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Cut-through connections of graphs

DANIELA MATISOVÁ1 AND JURAJ VALISKA2

ABSTRACT. A 4-regular plane graph G is cut-through connected if any two vertices of G are connected by a
cut-through path (that is, the path with the property that every two consecutive edges are not consecutive in
local rotation of their common vertex). In this paper, we present the complete characterization of cut-through
connected 4-regular plane graphs in terms of Gauss Codes or Extended Gauss Codes.

1. INTRODUCTION

All graphs considered in this paper are plane (that is, drawn in Euclidean plane in
the way their edges do not cross), possibly containing multiple edges or loops. We use
a standard graph theory terminology according to Bondy and Murty [3]. However, we
recall some specialized notation.

An edge-coloring of a graph G is proper if any two adjacent edges receive different
colors. If G admits a proper coloring, then we say that G is properly colored.

An edge-colored graph G is called rainbow connected if any two vertices are connected
by a path whose edges have different colors. The concept of rainbow connection in graphs
was introduced by Chartrand et al. [7]. There is an extensive research concerning in this
area, see e.g. [17, 18, 19, 20, 22, 23, 26].

As a modification of proper colorings and rainbow colorings of graphs, Andrews et al.
[2] and independently Borozan et al. [4] introduced the concept of proper connection of
graphs, where the edge coloring need not be proper, but any two vertices are connected
by a properly colored path; for related results, see e.g. [1, 13, 16, 21, 25].

An edge-colored graphG is called conflict-free connected if any two vertices are connected
by a path which contains at least one color used on exactly one of its edges. The concept
of conflict-free connection was introduced in 2018 by Czap et al. [8] and then studied in
several papers, see [5, 6, 24].

Motivated by the above mentioned three concepts and by the fact that all these properties
concern colorings, we extend this area by a connection involving a structural property,
introducing the cut-through connection:

Let G be a simple 4-regular plane graph and let e1, e2, e3, e4 be edges incident with a
vertex v of G; assume that the indices match the clockwise local rotation of edges in the
plane drawing of G. We say that pairs of edges e1, e3 and e2, e4 cut-through the vertex
v. A path P in G is cut-through path (CT-path for short) if any two consecutive edges of
P cut-through their common vertex on P . A graph G is cut-through connected if any two
vertices of G are connected by a CT-path.

In this paper, we explore cut-through connectivity concept, focusing on the existence
of cut-through connected graphs and their characterizations. In Section 2, we recall
additional particular notation and prove general results on the existence of cut-through
connected graphs as well as present the smallest cut-through Eulerian simple 4-regular
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plane graph (aka knot) which is not cut-through connected. In Section 3, we state the
necessary and sufficient condition for a knot to be cut-through connected in terms of its
Gauss code and expand this characterization to be applied on all 4-regular simple plane
graphs, using the extension of Gauss code. The last Section 4 discusses possibilities to
extend the obtained results for generalized cut-through property (called straight-ahead in
[28]) in Eulerian plane graphs.

2. PRELIMINARIES

Let A = {a, b, c, . . .} be an alphabet (whose elements are called letters). A word (cyclic
word) is a finite sequence (cyclic sequence, respectively) of letters from A; a subword is
a subsequence of a word or a cyclic word. For an ordered n-tuple T = (a1, a2, . . . , an)
of letters from A, let (a1, a2, . . . , an)A be a set of all words starting with a1, ending with
an, containing all letters a2, . . . , an−1 in the order specified by T such that, for every
i = 1, . . . , n − 1, there is arbitrary word (including the empty one) over A between ai
and ai+1. For example, the set (aabc)A contains, among others, the words aabc, aaabcc or
abacabc.

First, we state a useful sufficient condition for cut-through connectedness:

Lemma 2.1. Let G be a 4-regular plane graph. If G contains three cut-through paths such that
every vertex v of G is contained in at least two of them, then G is cut-through connected.

Proof. Let P1, P2, and P3 be above mentioned cut-through paths. Every vertex of G is
contained in at least two of these paths; so, by pigeon-hole principle, every pair u, v of
vertices is contained in at least one common path Pi. The (u, v)-subpath of Pi is thus the
desired cut-through path between u and v. □

Theorem 2.1. For every integer n ≥ 6, n ̸= 7, there exists cut-through connected 4-regular plane
graph on n vertices

Proof. Consider graphs D6, D8, D9, D10, D11, D12, and D13 on Figure 1.
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FIGURE 1. The graphs D6 and D8 - D13
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Each of them contains three cut-through paths satisfying the condition of Lemma 2.1
(dashed, long-dashed, and black-and-white, respectively). Thus, these graphs are cut-
through connected, proving the theorem for n ∈ S = {6, 8, 9, 10, 11, 12, 13}. Now, let
n = 6p + q, p ≥ 1, q ∈ S. Modify the graph Dq in the following way: split the edges
e1, e2, e3 into half-edges e′1, e′′1 , e′2, e′′2 and e′3, e

′′
3 , and insert the configuration H (consisting

of six half-edges and the ”snake” of 6p − 2 triangles) of Figure 2 such that the half-edges
of H match the ones in Dq .
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FIGURE 2. The configuration H

The resulting graph again satisfies the conditions of Lemma 2.1, hence, it is cut-through
connected.

Note that there is no 4-regular plane simple graph on seven or less than six vertices,
hence the constraints on n follow. □

Observe that, for n ≥ 8, one may actually construct also cut-through connected n-vertex
knots. Moreover, it follows that, up to 13 vertices, all knots are cut-through connected:

Lemma 2.2. The smallest knot which is not cut-through connected has 14 vertices.

Proof. Consider two 4-regular 14-vertex plane graphs on Figure 3; it is easy to verify that
they are knots, but none of cut-through paths starting from the vertex x contains y.

x y

x

y

FIGURE 3. The smallest knots which are not cut-through connected

As for the 4-regular plane graphs on at most 13 vertices, we first used plantri graph
generator to construct those ones which are 3-connected (they are obtained as duals of 3-
connected plane quadrangulations; there are 38 of them), and, using the Maple computer
algebra system and our custom procedures for handling cut-through property, we have
selected from them the ones which are knots; there are altogether 12 of them and all were
verified to be cut-through connected. It remains to check the graphs of connectivity at
most 2: there are two such graphs on 12 vertices and three ones on 13 vertices, see Figure 4.
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Anyway, regardless of their plane drawings, they are easily found to contain a cut-through
cycle, hence, they are not knots. □

FIGURE 4. 1-connected and 2-connected quartic plane graphs on at most 13 vertices

3. KNOTS AND GAUSS CODES

In this section, we establish the relation between cut-through connected knots and their
Gauss codes. Recall that a knot G can be represented by its Gauss diagram (also known
as chord diagram) defined by C.F. Gauss [11], which is a graph consisting of cycle (whose
vertices represent vertices of G in the order as visited following the cut-through Eulerian
trail) and its chords, such that the endvertices of a chord represent the same vertex of
G. These diagrams have some interesting properties: for example, every vertex in G is
represented by exactly two vertices in Gauss diagram, or any arc-path of the cycle with
terminal vertices representing the same vertex in G even number of internal vertices.
The complete characterization of Gauss diagrams was made in several ways; for further
reading see e.g. [9, 11, 12, 27].
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FIGURE 5. From knot to its Gauss diagram and Gauss code

Here, we use the following knot representation: label all vertices of a knot G by letters
(from an alphabet). Then we obtain a cyclic word consisting of labels of vertices in the
order as we visit them following the cut-through Eulerian trail of G. We call this cyclic
word the Gauss code of G (see Figure 5).

All labels of Gauss Code occur twice. For the position of a pair of distinct labels, there
are only two possibilities:
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Case 1. If there is a subword w ∈ (aabb)A of Gauss code of G, we call the corresponding
pair of vertices of G a loop-pair. In this case, these two vertices divide the cut-through
Eulerian trail of G to a− a-, a− b-, b− b-, and b− a-subtrails (in this order).

Case 2. If there is a subword w ∈ (abab)A of Gauss Code of G, we call the corresponding
pair of vertices of G a trail-pair. In this case, these two vertices divide the cut-through
Eulerian trail of G to a− b-, b− a-, a− b-, and b− a-subtrails (in this order).

The next theorem gives the necessary and sufficient condition for a knot G to be cut-
through connected regarding its Gauss Code:

Theorem 3.2. Let G be a knot. Then G is cut-through connected if and only if there is no subword
w ∈ (aabbccdd)A of its Gauss code.

Proof. Let w ∈ (aabbccdd)A be a subword of Gauss code of G. As cut-through paths in G
correspond to subsequences of the Gauss code of G, we get that there is no cut-through
path between vertices a and c, because the vertex b (or d, respectively) appears on any a−c-
subtrail twice. Thus there is no (a, c)-cut-through path in G, and G is not cut-through
connected.

To prove the converse, assume that knot G is not cut-through connected. It means that
there exists some pair of vertices u and v, such that there is no cut-through (u, v)-path in
G. We consider two cases.

Case 1. If u, v is loop-pair in G, then there must be some vertex twice on u − v- and
v−u-subtrails of the cut-through Eulerian trail. Let its labels be a and b, respectively. Then
there is w ∈ (uuaavvbb)A subword of Gauss code of G.

Case 2. If u, v is trail-pair in G, then on every of u−v-, v−u-, u−v-, and v−u-subtrails of
the cut-through Eulerian trail of G, there is a vertex which appears twice on that subtrail.
Let the labels of these vertices (in the order given by traversing the Eulerian trail of G with
respect to the u, v-trail-pair) be a, b, c, and d. Then there is w ∈ (aabbccdd)A subword of
Gauss Code of G. □

Now, let G be a 4-regular plane graph (not necessarily a knot). Let T1, T2, . . ., Tk be
a decomposition of E(G) such that, for every i = 1, 2, . . . , k, Ti is a closed trail such that
every pair of its consecutive edges cut through their common vertex. From [28], it follows
that such a decomposition is uniquely determined. The graphG[Ti] induced by edges of Ti

is either a cycle, or subdivision of a 4-regular plane pseudograph; all the subgraphs G[Ti],
i = 1, 2, . . . , k form the cut-through components of G, and ct(G) = {G[Ti], i = 1, 2, . . . , k} is
the cut-through decomposition of G.

Cut-through components of cut-through decomposition can share common vertices.
Because ct(G) is uniquely determined, we can represent (in a unique way) the structure of
cut-through components in ct(G) by the following graph (denoted by rep(G)): its vertices
correspond to cut-through components of ct(G), and two vertices are connected by an edge
if their corresponding cut-through components have at least one vertex of G in common.
We will refer to vertices in rep(G) corresponding to cycles as white vertices; all other
vertices of rep(G) are called black (see Figure 6).

It is easy to see that, for connected simple 4-regular plane graph G, it holds
Observation 1: rep(G) is connected.
Now, let G be a cut-through connected simple 4-regular plane graph.
Observation 2: rep(G) contains at most one black vertex.
Proof: Consider two black vertices in rep(G) corresponding to cut-through components

B1 and B2 from ct(G) which are not cut-through cycles of G. Let vi, i = 1, 2 be a vertex of
Bi incident with four edges of Bi. Every cut-through path of G starting in v1 contains only
edges of B1; thus, there is no cut-through (v1, v2)-path, because all four edges incident
with v2 are in B2 only.
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G rep(G)

G1 G2 G3

FIGURE 6. Finding cut-through decomposition and rep(G) of G

Observation 3: If rep(G) contains a black vertex, then no two white vertices are adjacent.
Proof: Consider the contrary, and take a black vertex in rep(G) corresponding to a cut-

through component B1, and two adjacent white vertices corresponding to cut-through
cycles W1 and W2 (hence, W1 and W2 have a common vertex v2). Let v1 be a vertex of B1

that is incident with four edges of B1. Every cut-through path that starts in v1 contains
only edges ofB1, thus, there is no cut-through (v1, v2)-path, because all four edges incident
with v2 are only in W1 or W2.

Observation 4: rep(G)does not contain two non-adjacent edges with white endvertices.
Proof: Consider four white vertices in rep(G) corresponding to cut-through cycles

W1,W2,W3, and W4 such that W1 and W2 (W3 and W4, respectively) have a vertex v1 (v2,
respectively) in common. Every cut-through path that starts in v1 contains only edges of
W1 or W2; thus, there is no cut-through (v1, v2)-path, because all four edges incident with
v2 belong only to W3 or W4.

From all the observations above, one can easily state the following

Corollary 3.1. Let G be a simple 4-regular plane cut-through connected graph. Then rep(G) is
one of the following graphs:

(i) 3-cycle consisting only of white vertices,
(ii) a star consisting only of white vertices,

(iii) a star with a central black vertex and white leaves.

FIGURE 7. Three types of rep(G) for a simple 4-regular cut-through con-
nected G

Now, let G be a simple 4-regular plane graph (not necessarily cut-through connected)
such that rep(G) is a 3-cycle on white vertices. Then ct(G) consists of three cut-through
cycles and, in G, there exist three cut-through paths obtained from these cycles removing
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one edge from each. These paths satisfy the condition of Lemma 2.1, thus, G is cut-through
connected.

Similarly, if rep(G) is a star on white vertices, the decomposition ct(G) contains a
particular cut-through cycle C having common vertices with all other cut-through cycles
of G. Moreover, all vertices in G are on C. Thus again, G is cut-through connected.

If rep(G) is a star with a black central vertex, then G (referred lated as type (iii) graph)
may or may be not cut-through connected. A construction of suchG that is not cut-through
connected is easy: take a plane drawing of a knot that is not cut-through connected (for
example, one of those in Figure 3) and, around its arbitrary vertex, draw concentric cut-
through cycles of length four. If the original knot contained two vertices u, v which were
not connected by a cut-through path, then, in the obtained 4-regular plane graph, there is
no cut-through path between u and v as well.

Similarly, a cut-through connected type (iii) graph can be constructed, for example from
the multigraph in Figure 8 (on the left) by drawing concentric cut-through cycles of length
four around one of its vertices (see Figure 8 on the right).

FIGURE 8. A construction of cut-through connected type (iii) graph

Consider a simple 4-regular plane graph G of type (iii). Label all vertices of the single
non-cycle component of ct(G) by small letters and, for every cut-through cycle of ct(G),
label all its vertices by the same capital letter. Then we obtain a cyclic word (called the
extended Gauss Code of G) consisting of labels of vertices in the order as we visit them
traversing (with respect to cut-through property) the non-cycle component of ct(G) (see
Figure 9 for illustration).

Now, we are ready to state the sufficient and necessary condition for a general simple
4-regular plane graph to be cut-through connected:

Theorem 3.3. Let G be a simple 4-regular plane graph of type (iii). Then G is cut-through
connected if and only if its extended Gauss Code does not contain any of the following subwords:

(a) w1 ∈ (aabbccdd)A,
(b) w2 ∈ (aabbccA)A,
(c) w3 ∈ (aaAbbB)A.

Proof. Assume that G is not cut-through connected, that is, there is a pair of vertices u, v
of G such that there is no cut-through (u, v)-path.

If both u and v are incident only with edges belonging to non-cycle component of ct(G),
then this component itself (taking into account the cut-through property being true also
for two edges incident with a vertex of degree 2) is not cut-through connected and, from
Theorem 3.1, it follows that there is a subword w1 ∈ (uuaavvbb)A in extended Gauss code
of G, because there is no such a cut-through (u, v)-path.

If u is incident only with edges of non-cycle component of ct(G) and v is incident with
edges of some cut-through cycle of ct(G) (thus, v is labeled with, say, label A), then there
is a subword w2 ∈ (aauubbA)A in extended Gauss code of G.



462 Daniela Matisová and Juraj Valiska

a
b c

d
e

f

g

A
BB

B B

A
AA

a

a

b

b

c

c

d

d

e

e

f

f

A

A A

A

B

B

B

B

g

g

FIGURE 9. A 4-regular plane graph and its extended Gauss code

Finally, suppose that u and v are vertices incident only with edges belonging to cut-
through cycles of ct(G) (let u be labeled with A and v with B). Then u and v are not in
the same cut-through cycle (because any two vertices contained in a common cut-through
cycle are connected by a cut-through path of G). Thus, there is a subword w3 ∈ (aaAbbB)A
in extended Gauss code of G.

To prove the converse, suppose there is a subword w in extended Gauss code of G
belonging to (aabbccdd)A, (aabbccA)A, or (aaAbbB)A. It is easy to see, that, in the case (a),
there is no cut-through path between vertices labeled with a and b, and similarly, no such
a path between any two vertices labeled by b and A (or A and B) in case (b) or case (c),
respectively. Hence, G is not cut-through connected. □

4. CONCLUDING REMARKS

The concept of cut-through neighborhood (also cut-through connectivity) can be con-
sidered not only for 4-regular plane graphs but in general for Eulerian plane graphs (by
taking the ”opposite” edge to an edge in the rotation around their common vertex). Con-
sequently, for an Eulerian plane graph with a single cut-through component (a kind of
”hyperknot”), an analogy of the Gauss code can be considered. Unfortunately, it seems
that neither necessary nor sufficient conditions are known for a given sequence of vertex
labels to be a Gauss code (that the necessary condition for the original Gauss code does not
work for general Eulerian plane graphs can be seen, for example, on the graph of Figure
10 – there are occurrences of the same symbol yielding the subsequences of both even
and odd length). Moreover, by slight modification of the multigraph from [28], we obtain
a planar Eulerian graph which has two different plane drawings with different numbers
of cut-through components (see Figure 11); as noted before, this is in sharp contrast with
4-regular plane graphs.

Another generalization of cut-through property (which, in principle, can be consid-
ered for graphs of minimum degree at least 4 with a prescribed rotation system) may be
based on the assumption that the edges that are cut-through-related – in a generalized
sense – are the adjacent edges which are not consecutive in the rotation around their
common vertex. This allows more freedom to connect a pair of vertices with a general-
ized cut-through path (which need not be unique), but also brings complications with
the definition of generalized cut-through-decomposition (it need not exist when requiring
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FIGURE 10. Eulerian ”hyperknot”, which is not cut-through connected,
and its Gauss code

FIGURE 11. Two different plane embeddings of Eulerian planar graph with
different numbers of cut-through components

edge-disjoint closed trails); thus, it requires different approaches and further investigation.
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