

1− ψ
.

Since f∞ = ∞, there exists ς > 0 such that f(t, x) ≥ Rx for ∀x ≥ ς , where R =
1

K2
θ0

∫ 1−θ0
θ0

N(s)ds
+ 1. Suppose that ∥xn∥ → ∞, there exists N > 0 such that for n > N ,

mint∈[θ0,1−θ0] xn ≥ Kθ0∥xn∥ ≥ ς. Hence,

xn ≥
∫ 1

0

G(t, s)f(s, xn(s))ds ≥ Kθ0

∫ 1−θ0

θ0

N(s)Rxn(s)ds

≥ RK2
θ0

∫ 1−θ0

θ0

N(s)ds∥xn∥ > ∥xn∥,
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a contradiction, which implies that ∥xn∥ ≤ C0 for some C0 > 0. Therefore, the sequence
{xn} is uniformly bounded. On the other hand, by Lemma 2.2 and (2.13), we have

|x′n| ≤
∫ t

0

(t− s)m−2Em−α,m−1(M(t− s)m−α)f(s, xn(s))ds+
bn(m− 1)tm−2

1− ψ

+
(m− 1)tm−2

1− ψ

∫ 1

0

(1− s)m−1Em−α,m(M(1− s)m−α)f(s, xn(s))ds

+
(m− 1)tm−2

1− ψ

q∑
i=1

γi

∫ ηi

0

(ηi − s)m−1Em−α,m(M(ηi − s)m−α)f(s, xn(s))ds

≤C1

∫ 1

0

f(s, xn(s))ds+ C2 ≤ C1

∫ 1

0

f(s, C0)ds+ C2 ≤ C3

for some positive constants C1, C2, C3. For any t1, t2 ∈ [0, 1] with |t1 − t2| → 0, it holds
that

|xn(t1)− xn(t2)| = |x′n(ξ)(t1 − t2)| ≤ C3|t1 − t2| → 0,

where ξ is between t1 and t2. Hence {xn} is equicontinuous. By the Arzela-Ascoli Theo-
rem, {xn} has a subsequence {xnk

} converging to x∗ ∈ C[0, 1], i.e., limk→∞ xnk
= x∗. It is

easy to verify that

x∗ =

∫ 1

0

G(t, s)f(s, x∗(s))ds+
tm−1

1− ψ

q∑
i=1

γi

∫ 1

0

G(ηi, s)f(s, x
∗(s))ds+

b∗tm−1

1− ψ
,

that is, x∗ is the positive solution of (1.1) with b = b∗. This completes the proof. □

Example 3.1. Consider the following fractional differential equation

(3.25)
{

−u′′′(t) + 1
2
CD

5
2u(t) = 1

2 (u
1
2 (t) + u

3
2 (t) + t), t ∈ (0, 1),

u(0) = u′(0) = 0, u(1)− 1
6u(

1
3 )−

1
5u(

2
3 ) = b.

In fact, m = 3,M = 1
2 , α = 5

2 , f(t, x) =
1
2 (
√
x+ x

3
2 + t), γ1 = 1

6 , γ2 = 1
5 , η1 = 1

3 , η2 = 2
3 .

It is easy to show that the conditions (H1), (H2), (H5) hold. Moreover,

H : =
1− ψ +

∑q
i=1 γi

1− ψ

∫ 1

0

N(s)ds

=
1−

∑2
i=1 γiη

2
i +

∑2
i=1 γi

1−
∑2
i=1 γiη

2
i

∫ 1

0

(1− s)2E 1
2 ,3

(
1

2
(1− s)

1
2

)
ds

≤
E 1

2 ,3
( 12 )(1−

∑2
i=1 γiη

2
i +

∑2
i=1 γi)

1−
∑2
i=1 γiη

2
i

∫ 1

0

(1− s)2ds ≈ 0.332.

Taking m2 = 1.5, we have m2 < 1
2×0.332 = 1.506 ≤ 1

2H . Let c2 = 4, for any (t, x) ∈
[0, 1]× [0, 4], we obtain

f(t, x) =
1

2
(
√
x+ x

3
2 + t) ≤ 5.5 ≤ 6 = c2m2.

By Theorem 3.3 and Theorem 3.4, there exist positive constants b1 ≤ b2 such that the
problem (3.25) has at least two positive solutions for b ∈ [0, b1), one positive solution for
b ∈ [b1, b2], and no positive solution for b ∈ (b2,∞).
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