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A set packing model for the Partition Coloring Problem

EMANUEL FLORENTIN OLARIU AND CRISTIAN FRĂSINARU

ABSTRACT. In this paper we propose a set packing model for the Partition Coloring Problem (PCP) a gener-
alization of the Vertex Coloring Problem (VCP). Given a graph whose vertex set is partitioned in clusters, PCP
aims to select one vertex from each cluster such that the chromatic number of the resulted induced subgraph is
minimal.

A set packing integer linear programming formulation is presented and, based on this, we implement a
branch-and-price algorithm. The resulted formulation offers a very good quality root linear relaxation problem.
Computational experiments led on instances from literature and on newly generated instances for the problem
of routing and wavelength assignment in all-optical networks show that our algorithm performs at least as well
and sometimes better than the state-of-the-art algorithms for large instances. We introduce a version of this
algorithm based on strengthening the root linear relaxation with cuts using two families of valid inequalities
which proved to be effective for small and medium instances.

1. INTRODUCTION

One of the most studied optimization problem in graph theory is vertex coloring prob-
lem (VCP): for a given graph we want to assign colors to its vertices in such a way that
any two adjacent vertices receive different colors. This problem has a wide range of appli-
cations: scheduling, frequency allocation, register allocation, wavelength routing etc; for
these applications and some approaches see [11, 12, 18, 21, 23, 29].

Motivated in the first place by the routing and wavelength assignment (RWA) in op-
tical networks ([19, 24]), one of the many generalizations of VCP is the partition color-
ing problem (PCP), also known as the selective coloring problem. The decision variant of
PCP is a NP-hard problem since it generalizes VCP decision counterpart which is known
to be NP-complete. Besides RWA there are some other real life applications of PCP:
dichotomy-based constraint encoding, (antenna positioning and) frequency assignment
problem, quality test scheduling, berth allocation problem etc ([5]).

VCP and its variants are computationally challenging and different linear program-
ming approaches were developed to solve these problems ([21]). Some of these models
use compact formulations, like the assignment formulation, the representative formula-
tion ([2]) or the partial-ordering based formulations ([17]); other models use an exponen-
tial number of variables, like the set covering formulation from [22], which requires the
use of the column generation method (see [6]).

2. BACKGROUND

Let G = (V,E) be a simple undirected graph with n vertices and P = {V1, V2, . . . , Vk}

be a partition of its vertices, i. e., Vi ∩ Vj = ∅, ∀1 ≤ i < j ≤ k,
k⋃

i=1

Vi = V , and Vi ̸= ∅,
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∀i ∈ [k], where, for a given q ∈ N∗, [q] = {1, 2, . . . , q}. The classes of this partition will be
called clusters.

Definition 2.1. A selective p-coloring for the pair (G,P) is a p-coloring of the subgraph induced
by a subset of vertices V ′ ⊆ V that contains exactly one vertex from each cluster of P .

Formally, a selective p-coloring is a family of p pairwise disjoint stable (vertex indepen-
dent) sets S1, S2, . . . , Sp of G such that |Vi ∩ Sj | ≤ 1, ∀i ∈ [k], ∀j ∈ [p], and each cluster
intersects at least a stable set.

The aim of the Partition Coloring Problem (PCP, also called the Selective Coloring Problem)
is to find the minimum p for which G has a selective p-coloring, that is the partition (or
selective) chromatic number.

The first approaches to PCP proposed RWA related heuristics ([19]); a tabu search
heuristic was also proposed in [24], a memetic algorithm in [27] and an ant-local search
algorithm in [8]. Another approach based on reducing the scale of the underlying graph
with good results for large graphs can be found in [30]. Very good results were obtained
by using Integer Linear Programming (ILP) models: a representative formulation in [9],
a combined model of the asymmetric representative formulation and the independent
set model in [16], a set covering model in [10]. These last ILP approaches describe exact
algorithms for solving PCP.

The complexity status of the PCP was investigated in [3] and [4] for some particular
classes of graphs and in [13] for different fixed parameters (the number of colors, the
number of clusters and the maximum cardinality of a cluster).

2.1. Contributions and paper structure. By taking advantage on the work already done
we introduce a simple set packing ILP model based on a similar model for the VCP ([14])
which needs a pricing phase built around a pricing problem corresponding to the Maxi-
mum Weight Stable Set (MWSS) problem in a certain graph. In the initialization step we
use the slack variables and the heuristic described in [16]; we later solve a sequence of
MWSSs problems in order to tackle the restricted master problem. By employing a smart
way of modifying and restoring the variables already introduced to the parent node in the
branch-and-bound tree, we significantly speed up the computation.

We introduce also a variant of our branch-and-price algorithm by adding to the linear
relaxation of the root problem two families of cuts based on maximal cliques in the corre-
sponding intersection graph. This variant of the algorithm was tested on some small and
medium sized instances and it is aimed at improving the lower bound of the objective
function of the root problem.

The benchmark test instances are partly those from www.ic.uff.br/celso/grupo/
pcp.htm and partly were generated from the RWA context (the so called ring network
topologies).

The numerical results prove that our algorithms perform at least as well and sometimes
better than the state-of-the-art algorithms from the literature (see [16, 10]) and are effective
for very large instances (in terms of edge density and number of vertices and/or edges)
and small and medium instances, respectively.

The remaining of the paper is organized as follows: in section 3 we discuss the ILP set
packing model, in section 4 we describe the branch-and-price-algorithm and the derived
variant which adds cuts to the root linear relaxation, the numerical results and the imple-
mentation details are discussed in section 5. Finally, section 6 is dedicated to conclusions.

www.ic.uff.br/ celso/grupo/pcp.htm
www.ic.uff.br/ celso/grupo/pcp.htm
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3. ILP MODELS

Let G = (V,E) be a with n vertices and P = {V1, V2, . . . , Vk} be a partition of its vertices.
The classical integer linear programming assignment formulation for the graph coloring
problem ([28]) can be modified for modeling the Partition Coloring Problem ([9, 16]): we
need two sets of binary variables: xvi, with v ∈ V and i ∈ [k], xvi = 1 if and only if vertex
v receives the color i, and wi with i ∈ [k], where wi = 1 if and only if color i is used.

(Assign) min

k∑
j=1

wj

k∑
j=1

∑
v∈Vi

xvj = 1,∀i ∈ [k](3.1)

xuj + xvj ≤ wj ,∀uv ∈ E,∀j ∈ [k](3.2)

xvj ∈ {0, 1} ∀v ∈ V,∀j ∈ [k], wj ∈ {0, 1},∀j ∈ [k]

Let S be the family of all stable sets of G intersecting each cluster in at most one vertex:

S = {S ⊆ V : xy /∈ E,∀x, y ∈ S, |S ∩ Vi| ≤ 1,∀i ∈ [k]}

The following set partitioning formulation can be obtained by using the Dantzig-Wolfe
decomposition (by convexification of (3.1) - [7, 10]).

(SetPart) min

∑
S∈S

xS∑
S∈S:S∩Vi ̸=∅

xS = 1,∀i ∈ [k],(3.3)

xS ∈ {0, 1} ∀S ∈ S

Now we will separate the variables corresponding to stable sets of cardinality 1 ([14]):

(3.4)
∑
v∈Vi

x{v} = 1−
∑
S∈Si

2

xS ≥ 0,∀i ∈ [k],

where Si
2 = {S ∈ S : S ∩ Vi ̸= ∅, |S| ≥ 2}. After transforming the objective function we

get the following set packing model of the problem:

(SetPack) max

∑
S∈S2

(|S| − 1)xS∑
S∈Si

2

xS ≤ 1,∀i ∈ [k],(3.5)

xS ∈ {0, 1}, ∀S ∈ S2

where S2 =

k⋃
i=1

Si
2 = {S ∈ S : |S| ≥ 2}.

Consider the linear relaxations (AssignRL), (SetPartLR), and (SetPackLR) of the above
ILP problems and z0, z1, and z2 their corresponding optimal values. The following result
is straightforward and we give it just for the sake of completeness.

Proposition 3.1. z0 ≤ z1 = k − z2.
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Proof. The first relation easily follows since (SetPart) is obtained by Dantzig-Wolfe decom-
position from (Assign). For the second relation let x = (xS)S∈S2

be an optimal solutions
for (SetPackLR).

Define first x̃S = xS , ∀S ∈ S2; second, for any cluster Vi for which
∑
S∈Si

2

xS = 0, we

choose a vertex vi ∈ Vi and define x̃{vi} = 1, x̃{v} = 0, ∀v ∈ Vi \ {vi}; third, for any
remaining cluster Vh, define x̃{v} = 0, ∀v ∈ Vh. We get

(3.6)
∑
v∈Vi

x̃{v} = 1−
∑
S∈Si

2

x̃S ,∀1 ≤ i ≤ k,

hence, x̃ = (x̃S)S∈S is a feasible solution for (SetPartLR). On the other hand, by adding all
relations (3.6)

z1 ≤
∑
S∈S

x̃S =
∑
v∈V

x̃{v} +
∑
S∈S2

x̃S = k −
∑
S∈S2

|S| · x̃S +
∑
S∈S2

x̃S =

= k −
∑
S∈S2

(|S| − 1) · x̃S = k −
∑
S∈S2

(|S| − 1) · xS = z2.

The second inequality (i. e., z1 ≥ z2) can be obtained by observing that the development
of (SetPackLR) from (SetPartLR) allows to define a feasible solution to the former problem
by restricting to S2 any solution for the latter. □

The above result says that the lower bounds for the partition chromatic number ob-
tained by (SetPartLR) and (SetPackLR) could be better than that obtained using (AssignLR).
But both set partitioning and set packing models could have a huge number of variables
even for medium-sized instances, hence we need to employ the column generation (CG)
method ([6, 20]) for solving (SetPackLR). The corresponding branch-and-price algorithm
will be presented in the next section.

The set packing model has the advantage that the polyhedral theory developed around
this formulation gives some easy to implement facet inducing inequalities of the set pack-
ing polyhedron, that is the convex envelope of the solutions to (SetPack). Using such cuts
we implemented a variant of the branch-and-price algorithm by strengthening the root
linear relaxation.

4. BRANCH & PRICE ALGORITHM

4.1. The column generation. The dual of (SetPackLR) (which is also in canonical form) is

(DSetPackLR) min

(
k∑

i=1

σi

)
∑

i:S∈Si
2

σi ≥ |S| − 1,∀S ∈ S2,(4.7)

σi ≥ 0,∀i ∈ [k].

The corresponding Restricted Master Problem (RMP) is the problem (SetPackLR) over a
subset of variables containing a feasible solution. The initial basic feasible solution is the



A set packing model for the Partition Coloring Problem 469

set of slack variables of the constraints (3.5); hence RMP is

(SetPackRMP ) max

∑
S∈S′

2

(|S| − 1)xS

∑
S∈S′i

2

xS + si = 1,∀i ∈ [k],(4.8)

xS ≥ 0, ∀S ∈ S ′
2, si ≥ 0,∀i ∈ [k].

where S
′i
2 ⊆ Si

2, ∀i ∈ [k] and S ′
2 =

k⋃
i=1

S
′i
2 .

The associated subproblem asks to find a stable set S ∈ S2 for which the corresponding
dual constraint is violated:

(|S| − 1)−
∑

i:S∈Si
2

σi > 0.

An integer linear program for finding such a stable set (provided that the optimal value
is strictly less than −1) is:

(SubPSetPack) min

[∑
v∈V

(σi(v) − 1)xv

]
xu + xv ≤ 1,∀uv ∈ E,(4.9) ∑
v∈Vi

xv ≤ 1,∀i ∈ [k],(4.10) ∑
v∈V

xv ≥ 2,(4.11)

xv ∈ {0, 1},∀v ∈ V,

where i(v) is the index i such that v ∈ Vi. This problem is that of finding a maximum
weight stable set (MWSS) in the graph obtained from G by adding all possible edges
between vertices in each [Vi]G; (xv)v∈V is the characteristic vector of such a stable set S ∈
S2. We add such variables xS to (SetPackRMP) until the optimum value in (SubPSetPack)
becomes at least −1.

Note that by choosing the set packing model and transforming the objective function
(from min to max) the variables from the dual problems are non-negative but the weights
could be negative, therefore we cannot employ the usual way of addressing MWSS prob-
lem (see [15]), instead we choose to solve the subproblem by the using the MILP available
solver.

4.2. The branching rule. The details about the branch-and-price algorithm will be com-
pleted with the branching rule. For each i, j ∈ [k], i ̸= j we define

αij =
∑

S∈S
′i
2 ∩S

′j
2

xS .

Proposition 4.2. Let x = (xS)S∈S′
2

be a basic feasible optimal solution to RMP which is frac-
tional, then there exist two distinct clusters Vi and Vj such that αij ∈ (0, 1).

Proof. We will show first that there exists a cluster Vi and two different stable sets S1, S2 ∈
S

′i
2 such that xS1 , xS2 ∈ (0, 1). Suppose on the contrary that for each i ∈ [k] there exists at
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most one stable set S ∈ S
′i
2 such that xS ̸= 0, then the family {S ∈ S ′

2 : xS ̸= 0} is formed
with pairwise disjoint stable sets, hence the following solution is better than x:

x̃ = (x̃S)S∈S′
2
, where x̃S =

{
0, if xS = 0
1, if xS ̸= 0

,∀S ∈ S
′

2,

which is a contradiction since x is already optimal. Let now Vi be a cluster such that there
exist two stable sets S1, S2 ∈ S ′i

2 with xS1
, xS2

∈ (0, 1). Since the basis corresponding to x
cannot contain two identical columns, there exists another cluster Vj , j ̸= i, such that the
corresponding constraint from 4.8 contains xS1

or xS2
but not both ([1]). Therefore

1 ≥
∑

S∈S′i
2

xS >
∑

S∈S′i
2 ∩S

′j
2

xS = αij > 0.

□

Using the above result we can choose i0, j0 ∈ [k], i0 ̸= j0, such that

αi0j0 = max {αij : αij ∈ (0, 1), i, j ∈ [k], i ̸= j}.

Then, we choose S0 ∈ S
′i0
2 ∩S

′j0
2 such that xS0 = max

S∈S
′i0
2 ∩S

′j0
2

xS . Let us denote {vi0} = S0∩

Vi0 , {vj0} = S0∩Vj0 ; we then branch on this pair of vertices (vi0 , vj0). In the first child node
we require that the two vertices have the same color, while in the second we force the two
vertices to have different colors. For the first branch we replace Vi0∪Vj0 with a new cluster
Vi0j0 containing a single new vertex vi0j0 with the neighborhood (NG(vi0) ∪NG(vj0)) \
(Vi0 ∪ Vj0). For the second branch we simply add a new edge between vi0 and vj0 .

4.3. A variant of the main Branch & Price algorithm. The lower bound obtained by solv-
ing (setPackRMP) can be improved by adding cuts like those described in [25, 26] or [14]
for VCP. Denote by C the set of feasible solutions to the ILP counterpart of (setPackRMP)
obtained by adding integral constrainst to all of its variables) and by P I = conv(C); then
P I ⊆ P , where P is the polyhedron (in fact is a polytope) of feasible solutions to (setPack-
RMP).

Optimizing a linear objective function over C means in fact to optimize over P I whose
extreme points are among the extreme points of P . But finding perfect formulations for
P I was proved to be a very difficult task; thus, instead we can search for a sandwiched
polyhedron P I ⊆ P ′ ⊆ P , obtained by adding to the formulation of P inequalities which
are valid to P I .

The associated intersection graph G = (V, E) ([25]) is defined like this: V = S ′
2, and

two such variables S′ and S′′ are adjacent in G if their corresponding columns are not
orthogonal; in other words S′S′′ ∈ E if and only if S′ and S′′ intersect the same cluster
of P . By keeping the same objective function and replacing the constraints matrix in
(setPackRMP) with the edge-vertex incidence matrix of G we get an equivalent problem
(setPackRMPG). The convex envelope of the integer feasible solutions for this problem,
denoted by P I

G , equals P I .

Theorem 4.1 ([25]). Let π ∈ {0, 1}|V|; an inequality πx ≤ 1 is facet defining for P I if and only
if the set {S ∈ V : πS ̸= 0} is a maximal clique of G.

There are similar results involving odd cycles and their complements or web graphs -
but the maximal cliques of G are the more convenient way for producing facet defining
inequalities because of the computational effort associated with the former subgraphs
([26]).
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We add to the root problem of the branch-and-price tree two types of clique-based
facet defining inequalities. The first type is generated starting with three stable sets which
don’t intersect the same cluster but induce a clique in G and, then, extending this clique
to a maximal one. The second type is related to the so called majority cliques from [14] and
adapted here for the PCP context.

Definition 4.2. Let I ⊆ [k], |I| = p and define IS = {i ∈ I : S ∈ S ′i
2 }, for all S ∈ S ′

2. A
stability witness for I is a S0 ∈ S ′

2 such that IS0 = I and each S′
0 ⊆ S0 with |S′

0| ≥ (p + 1)/2
belongs to S ′

2.

Proposition 4.3. Let I ⊆ [k], |I| = p ≥ 3. If p is odd and I has a stability witness, then
QI = {S ∈ S ′

2 : |IS ∩ I| ≥ (p+ 1)/2} is a maximal clique in G.

Proof. Let S0 be a stability witness for I . Obviously QI is a clique since if S1, S2 ∈ QI ,
then there exists a cluster Vi with i ∈ IS1

∩ IS2
.

Now, if S /∈ QI , then |IS ∩ I| ≤ (p− 1)/2; define S′ = S0 \ {u ∈ S0 : u ∈ Vi and i ∈ IS}.
Thus, IS′ = IS0

\ IS and |IS′ | = |IS0
| − |IS ∩ I| ≥ p− (p− 1)/2 = (p+1)/2. Hence S′ ∈ QI

and SS′ /∈ E ; therefore QI is maximal. □

Obviously, if we replace S ′
2 with S2 the property of the witness that each S′

0 ⊆ S0 with
|S′

0| ≥ (p+ 1)/2 belongs to S ′
2 is not longer necessary in the above proof.

Note that these two classes of cuts described above are added to the linear relaxation
problems in order to get a better lower bound for the optimum of the corresponding ILP
problems, and afterwards they are withdrawn to allow the branch-and-price-algorithm to
work the usual way.

By adding the constraints that follow to (SetPack) we get (SetPackCuts) problem∑
S∈Sf

2

xS ≤ 1,∀f ∈ [F ],(4.12)

where (4.12) is the constraint corresponding to the f -th cut from the set of F employed
cuts and Sf

2 is the corresponding maximal clique.
These cuts are added only to the root problem linear relaxation of the branch-and-

bound tree; we make this choice because of the computational burden associated with
reusing/restoring (see subsection 5.2 below) the variables for all related constraints.

5. IMPLEMENTATION DETAILS AND NUMERICAL EXPERIMENTS

Our computational experiments were carried on a MacBook Pro M1 with 8 GB of mem-
ory on macOS Monterey and using a Gurobi Academic License. Some of the bench-
mark instances are available at: http://www2.ic.uff.br/celso/grupo/pcp.htm
- from which we considered only a subset - those which occurred to be the most diffi-
cult for the state-of-the-art algorithms ([16, 10]). We deliberately omitted the results for
the smaller instances because they are usually very quickly solved by our algorithm. In-
stead we created other larger random ring type instances (arising from the RWA prob-
lem) following the procedure described in [9]. A public repository containing our Java
project is here: https://github.com/fe-olariu/PCP and the instances are here:
https://github.com/fe-olariu/data/tree/main/PartitionCol.

5.1. Initialization. The initial feasible basis for the RMP is formed with the slack vari-
ables, but in order to accelerate the resolution we add a subset of variables corresponding
to stable sets in S2 obtained by perturbing (see [16]) an initial solution found using an
heuristic developed in [24]. After adding all these variables we start to sequentially solve
the subproblem until the reduced costs of all not added variables are non-negative.

http://www2.ic.uff.br/ celso/grupo/pcp.htm
https://github.com/fe-olariu/PCP
https://github.com/fe-olariu/data/tree/main/PartitionCol
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Each subproblem is solved using the ILP model described by (subPSetPack). To this
end we employed the Gurobi MILP Solver with a parameterized number of solutions to
store; thus, after each solve of a sub-problem we add a number of best solutions (stable
sets) to RMP, this parameter was tuned to be 15, in Gurobi: PoolSearchMode = 2, PoolSo-
lutions = 15. Extensive numerical experiments shown that larger values for PoolSolutions
drastically increase the solving time, while very small values of this parameter have the
same effect by increasing the number of needed subproblems.

5.2. Reusing and restoring variables. After calling the branching rule two new problems
are created and added to the stack. Instead of using the same process from above for
solving the corresponding new RMPs, we choose first to reuse the variables belonging to
the parent problem; the result is a speed-up of RMP solve mainly because of the number
of sub-problems which sharply decreases.

The way in which we reuse the variables depends on the type of the problem. If the
problem is obtained by contracting the pair vi0vj0 , then we keep or modify the following
stable sets:

• containing both concerned vertices which are replaced by the new vertex vi0j0 ;
• containing none of them but after deleting the vertices from their clusters - if any;
• containing only one of the two concerned vertices (replaced by vi0j0 ) but after

deleting the vertices which are adjacent with the other vertex or belong to the
same cluster.

If the problem is obtained by adding the edge vi0vj0 , then from each stable set (of the
parent node) containing both vi0 and vj0 we get the following stable sets:

• a stable set containing only one of the two vertices after removing the other one;
• a stable set containing none of them after removing both concerned vertices.

During this process we ensure that for each stable set there exists only one variable in
the corresponding problem.

5.3. Branch & Price algorithm results. Tables 1 and 2 contain the results of the branch-
and-price algorithm. For both series of experiments the time limit was set to 1800 seconds;
only for one instance (the largest in terms of number of edges) we allow a larger amount
of time.

TABLE 1. Numerical results for known ring instances.

instance n m lb ub lbr ub N rV ar nV ar rSb nSb rT nT T
ring n20p0.6s1 458 42, 316 36 36 36 36 165 3, 209 21.12 11 1.10 9.12 0.08 98.09
ring n20p0.6s2 464 41, 107 36 36 36 36 153 2, 250 17.76 16 1.29 11.78 0.66 113.54
ring n20p0.6s3 456 41, 906 32 32 32 32 168 2, 364 17.65 28 1.23 21.31 0.57 117.46
ring n20p0.6s4 452 41, 530 32 32 32 32 152 3, 089 29.67 34 1.61 23.29 0.68 127.27
ring n20p0.6s5 440 39, 445 34 34 34 34 158 2.047 15.97 12 1.27 8.16 0.52 90.79
ring n20p0.7s1 536 58, 142 39 39 39 39 194 3, 136 18.50 20 1.15 20.87 0.83 182.17
ring n20p0.7s2 580 68, 658 43 43 43 43 204 3, 354 19.18 16 1.17 18.40 1.00 222.37
ring n20p0.7s3 534 57, 579 37 37 37 37 199 2, 629 19.26 29 1.39 28.15 0.81 189.23
ring n20p0.7s4 536 58, 373 38 38 38 38 204 2, 809 18.68 29 1.35 28.57 0.83 197.63
ring n20p0.7s5 518 54, 784 38 38 38 38 187 2, 863 20.31 41 1.32 40.98 0.86 201.42
ring n20p0.8s1 614 76, 568 44 44 44 44 223 4, 398 23.72 25 1.26 35.31 1.20 303.21
ring n20p0.8s2 624 79, 501 46 46 46 46 237 4, 049 19.11 14 1.13 12.80 0.71 181.58
ring n20p0.8s3 614 76, 290 43 43 43 43 234 3, 020 16.30 22 1.22 18.34 0.64 167.78
ring n20p0.8s4 610 75, 741 43 43 43 43 215 3, 674 22.97 34 1.38 46.50 0.86 231.63
ring n20p0.8s5 602 73, 890 43 43 43 43 217 3, 009 18.15 17 1.28 14.63 0.68 163.65
ring n20p0.9s1 672 91, 739 48 48 48 48 268 4, 501 19.58 28 1.18 27.66 0.82 248.47
ring n20p0.9s2 696 98, 814 49 49 49 49 267 3, 866 21.53 37 1.46 38.78 0.98 299.82
ring n20p0.9s3 686 95, 572 47 47 47 47 224 4, 683 28.19 49 1.47 53.28 1.05 288.49
ring n20p0.9s4 686 95, 789 47 47 47 47 245 4, 489 25.82 51 1.47 55.21 0.97 293.18
ring n20p0.9s5 706 101, 600 49 49 49 49 262 4, 654 23.15 43 1.35 47.46 1.01 312.35
ring n20p1.0s1 760 117, 420 42 50 50 50 243 6, 681 53.88 84 2.74 113.91 2.48 715.60
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First column contains the name for instance. Table 1 presents the experimental results
for the known medium to large ring instances from the literature. Its second and third
columns contain the number of vertices and edges, respectively; the fourth and fifth col-
umn display the best known lower and upper bounds, respectively, for the partition
chromatic number (see [16] and [10]). The next columns list the results of running our
branch-and-price algorithm. The column lbr reports the lower bound provided by the
linear relaxation of the root problem; column ub contains the upper bound obtained by
our algorithm - italic is a mark that the optimum was found also in the literature and bold
marks a new found optimum; column N lists the number of explored nodes of the branch-
and-price tree. Columns rV ar and nV ar report the number of variables in the root node
problem and the average number of newly added variables in nodes other than the root,
respectively. Columns rSb and nSb list the number of subproblems solved in the root
and the average number of subproblems solved in nodes other than the root, respectively.
Columns rT , n, and T , respectively, report the root node, the average in nodes other than
root, and the overall solution time (in seconds).

TABLE 2. Numerical results for new larger ring instances.

instance n m lbr ub N rV ar nV ar rSb nSb rT nT T
ring n25p0.7s1 822 138, 333 59 59 311 7, 515 27.48 28 1.21 53.74 2.37 506.85
ring n25p0.7s2 776 129, 635 71 71 264 9, 582 37.23 15 1.05 28.85 2.43 406.45
ring n25p0.7s3 806 140, 648 74 74 298 11, 112 40.39 28 1.19 59.71 1.56 523.29
ring n25p0.7s4 816 144, 986 79 79 292 13, 672 49.65 15 1.17 32.55 1.68 523.63
ring n25p0.7s5 800 138, 013 71 71 300 11, 432 40.82 44 1.17 94.19 1.58 568.95
ring n25p0.8s1 960 188, 382 67 67 392 9, 289 27.36 30 1.24 122.19 3.32 1, 422.29
ring n25p0.8s2 942 186, 659 67 67 383 8, 533 25.89 27 1.23 107.43 3.07 1, 283.19
ring n25p0.8s3 950 194, 327 84 84 353 14, 089 41.50 9 1.09 50.48 3.52 1, 292.78
ring n25p0.8s4 940 190, 070 81 81 345 14, 354 45.16 27 1.23 121.00 3.73 836.32
ring n25p0.8s5 940 191, 347 85 85 336 14, 219 45.54 32 1.20 159.58 2.80 1, 097.97
ring n25p0.9s1 1, 068 233, 391 72 72 413 11, 794 35.71 67 1.47 215.32 3.01 1, 457.12
ring n25p0.9s2 1, 100 261, 524 98 98 417 21, 476 53.50 13 1.12 58.80 3.04 1, 326.53
ring n25p0.9s3 1, 064 231, 187 73 73 415 10, 527 29.44 48 1.26 140.60 3.57 1, 208.71
ring n25p0.9s4 1, 090 242, 754 74 74 426 15, 350 41.75 56 1.37 213.55 3.24 1, 591.45
ring n25p0.9s5 1, 090 257, 229 95 95 425 18, 806 48.28 36 1.26 138.41 2.85 1, 349.88

ring n25p1.0s1 1, 200 294, 400 78 78 403 14, 968 70.66 156 3.22 569.55 7.72 3, 675.00tl

ring n30p0.5s1 844 146, 507 63 63 325 6, 300 21.05 9 1.10 18.72 1.47 497.79
ring n30p0.5s2 908 178, 701 83 83 339 13, 650 42.46 53 1.13 140.75 1.95 800.79
ring n30p0.5s3 812 141, 883 71 71 299 9, 668 34.60 43 1.14 84.66 1.57 554.69
ring n30p0.5s4 886 169, 016 76 76 336 14, 354 46.80 74 1.26 202.58 2.15 923.38
ring n30p0.5s5 868 165, 340 83 83 318 16, 095 56.52 113 1.38 283.50 2.37 1, 037.65
ring n30p0.6s1 1, 068 233, 508 77 77 435 12, 203 31.73 35 1.21 105.52 2.90 1, 356.37
ring n30p0.6s2 1, 062 245, 080 96 96 408 19, 849 50.92 56 1.14 206.30 3.31 1, 559.21
ring n30p0.6s3 1, 044 235, 906 93 93 388 17, 299 49.23 45 1.30 173.51 2.72 1, 228.31
ring n30p0.6s4 1, 080 252, 092 99 99 405 21, 126 54.88 52 1.17 191.97 3.25 1, 505.83
ring n30p0.6s5 1, 066 247, 333 83 83 318 16, 095 56.52 113 1.38 283.50 2.37 1, 037.65

In Table 1 we used twenty one instances from literature - mostly solved to optimality in
[16] or in [10]. The optima for ring n20p0.9s3 and ring n20p0.9s4 was found in the second
article but not in the first while the optimum for ring n20p0.9s5 was found only in the for-
mer article. We found also for the first time the partition chromatic number for the largest
instance from the literature, namely ring n20p1.0s1. For the remaining instances the op-
tima was found in both articles. We can observe from Table 1 that all these instances are
solved to optimality by our algorithm which makes it more consistent- the running time
being more predictable and quite small, but of course this could be due to the different
computing power we used.

Table 2 contains the results for the newly generated larger ring type instances (with
up to 250, 000 edges); all these instances were solved to optimality. The time limit was
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intentionally exceeded only for one instance - the largest of all - which suggests that the
computing power along the good quality root lower bounds play a decisive role.

An interesting feature of our algorithm is the fact that the root linear relaxation with the
initial set of variables obtained by perturbing an heuristic solution has a very good quality
- its optimum is the same as for the ILP problem. Although it is difficult to compare the
computing power of different equipped computers, we can observe from the Table 1 that
the running time of our algorithm is quite small and more predictable than in [10] for
the same group of the five instances for a given type of ring topology). Besides, from
both Tables 1 and 2, it seems that all instances for which the root relaxation is solvable in a
reasonable amount of time can be solved to optimality by our branch-and-price algorithm.

For both types of instances most of the time is dedicated to solving the root relaxation.
Figure 1 shows (in average across the five instances for each ring) that the time for solving
the root relaxation represents roughly 10 − 15% of the overall time and the number of
variables used in the root relaxation is around 40− 50% of the total number of generated
variables (excluding those restored).

n20p0.6 n20p0.7 n20p0.8 n20p0.9 n25p0.7 n25p0.8 n25p0.9 n30p0.5 n30p0.6

Time

Vars

ring instances

%

0
1

0
2

0
3

0
4

0

FIGURE 1. Percentage of solution time and number of generated vari-
ables in the root relaxation.

5.4. Strengthening the root linear relaxation. We next present the numerical results of a
variant of our branch-and-price algorithm. This time we include an enforcement of the
root linear relaxation with the families of valid inequalities (cuts) described in section 4,
the goal being to get better lower bounds for the partition chromatic number. These cuts
are added for small and medium instances and only to the root problem since building
them are time consuming. The two families have a different effect on the quality of the
optimum solution of the root LP relaxation, but in the same time they have a sort of
complementary behaviour.

A valid inequality of first type (a maximal clique generic inequality) is generated like
this: we first choose two stable sets intersecting the same cluster and second (if possible)
a third stable set which doesn’t intersect that cluster but intersects both first stable sets,
then we extend this clique to a maximal one. Let f1 be the number of times we repeat this
process with the same cluster.
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TABLE 3. Tuning the number of valid inequalities added to the root re-
laxation (for n90p2t2s1 instance).

f1\f2
500 1000 1500 3000 5000 7500 10000 15000

0
0 .97 1 .62 1 .82 2 .70 3 .41 4 .11 4 .21 4 .86

5.99 8.79 14.54 13.15 19.17 26.77 34.52 50.28

1
6 .99∗ 8.56 9.46 10.85∗∗ 12.28∗∗ 13.73∗∗ 15.05∗∗ 16.40∗∗

7.97 9.16 10.08 13.31 18.35 24.15 30.92 43.18

5
8.45 10.10 11.03∗∗ 13.10∗∗ 14.01∗∗ 16.96∗∗ 17.91∗∗ 18.81∗∗

13.35 14.30 15.15 18.34 23.81 29.65 35.46 38.45

10
9.09 11.02 11.41 14.63∗∗ 15.38∗∗ 18.87∗∗ 20.86∗∗ 20.22∗∗

20.05 21.11 22.21 25.25 30.45 35.01 41.73 53.14

TABLE 4. Numerical results for the second versus the first branch-and-
price algorithm.

instance n m lb ub lbr ub N rV ar nV ar rT T nT

n90p2t2s1 90 786 4 4
4 4 26 586 64.32 44.65 56.99 0.49

3 4 300 586 232.46 5.96 23.70 0.06

n90p2t2s2 90 801 3 3
4 4 300 693 162.29 58.48 82.07 0.07

3 4 300 693 50.71 6.14 17.83 0.06

n90p2t2s3 90 838 4 4
4 4 24 573 65.73 36.84 51.32 0.62
3 4 300 573 241.93 5.76 26.96 0.07

n90p2t2s4 90 777 3 4
4 4 25 625 69.33 49.99 66.14 0.67

3 4 300 625 207.42 6.33 23.03 0.05

n90p2t2s5 90 827 4 4
4 4 30 603 47.89 38.25 52.63 0.49

3 4 300 603 258.70 5.75 26.17 0.06

An inequality of the second type (based on a majority clique) is generated in the fol-
lowing way: we first choose a candidate for a stability witness (see section 3, definition
4.2), S0, of an appropriate size and then build the corresponding clique, QIS0

. Let f2
be the number of times we perform this process for each possible size of the witness.
Note that the associated inequality remains valid even if S0 contains subsets of cardinal-
ity ≥ (p+1)/2 whose corresponding variable, xS′

0
, doesn’t belong to the problem - see the

proof of Proposition 4.3. In other words the inequality remains valid because corresponds
to a clique (which is not necessarily maximal); transforming all these cliques into maxi-
mal ones (thereby bringing facets defining inequalities) means to add a huge number of
variables to the problem which should be avoided.

The way in which we tuned these two parameters, f1 and f2, is presented in the Table
3. We choose an instance for which the root problem has a non-integer optimum, namely
n90p2t2s1. For this instance the solution to the root relaxation gives an optimum of 2.76
(obtained in 5.89 seconds - the average for ten runs), hence a lower bound for the partition
chromatic number is 3. The addition of the above valid inequalities may increase this
lower bound to the true value of the partition chromatic number which is 4 - the needed
relative increase of optimum is 8.34%.

For each combination (f1, f2) we run the algorithm ten times and list two values in two
corresponding rows: the average relative increase in optimum (as percentage) and the
average solution time (in seconds). The italic values for the average relative increase in
optimum value are those smaller than the above threshold. A star means that, while this
threshold was not reached, some of the ten values are above it, a double star means that
all ten values are at least 8.34%. We choose for our main experiments with this variant of
the branch-and-price algorithm f1 = 10 and f2 = 15, 000.
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The experimental results are shown in Table 4. Column lb and ub list the best known
bound for the partition chromatic number like above; column lbr reports the lower bound
provided by the linear relaxation of the root problem; column ub contains the upper bound
obtained by performing the algorithm. Column N reports the number of explored nodes
of the branch-and-price tree. Columns rV ar and nV ar report the number of variables in
the root node problem and the average number of newly added variables in nodes other
than the root, respectively. Columns rT , nT , and T , respectively, report the root node, the
average in nodes other than root, and the overall solution time (in seconds).

For each instance we compared the results obtained with (the first row) and without
(the second row) the cuts. For the simple branch-and-price algorithm the limit of 300
nodes of the tree was always reached without finding the optimum solution; by adding
the cuts for four out of five instances the optimum was found, including one for which
this optimum was previously unknown (n90p2t2s4).

6. CONCLUSIONS

In this paper we proposed a set packing integer programming formulation for the Par-
tition Coloring Problem. Based on it we introduced a branch-and-price algorithm used for
solving large and very large instances and a variant of it based on adding cutting planes
to the root linear relaxation which used for solving small and medium instances.

By exploiting the resources of the parent nodes and restoring many of the stables sets
(variables) and by using a simple branching rule our branch-and-price algorithm proved
to be effective for large and very large instances performing at least as good and some
times better than the state-of-the-art algorithms. We generate new large instances from
RWA in all-optical networks instances with more than 250, 000 edges - all solved to op-
timality. Our approach seems to show that solving such a problem (on a ring instance)
depends mostly on the computing resources since our model offers ILP problems with
lower bounds of the root relaxation of very good quality.

The fact that all already known and new larger ring instances were solved to optimality
and the running times are predictable (similar running times within the same family of
instances) underlines the consistency of our set packing based algorithm.

The second variant algorithm is based on two families of valid inequalities and could be
subject to improvements in terms of performance in order to be used on larger instances.
This new algorithm proved to be very useful for small and medium problems with non-
integral root relaxation optimum - for which the solving is quite difficult.

Future researches concern the improvement of the second algorithm: on one hand by
using new classes of cuts and on the other hand by a better integration of these cutting
planes towards a branch-price-and-cut algorithm.
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