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Properties of isocompact spaces in topological groups

ZHONGLI WANG AND WEN CHEAN TEH

ABSTRACT. This paper’s primary purpose is to seek properties of isocompact spaces by topological groups.
In this work, we propose and say that a topological space X has the isoc property if each family of isocom-
pact subsets in X is weakly hereditarily closure-preserving. Our first result shows that each T2 topological
group with a locally compact subgroup, where the quotient group is isocompact, is isocompact if it has the isoc
property. Our second result provides a necessary and sufficient condition for an ω narrow to be Lindelöf.

1. INTRODUCTION

In studying the compactness of countably compact spaces, Bacon [3] introduced the no-
tion of isocompact space. Due to the importance of isocompact spaces, many topologists
used mappings to study isocompact spaces, and several new facts concerning isocom-
pact spaces were achieved. It is well known that we connect various class spaces using
mappings as a linkage.

In [3], Bacon showed that if f is a closed compact mapping from a space X into an
isocompact space Y , then X is an isocompact space. Since each finite-to-one closed map-
ping is perfect [15], it follows that if f is a finite-to-one closed mapping from a space X
into an isocompact space Y , X is an isocompact space. In [5], Buhagiar and Lin showed
that if f : X → Y is a closed mapping with lindelöf fibres, and X is a strong Σ space,
then Y is an isocompact Σ space. In [8], Dube, etc., showed that if f : X → Y is a proper
mapping of locales, and Y is isocompact, then X is isocompact. In [18], Miller showed
that if f is a closed continuous from a space X into a T1 isocompact space Y , and f−1(y)
is isocompact in X for each y in Y , then X is isocompact. In addition, if f : X → Y is a
closed continuous mapping, X is a T2 isocompact wM space, and Y is a regular q space,
then Y is a T2 isocompact wM space [15].

The relationships among these mappings are illustrated in Figure 1.
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Figure 1 : Relationships of mappings

Naturally, we have the following question.

Question 1.1. Suppose X is a topological space, H is a subspace such that X/H is isocompact,
and f is a quotient mapping from X in to X/H . Is X isocompact?
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However, in [10], Gittings showed that although f is a finite-to-one open mapping from
a space X into an isocompact space Y , X is not necessarily an isocompact space. Since
each finite-to-one open mapping is a quotient mapping [15], it follows that the answer to
Question 1.1 may be negative.

Naturally, we have the following question.

Question 1.2. If H is a subspace of a space X , under what conditions on H and X/H is X
isocompact?

It is well known that topological properties are transferred from topological group G
to quotient group G/H and some others from G/H to G. To address Question 1.2, we will
connect isocompact spaces and topological groups. Here are the conclusions regarding
the relationships among these topological spaces and quotient groups.

In [2], Arhangel’skii showed that if X is a homogeneous compact space, F is a compact
subspace of X , and a is a point of F such that X/{a} is isocompact and ω-Lindelöf, then
X is first-countable if the tightness of F is countable and the space F is first-countable at
a. In [14], Higgins showed that if G is a topological group, and H is a compact subgroup
such that the quotient space G/H is compact, then G is compact; hence, it is isocompact.
If G is a topological group, and H is a locally compact subgroup such that the quotient
space G/H is paracompact, then G is paracompact [1]; hence, it is isocompact.

On the other hand, many topologists have used quotient spaces to study the properties
of topological spaces related to isocompact spaces, such as θ-refinable spaces and weakly
δθ-refinable spaces, and have achieved significant results ( [4], [6], [16], [20], [22], [23]).
The relationships among these topological spaces are illustrated in Figure 2.

compact strongly paracompact

paracompact θ-refinable weakly δθ-refinable

strictly quasi-paracompact

isocompact

Figure 2 : Relationships of spaces

According to the research of previous topologists and the relationships of these topo-
logical spaces, we know that a large number of topological spaces imply isocompactness.
Moreover, they used the properties of quotient groups to obtain some interesting conclu-
sions about these topological spaces. The following question, however, remains open:

Question 1.3. If H is a subgroup of a topological group G, under what conditions on H and G/H
is G isocompact?

In this work, we aim to address Question 1.3, and we will obtain the answer in Theo-
rem 3.10. Furthermore, we propose the following question, and will obtain the answer in
Theorem 3.11.

Question 1.4. If H is a subgroup of a topological group G, under what conditions is G an iso-
compact space equivalent to G/H being an isocompact space?
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2. PRELIMINARIES

In this section, we introduce the necessary notations and terminology. Throughout
this paper, X and Y are always topological spaces. The ω1 denotes the first uncountable
ordinal. Let A be a family in X . Then st(x,A ) = ∪{A ∈ A , x ∈ A} and st(B,A ) =
∪{C ∈ A , C ∩ B ̸= ∅}. Unless otherwise stated, no separation axioms are assumed.
The set of positive integers is denoted as N, and the real line is denoted as R. G denotes
an abelian group endowed with a topology. If G is a group, then e denotes its identity
element and ∼ denotes an equivalence relation. For definitions not defined here, we refer
the reader to [15].

Definition 2.1. [3] A space X is called an isocompact space if every closed countably compact
set in X is a compact set.

Obviously, any topological property that makes a countably compact space compact
also implies isocompactness. It is clear that each paracompact space is isocompact, and
there is a locally compact space that is not isocompact, for example, ω1 [15].

Proposition 2.1. Suppose X is a T2 isocompact space and f : X → Y is a continuous injective
mapping. If each countably compact set is closed in Y , then each countably compact set is compact
in X .

Proof. Suppose A is countably compact in X . It is easy to verify that f(A) is countably
compact in Y . Hence, f(A) is closed in Y . Since f is continuous and injective, it follows
that A = f−1f(A) is closed in X . Since X is isocompact, it follows that A is compact. □

To address Question 1.3, we need some new definitions. Suppose A is a family of
sets in a space X . A is said to be closure-preserving if, for any A1 ⊂ A , ∪A1 = ∪A1.
A is said to be weakly hereditarily closure-preserving if, for every x(A) ∈ A ∈ A , the
family {{x(A)} : A ∈ A } is closure-preserving [15]. Clearly, the weakly hereditarily
closure-preserving families are preserved by closed continuous mappings [15]. The fol-
lowing example shows that closure-preserving closed families fails to be weakly heredi-
tarily closure-preserving.

Example 2.1. Let X = R with the standard topology. Then {[0, 1/n]}n∈N is closure-preserving.
We take 1 ∈ [0, 1] , 1/2 ∈ [0, 1/2] , · · · , 1/n ∈ [0, 1/n] , · · · . Thus, {{1/n}}n∈N is not closure-
preserving. Hence, {[0, 1/n]}n∈N is not weakly hereditarily closure-preserving.

Definition 2.2. A topological space X is said to have the isoc property if each family of isocompact
subsets in X is weakly hereditarily closure-preserving.

The following example shows that topological space with the isoc property need not
be isocompact.

Example 2.2. Let X = [0, ω1) with the order topology. We assume that X has the isoc property.
Since X is countably compact and not compact [11], it follows that X is not isocompact.

The spaces with the isoc property are very rich. Here is an example of the isoc property.

Example 2.3. Let X = R with the standard topology. Suppose A is an open cover of X . It is
well known that X is a regular paracompact [9], and each regular paracompact space has a closed
locally finite refinement cover A1 [17]. Since each paracompact is isocompact, and the isocompact
spaces are closed hereditarily [3], it follows that A1 is isocompact. Since each locally finite family is
weakly hereditarily closure-preserving, it follows that A1 is weakly hereditarily closure-preserving.
Thus, X has an isocompact family A1, which is weakly hereditarily closure-preserving.

This is another example of the property of isoc.
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Example 2.4. Suppose X = {a, b, c, d, e}. Let

A = {X, ∅, {c}, {d, e}, {a, b, c}, {c, d, e}}.
Then (X,A ) is a topological space. It is easy to prove that X has the isoc property.

Theorem 2.5. [9] Every perfect preimage of a compact space is a compact space.

Proposition 2.2. If X has the isoc property and f : X → Y is a perfect injection, then Y has the
isoc property.

Proof. Let A = {Aα : α ∈ I} and each Aα is isocompact. Take any yα ∈ Aα and xα ∈
f−1(yα) for each α ∈ I . Suppose B is closed countably compact in f−1(Aα). It is easy to
verify that f(B) is closed countably compact in ff−1(Aα) = Aα. Hence, f(B) is compact.
According to Theorem 2.5, f−1f(B) = B is compact. Thus, f−1(Aα) is isocompact for
each α ∈ I . Since X has the isoc property, it follows that {{xα} : α ∈ I} is closure-
preserving. Hence, ∪α∈I{xα} = ∪α∈I{xα} and f(∪α∈I{xα}) = f(∪α∈I{xα}).

Since f is closed, it follows that f(∪α∈I{xα}) is closed in Y , and f(∪α∈I{xα}) is a
subset of f(∪α∈I{xα}). Since f(∪α∈I{xα}) is the intersection of all closed subsets of Y
that contain f(∪α∈I{xα}), it follows that

f(∪α∈I{xα}) ⊂ f(∪α∈I{xα}) = ∪α∈If({xα}).

Since f is continuous, it follows that f−1(∪α∈If({xα})) is closed in X , and

f−1(∪α∈If({xα})) ⊂ f−1(∪α∈If({xα})).

Since f−1(∪α∈If({xα})) is the intersection of all closed sets that contain f−1(∪α∈If({xα})),
it follows that

f−1(∪α∈If({xα})) ⊃ f−1(∪α∈If({xα})) = ∪α∈If−1f({xα}) = ∪α∈I{xα} = ∪α∈I{xα}.
Thus,

ff−1∪α∈If({xα}) = ∪α∈If({xα}) ⊃ f(∪α∈I{xα}).
Hence,

∪α∈If({xα}) ⊃ f(∪α∈I{xα}) = ∪α∈If({xα}).
Thus, ∪α∈If({xα}) = ∪α∈If({xα}) and ∪α∈I{yα} = ∪α∈I{yα}. Then A is weakly hered-
itarily closure-preserving. Therefore, Y has the isoc property. □

The proof of the following proposition are straightforward, and thus omitted.

Proposition 2.3. Suppose X has the isoc property and Y is a subspace in X . Then Y has the
isoc property.

Theorem 2.6. [3] If X is an isocompact space and Y is a closed subset in X , then Y is isocompact

According to Theorem 2.6, the following remark is straightforward.

Remark 2.1. Suppose X has the isoc property, A is an isocompact family, and A1 is closed in
A . Then A1 is weakly hereditarily closure-preserving.

Definition 2.3. [21] A space X is a w∆ space if and only if there is a sequence {An : n ∈ N} of
open covers of X such that if x ∈ X and {xn : n ∈ N} is a sequence in X with xn ∈ st(x,An),
then {xn : n ∈ N} has an accumulation point in X . The sequence {An : n ∈ N} is called w∆
sequence.

Definition 2.4. [7] A topological group G is said to be ω narrow if for every open neighbourhood
V of the neutral element in G, there exists a countable set A in G such that V A = AV = G.

Definition 2.5. [15] A topological space is said to be σ compact if it is the union of countably
many compact subspaces.
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3. PROPERTIES OF ISOCOMPACT SPACES

It is well known that many topologists use various compact spaces to study topological
groups. In this section, we obtain some properties of isocompact spaces through topolog-
ical groups and explore some applications of isocompact spaces to topological groups.
At the same time, we will show how the topological properties of isocompact spaces are
transferred from G/H to G. Furthermore, we establish the relationships between Lindelöf
and ω narrow.

Theorem 3.7. [3] If a space X is the union of a countable family of closed isocompact subsets
then X is isocompact.

Theorem 3.8. [15] A space is countably compact if and only if every countably family of closed
subsets having the finite intersection property has non-empty intersection.

Theorem 3.9. [13] Let G be a T2 topological group. Then any locally compact subgroup is closed.

Lemma 3.1. Suppose G is a topological group, H is a subgroup, and G/H is a quotient space. If
S is a subset of G, then SH = ∪{aH : aH ∩ S ̸= ∅}.

Proof. Suppose bH ⊂ SH = ∪b∈SbH and b ∈ S. Since H is a subgroup, it follows that
b ∈ bH . Thus, bH ∩ S ̸= ∅ and bH ⊂ ∪{aH : aH ∩ S ̸= ∅}. Suppose aH ∩ S ̸= ∅. Let
c ∈ aH ∩ S. Then c ∼ a and c−1a ∈ H . Thus, c−1aH ⊂ H2 = H and aH ⊂ cH . Since
(c−1a)−1 ∈ H , it follows that a−1c ∈ H and a−1cH ⊂ H2 = H . Hence, cH ⊂ aH and
aH = cH . Therefore, aH ⊂ ∪b∈SbH = SH and SH = ∪{aH : aH ∩ S ̸= ∅}. □

Theorem 3.10. Suppose G is a T2 topological group with a locally compact subgroup H such that
G/H is isocompact. If G has the isoc property, then G is isocompact.

Proof. Suppose P is a closed countably compact subset of G and H is a locally compact
subgroup. Let f : G × G → G be a multiplication mapping, and h : G → G/H be a
natural quotient mapping of G onto the quotient space G/H . Thus, there exists an open
neighbourhood A of e such that A is compact. Then f−1(A) is an open neighbourhood
of (e, e). Thus, there exist open neighbourhoods B1 and B2 such that B1 × B2 ⊂ f−1(A).
Then there exists an open neighbourhood B3 such that B3 ⊂ B1 ∩ B2. Thus, (e, e) ∈
B3 ×B3 ⊂ f−1(A) and B2

3 ⊂ A. Let B = B3 ∩B−1
3 . Then B is an open neighbourhood of

e such that B = B−1 and B2 ⊂ A. Suppose a ∈ B. Then Ba is an open neighbourhood
of a such that Ba ∩ B ̸= ∅. Hence, there exist b1 and b2 in B such that b1a = b2. Thus,
a = b−1

1 b2 ∈ B−1B = B2 ⊂ A and e ∈ B ⊂ A. Since H is a locally compact subgroup,
and according to Theorem 3.9, H is closed in G. Hence, H ∩ B is closed. Thus, H ∩ B ⊂
H ∩A ⊂ H ∩A ⊂ A. Since A is compact, it follows that H ∩B is compact.

Let g : G × G → G, (x, y) → x2y be a mapping. Then g is continuous, and g−1(B)
is an open neighbourhood of (e, e). Hence, there exist open neighbourhoods C1 and C2

such that C1 × C2 ⊂ g−1(B). Then there exists an open neighbourhood C3 such that
C3 ⊂ C1 ∩ C2 and C3

3 ⊂ B. Let C = C3 ∩ C−1
3 . Thus, e ∈ C3 ⊂ B and e ∈ C = C−1. Let

f1 : G → G, x → x−1 be an inverse mapping. Then f1 is continuous. Thus, f1(C) ⊂ f1(C),
that is, C

−1 ⊂ C−1 = C. Hence, f1(C
−1

) ⊂ f1(C). Thus, (C
−1

)−1 ⊂ (C)−1, that is,
C ⊂ (C)−1 and C = (C)−1. Since f is continuous, it follows that f(C × C × C) =

f(C × C × C) ⊂ f(C × C × C), that is, C
3 ⊂ C3. Then C

3 ∩ H ⊂ C3 ∩ H ⊂ B ∩ H and

C
3 ∩H is closed. Thus, C

3 ∩H is compact.
Let f2 = h |C : C → h(C). Now, we will show that f2(C) is isocompact. Suppose

c ∈ C0 ⊂ C and f2(c) ∈ f2(C0). We have to show that f2(c) ∈ f2(C0). According to
Lemma 3.1, we must show that cH ∩ C0 ̸= ∅. Assume that cH ∩ C0 = ∅. Then cH ∩ C0 ∩
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C0
2
= ∅. Since c−1C0

2 ⊂ C0C0
2 ⊂ C0

3
, it follows that c−1C0

2 ∩ H is a closed subset in

C0
3 ∩H . Since C

3 ∩H is compact, it follows that c−1C0
2 ∩H is compact and C0

2 ∩ cH is
compact.

Suppose d ∈ C0
2∩cH . Since cH∩C0 = ∅, it follows that d /∈ C0 and there exists an open

neighbourhood Ed of e such that Edd ∩C0 = ∅. Thus, f−1(Ed) is an open neighbourhood
of (e, e), and there exists an open neighbourhood Fd of e such that Fd × Fd ⊂ f−1(Ed).

Hence, F 2
d ⊂ Ed and {Fdd : d ∈ C0

2 ∩ cH} is an open cover of C0
2 ∩ cH . Then there

exists a finite subcover F = {Fd1d1, Fd2d2, · · · , Fdndn} of C0
2 ∩ cH . Let F = (∩n

i=1Fdi
∩

C) ∩ (∩n
i=1Fdi ∩ C)−1. Then F is an open neighbourhood of e and F ⊂ C0. Suppose

l ∈ C0
2 ∩ cH . Then there exists Fdi

di ∈ F such that l ∈ Fdi
di. Thus,

Fl ⊂ FFdidi ⊂ FdiFdidi ⊂ Eddi.

Since Edi
di∩C0 = ∅, it follows that Fl∩C0 = ∅ and (F (C0

2∩cH))∩C0 = ∅. Since h(Fc)

is an open neighbourhood of h(c) and h(c) ∈ h(C0), it follows that h(C0) ∩ h(Fc) ̸= ∅.
Thus, there exist points p1 ∈ C0 and p2 ∈ F such that h(p1) = h(p2c). Hence, there exist
points q1 and q2 in H such that p1q1 = p2cq2 and p1 = p2cq2q

−1
1 . Since p−1

2 ∈ F−1 = F ⊂
C0 and cq2q

−1
1 ∈ cH , it follows that cq2q−1

1 = p−1
2 p1 ∈ C0

2
and cq2q

−1
1 ∈ cH ∩ C0

2
. Thus,

p1 = p2bq2q
−1
1 ∈ F (cH ∩ C0

2
). Hence,

p1 ∈ C0 ∩ (F (cH ∩ C0
2
)).

This contradicts the assumption, and hence f2(c) ∈ f2(C0) and f2(C0) is closed. Thus,
f2 is closed, and f2(C) = h(C) is closed. Since G/H is isocompact, and according to
Theorem 2.6, f2(C) is isocompact.

Now, we will show that C is isocompact. Let L be a closed, countably compact subset of
C. We have to show that L is compact. Since f2 is a closed mapping, it follows that f2(L)
is closed. Since f2 is onto and continuous, it follows that f2(L) is a closed, countably
compact subset of f2(C). Hence, f2(L) is compact. Now, we will show that f−1

2 (f2(L)) is
compact. Suppose M = {Mα : α ∈ I} is an open cover of f−1

2 (f2(L)) and m ∈ L. Thus,
f−1
2 (f2(m)) = mH ∩ C. Since m−1 ∈ (C)−1 = C, it follows that H ∩m−1C ⊂ H ∩ (C)2 ⊂
H ∩ C

3
. Hence, H ∩ m−1C is compact. Thus, f−1

2 (f2(m)) = mH ∩ C is compact. Then
there exists a finite subcover Mm = {M1,M2, · · · ,Mn} of f−1

2 (f2(m)). Let ∪n
i=1Mi = Mm.

Then f−1
2 (f2(m)) ⊂ Mm. Let

Om = f2(C)− f2(C −Mm).

Hence, Om is an open set in f2(C) such that f−1
2 (f2(m)) ⊂ Om ⊂ Mm, Om = f−1

2 (f2(Om))
and f2(Om) is open. Thus, {f2(Om) : m ∈ L} is an open cover of f2(L). Then there exists
a finite subcover {f2(Om1

), f2(Om2
), · · · , f2(Omr

)} of f2(L). Thus,

f−1
2 (f2(L)) ⊂ ∪r

i=1Omi
⊂ ∪r

i=1Mmi
.

Hence, f−1
2 (f2(L)) is compact. Since L is closed in f−1

2 (f2(L)), it follows that L is compact.
Thus, C is isocompact.

Thus, there exists a closed cover C = {Cx : x ∈ G} of G and each Cx is isocompact.
Suppose P ∩Cx1

̸= ∅ and y1 ∈ P ∩Cx1
. Assume that P −Cx1

is an infinite set, then there
exists a set Cx2

such that (P −Cx1
)∩Cx2

̸= ∅. Suppose y2 ∈ (P −Cx1
)∩Cx2

. Arguing by
induction, there exists a point yn ∈ (P −∪i<nCxi)∩Cxn and a sequence {yn : n ∈ N} = Y
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in P . Let Qn = {yn+i : i = 0, 1, 2, · · · } and n ∈ N. Thus, {Qn : n ∈ N} is a closed subset
family having the finite intersection property.

According to Theorem 3.8, {Qn : n ∈ N} has a non-empty intersection. Then there
exists a point y ∈ Qn and n ∈ N. Thus, y is an accumulation point of Y . Suppose yn in Y .
Take an arbitrary point yk in Y and yn ̸= yk. Thus, yn ∈ Cxn

and yk ∈ P −Cxn
⊂ G−Cxn

.
Hence, f−1(G − Cxn) is an open neighbourhood of (yk, yk). Thus, there exists an open
neighbourhood Y1 of yk such that Y1 × Y1 ⊂ f−1(G− Cxn).

Let Y2 = Y1 ∩ Y −1
1 . Then Y 2

2 ⊂ G − Cxn and Y2 = Y −1
2 . Suppose s ∈ Y 2. Thus,

Y2s ∩ Y2 ̸= ∅. Hence, there exist points s1 and s2 in Y2 such that s1s = s2. Thus,

s = s−1
1 s2 ∈ Y −1

2 Y2 = Y 2
2 ⊂ G− Cxn

and Y2 ⊂ G−Cxn
. Then yk ∈ Y2 ⊂ G−Cxn

and Y2 ∩Cxn
= ∅. Thus, {yn} is closed. Since

Cx is isocompact and G is a topological group with the property isoc, it follows that C is
weakly hereditarily closure-preserving. Then Y is closure-preserving, and

y ∈ Y = ∪{yn} = ∪{yn} = ∪{yn} = Y .

Hence, each subset in Y is closed, and Y is discrete. It is a contradiction. Thus, P −Cx1
is

a finite set. Then there exists a finite subcover C1 = {Cx2 , Cx3 , · · · , Cxt} ⊂ C of P − Cx1 .
Thus, {Cx1 , Cx2 , · · · , Cxt} is a finite subcover of P . According to Theorem 3.7, ∪t

i=1Cxi is
isocompact. Therefore, P is compact, and G is isocompact. □

The following example [10] shows that even though G is a T2 topological group with
a locally compact subgroup H such that G/H is isocompact, G need not be isocompact.
Hence, the hypothesis that G with the isoc property is essential in Theorem 3.10.

Example 3.5. Suppose G is a T2 topological group, and H = [0, ω1) is a subgroup, where G is the
topological sum of [0, ω1) and [0, ω1], and G/H is homeomorphic to [0, ω1]. Define f : G → [0, ω1]
by sending each point of G to the naturally corresponding point in [0, ω1]. Then f is a finite-to-one
open mapping, and H is locally compact. Hence, f is a quotient mapping. However, G/H and
[0, ω1] are isocompact, and G is not isocompact.

According to Proposition 2.2 and Theorem 3.10, the following corollary is direct.

Corollary 3.1. Suppose G1 is a topological group with the isoc property, and G2 is a T2 topolog-
ical group with a locally compact subgroup H2 such that G2/H2 is isocompact. If f : G1 → G2 is
a perfect injection, then G2 is isocompact.

It is well known that the mapping f : G1 → G2 is called a quasi-k mapping if the preim-
age of every countably compact subset is countably compact [19]. It is easy to prove that
if f is continuous and quasi-k, and G1 is isocompact, then G2 is isocompact. According to
Theorem 2.6, Theorem 3.9, and Theorem 3.10, the following corollaries are direct.

Corollary 3.2. Suppose G is a T2 topological group with a locally compact subgroup H such that
G/H is isocompact. If G has the isoc property, then H is isocompact.

Corollary 3.3. Suppose G1 is a T2 topological group with a locally compact subgroup H1 such
that G1/H1 is isocompact, and G1 has the isoc property. If f : G1 → G2 is continuous onto
quasi-k mapping, then G2 is isocompact.

Since quotient mapping is continuous, and according to Theorem 3.10, it follows that
the following remark is direct.

Remark 3.2. Suppose G is a T2 topological group with a locally compact subgroup H , and G has
the isoc property. If the quotient mapping is quasi-k, then G is isocompact if and only if G/H is
isocompact.
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Lemma 3.2. Suppose G is a topological group with a subgroup H . If G is isocompact and the
quotient mapping is injection, then G/H is isocompact.

Proof. Suppose A is closed countably compact in G. Let f : G → G/H be a quotient
mapping. Then f is continuous and open. Thus, f−1(A) is closed in G/H . Suppose
{Bn : n ∈ N} is an open cover of f−1(A). Then {f(Bn) : n ∈ N} is an open cover of A.
Hence, there exists a finite subcover {f(B1), f(B2), · · · , f(Br)} of A. Since the quotient
mapping f is an injection, it follows that {B1, B2, · · · , Br} is a subcover of f−1(A). Thus,
f−1(A) is countably compact in G. Since G isocompact, it follows that f−1(A) is compact
in G. It is easy to verify that A is compact in G/H . Therefore, G/H is isocompact. □

According to Theorem 3.10 and Lemma 3.2, we obtain the following theorem directly.

Theorem 3.11. Suppose G is a T2 topological group with the isoc property, and H is a locally
compact subgroup. If the quotient mapping is injection, then G/H is isocompact if and only if G
is isocompact.

4. APPLICATIONS OF ISOCOMPACT SPACES

Below are some applications of isocompact spaces in topological groups. In [24], Wicke
and Worrell established the connections between weakly δθ-refinable spaces and isocom-
pact spaces.

Theorem 4.12. [24] Every closed and countably compact subset of a weakly δθ-refinable space is
compact.

Obviously, each weakly δθ-refinable space is isocompact. According to Theorem 3.10
and Theorem 4.12, we obtain the following theorem directly.

Theorem 4.13. Suppose G is a T2 topological group with a locally compact subgroup H such that
G/H is weakly δθ-refinable. If G has the isoc property, then G is isocompact.

Since each paracompact (respectively, metacompact, θ-refinable, weakly θ-refinable,
paralindelöf, metalindelöf, and δθ-refinable) space is weakly δθ-refinable, and the rela-
tionships among these topological spaces are illustrated in Figure 3 of [24], we obtain the
following corollary directly.

Corollary 4.4. Suppose G is a T2 topological group with a locally compact subgroup H such
that G/H is paracompact (respectively, metacompact, θ-refinable, weakly θ-refinable, paralindelöf,
metalindelöf, and δθ-refinable). If G has the isoc property, then G is isocompact.

paracompact metacompact θ-refinable weakly θ-refinable

paralindelöf metalindelöf δθ-refinable weakly δθ-refinable

Figure 3 : Relationships of spaces

Since each weakly δθ-refinable space is isocompact, we have the following question.

Question 4.14. Suppose G is a T2 topological group with a locally compact subgroup H such that
G/H is isocompact, and G has the isoc property. Is G weakly δθ-refinable?
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The following example shows that the answer to Question 4.14 may be negative and
also illustrates that an isocompact space is not necessarily a weakly δθ-refinable space.

Example 4.6. Suppose G is a T2 topological group, where G is the ordered topological space
[0, ω1), and G/G is a singleton. Thus, G has the isoc property, and G/G is isocompact. It is well
known that G is locally compact, and not weakly δθ-refinable [15].

Since the ω narrow topological groups can be characterized as topological subgroups of
arbitrary topological products of second-countable topological groups, and each second-
countable space is Lindelöf, and it is natural for us to look for the relationships between
Lindelöf and ω narrow, and pose the following question.

Question 4.15. Suppose G is a T2 topological group with a locally compact subgroup. Under
what conditions is G Lindelöf if and only if G is ω narrow?

The following theorem shows the connection between Lindelöf and ω narrow.

Theorem 4.16. Suppose G is a T2 topological group with the isoc property. If G has a locally
compact subgroup H such that G/H is isocompact, and G is a w∆ space, then G is Lindelöf if and
only if G is ω narrow.

Proof. Suppose A is an open cover of G. Let f : G×G → G be a multiplication mapping.
Now, we will show that G is Lindelöf. Suppose {Bn : n ∈ N} is a w∆ sequence of G.
Thus, there exists an open set B1 ∈ B1 such that e ∈ B1. Then (e, e) ∈ f−1(B1) and there
exists an open neighborhood C1 of e such that C1 × C1 ⊂ f−1(B1) and C2

1 ⊂ B1. Let
D1 = C1 ∩ C−1

1 . Hence, D2
1 ⊂ B1 and D1 = D−1

1 . Suppose a ∈ D1. Since D1 is an open
neighborhood of e, it follows that D1a ∩ D1 ̸= ∅, and there exists points a1 and a2 in D1

such that a1a = a2. Hence, a = a−1
1 a2 ∈ D2

1 ⊂ B1 and D1 ⊂ B1.
Similarly, there exists an open neighborhood E1 such that

e ∈ E1 ⊂ E1 ⊂ D1 ⊂ D1 ⊂ B1.

Hence, there exists an open set B2 ∈ B2 such that e ∈ B2. Similarly, there exists an open
neighborhood F1 such that e ∈ F1 ⊂ F 1 ⊂ B2. Let D2 = F1∩E1. Then e ∈ D2 ⊂ D2 ⊂ B2.
Similarly, there exists an open neighborhood E2 such that

e ∈ E2 ⊂ E2 ⊂ D2 ⊂ D2 ⊂ B2.

Arguing by induction, there exists an open neighborhood En such that e ∈ En ⊂ En ⊂
Dn ⊂ Dn ⊂ Bn for n in N. Hence, for each n in N, we have

En+1 ⊂ En+1 ⊂ Dn+1 ⊂ Dn+1 ⊂ En ⊂ Dn.

Thus, e ∈ ∩n∈NDn = ∩n∈NDn and {Dn : n ∈ N} is a decreasing sequence. Then there
exists an open cover Dn = {Dnx : x ∈ G} of G such that Dn refines Bn for n in N.
According to Theorem 3.8, ∩n∈NDn is countably compact. According to Theorem 3.10, G
is isocompact. Then ∩n∈NDn is compact and e ∈ ∩n∈NDn.

Then there exists a finite subcover A1 ⊂ A of ∩n∈NDn. Let A1 = {A1, A2, · · · , Ar}.
Thus, ∩n∈NDn = ∪r

i=1Ai. Hence, there exists an open set Ai ∈ A1 such that e ∈ Ai. Since
G is ω narrow, it follows that there exists a countable set H ⊂ G such that HAi = G.
Then H ∩n∈N Dn = G. Let H = {h1, h2, · · · , hj , · · · }. Thus, hj ∩n∈N Dn is compact for
each hj ∈ H . Hence, there exists a finite subcover Aj ⊂ A of hj ∩n∈N Dn for each j ∈ N.
Therefore, there exists a countable subcover A0 ⊂ A of H ∩n∈N Dn, and G is a Lindelöf
space.

Now, we will show that G is ω narrow. Suppose L is an open open neighborhood of
e. Then {Lx : x ∈ G} is an open cover of G, and there exists an open countable subcover
L1 = {Lxn : n ∈ N}. Let M = {xn : n ∈ N}. It is clear that LM ⊂ G. For each y ∈ G,
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there exists a set Lxn ∈ L1 such that y ∈ Lxn. Since Lxn ⊂ LM , it follows that y ∈ LM
and G ⊂ LM . Therefore, LM = G, and G is ω narrow. □

According to Theorem 4.16, the proof of the following corollaries are straightforward,
and thus omitted.

Corollary 4.5. Suppose G is a T2 topological group with the isoc property. If G has a locally
compact subgroup H such that G/H is isocompact, and G is w∆ ω narrow, then G is σ compact.

Corollary 4.6. Suppose G is a T2 topological group with the isoc property. If G has a locally
compact subgroup H such that G/H is isocompact, and G is w∆ ω narrow, then any quotient
group of G is Lindelöf.

Theorem 4.17. [12] A topological group G is ω narrow if and only if G is topologically isomor-
phic to a subgroup of a product of second countable topological groups.

According to Theorem 4.16 and Theorem 4.17, we obtain the following theorem di-
rectly.

Theorem 4.18. Suppose G is a T2 topological group with the isoc property. If G has a locally
compact subgroup H such that G/H is isocompact, and G is a w∆ space, then G is Lindelöf if
and only if G is topologically isomorphic to a subgroup of a product of second countable topological
groups.

Proposition 4.4. Suppose G is a T2 topological group with the isoc property. If G has a locally
compact subgroup H such that G/H is isocompact, and G is w∆ ω narrow, then H is σ compact.

Proof. According to Theorem 4.16, G is Lindelöf. Since H is a locally compact subgroup,
it follows that there exists an open compact neighbourhood A of e. Thus, {Ax : x ∈ H}
is an open cover of H . According to Theorem 3.9, H is closed. It is easy to verify that
Lindelöf spaces are closed hereditary, then H is Lindelöf. Hence, there exists an countable
subcover {Axn : n ∈ N} of H . Therefore, H = ∪n∈NAxn and H is σ compact. □

Proposition 4.5. Suppose G is a T2 w∆ ω narrow topological group with the isoc property. If H
is a discrete subset such that G/H is isocompact, then H is a countable set.

Proof. Since H is discrete, it follows that H is locally compact. According to Theorem 3.9,
H is closed. According to Theorem 4.16, G is Lindelöf. It is easy to verify that Lindelöf
spaces are closed hereditary, then H is Lindelöf. Thus, H is a countable set that became
quite clear. □

5. CONCLUSION AND FUTURE DIRECTION

In this work, we obtain some properties of isocompact spaces. At the same time, we
establish the relationships between isocompact spaces and locally compact subgroups.

Our first result shows the relationships between locally compact topological groups
and isocompact spaces. Furthermore, we show that if a T2 topological group with the isoc
property has a locally compact subgroup where the quotient mapping is injective, then the
topological group is isocompact if and only if the quotient group is isocompact. At last,
we have determined the conditions under which ω narrow and Lindelöf are equivalent.

Several directions for future research are discussed below. For example, to obtain dif-
ferent results in further research, we propose the following questions.

Question 5.19. Suppose G is a T2 topological group with a paracompact subgroup H such that
G/H is isocompact. If G has the property isoc, is G isocompact?
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Question 5.20. Suppose G is a T2 paratopological group with a locally compact subgroup H such
that G/H is isocompact. If G has the property isoc, is G isocompact?

The work initiated here is the starting point for continuing work towards that direction
and motivate others to do so.

6. COMPETING INTERESTS

The authors have no competing interests to declare that are relevant to the content of
this article.

ACKNOWLEDGMENTS

This work has been partially supported by the project funded by Beibu Gulf University
(Grant nos WDAW201905 and 2023JGA252).

The authors would like to thank the referees for their many valuable amendments and
suggestions.

REFERENCES

[1] Arhangel’skii, A.V. and Tkachenko, M.(2008). Topological Groups and Related Structures, ISBN: 978-90-78677-
06-2, ISSN: 1875-7634. Atlantis Studies in Mathematics, vol. 1, Atlantis Press, Paris; World Scientific Pub-
lishing Co. Pte. Ltd., Hackensack, NJ.

[2] Arhangel’skii, A. V. Compacta and homogeneity. Some globalization effects. Topology and its Applications.
259 (2019), 124–131.

[3] Bacon, P. The compactness of countably compact spaces. Pacific Journal of Mathematics. 32 (1970), 587–592.
[4] Breaz, S. Finite torsion-free rank endomorphism rings. Carpathian Journal of Mathematics. 31 (2015), no.1, 39–

43.
[5] Buhagiar, D. and Lin, S. A note on subparacompact spaces. Matematichki Vesnik. 52 (2000), no.3, 119–123.
[6] Cai, Z., Lin, S. and Tang, Z. Characterizing s-paratopological groups by free paratopological groups. Topology and

its Applications. 230 (2017), 283–294.
[7] de Leo, L. and Tkachenko, M. The maximal ω-narrow group topology on abelian groups. Houston Journal of

Mathematics. 36 (2010), no.1, 215–227.
[8] Dube, T., Naidoo, I. and Ncube, C. N. Isocompactness in the category of locales. Applied Categorical Structures.

22(2014), 727–739.
[9] Engelking, R. General topology. Second edition. Heldermann Verlag, Berlin 1989; 6.

[10] Gittings, R. F. Open mapping theory. Set-theoretic topology. Academic Press, (1977), 141–191.
[11] Gittings, R. F. Products of generalized metric spaces. The Rocky Mountain Journal of Mathematics. 9 (1979), no.

3, 479–497.
[12] Guran, I. I. On topological groups close to being Lindelöf. Doklady Akademii Nauk. 256 (1981), no. 6, 1305–1307.
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