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The approximate solution of the general split variational
inequality problem by intermixed iteration

KANYANEE SAECHOU ! AND ATID KANGTUNYAKARN 2

ABSTRACT. This paper first introduces a new problem that is the general split variational inequality problem
and invents a mathematical tool for solving our new problem which is Lemma 2.5. Then, we establish and
prove a strong convergence theorem aimed at finding an element of the set of the solution of the general split
variational inequality problem. Furthermore, we apply our main theorem to demonstrate a strong convergence
theorem for finding solutions to the split variational inequality problem, the split feasibility problem, and the
minimization problem. Finally, we provide numerical examples to advocate our main result.

1. INTRODUCTION

Throughout this article, let H, H;, and H be real Hilbert spaces with inner product
(-,-) and norm || - ||. Let C' and @ be a nonempty closed convex subset of H; and Ho,
respectively, and let A, B : H; — H» be bounded linear operators. We denote weak con-
vergence and strong convergence by notations ”—" and ”—", respectively.

The split feasibility problem (SFP) originated from modeling and inverse problems, phase
retrievals, and medical image reconstruction [3]. The SFP can also be used in various dis-
ciplines such as image restoration, computer tomography, signal processing, and radia-
tion therapy treatment planning; see more detail [3, 4, 5]. Recall that the split feasibility
problem is to find a point « € H; such that

(1.1) zeC and Az e€Q,

The set of all solutions of (1.1) is denoted by I'. Later, Censor et al. [4] modified the SFP
that is the multiple-set split feasibility problem (MSSFP), which is to find a point * € H; with
the property:

p T
(1.2) z*e()Ci  and At e[)Q;
@ J

If we put p = r = 1in (1.2), then the MSSFP reduces to the SFP. Over the past decade,
many mathematicians have introduced new problems derived from the split feasibility
problem, including the split variational inequality problem, the split common null point
problem, the split common fixed point problem, the split equilibrium problem, the split
equality problem, and the split general system of variational inequalities problem. Ap-
proximations of solutions to these problems have been developed in Banach and Hilbert
spaces. For further details, see [15, 13, 14, 12, 11, 6, 10, 16, 9, 8, 7].

Based on the split feasibility problem and the split variational inequality problem, we
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introduce the general split variational inequality problem, which is to find a point z* € C such
that

(1.3) (y—a", Acz™) >0,
forally € C, and find y% = Az*, y}; = Bz* € Q such that
(1.4) (z—ya, Aqua) 2 0,
and

(1.5) (z—yp,Aqup) 20,

for all z € Q, where A¢c : C — H; and Ag : ) — H, are mappings. The set of all the
above solutions is denoted by ® = {z* € VI(C, A¢) : Az*,Bx* € VI(Q, Ag)}. Indeed,
the general split variational inequality problem is a generalization of the SFP and the split
variational inequality problem (SVIP). That is, if we put A = B, ¥, = y5 in (1.4) and (1.5),
then the general split variational inequality problem reduces to the SVIP introduced by
[19], which the SVIP has been studied and modified in many pieces of literature; see more
detail in [27, 28, 29, 30, 31]. Furthermore, if we put A = B, ¥}, = y5, and Ac = Ag =01in
(1.3), (1.4), and (1.5), then the general split variational inequality problem reduces to the
SFP.
The following definition is important to our main theorem and its applications.

Definition 1.1. Let T': H — H be a mapping. Then
(i) a mapping T is called a strongly positive linear bounded operator if there exists a constant
o > 0 with the property
(Tz,z) > al|z|?, forall x € H,
(ii) a mapping T is called lipschitz continuous on C if there exists L > 0 such that
| Tz — Tyl < L||lz -y, forall x,y € C.

If L € [0,1), then T is called a contraction. Obviously, if L = 1, T is a nonexpansive.
Moreover, it is also known that if T' is a nonexpansive mapping of H into itself, we have

(Ty = Ta, (I = T)a — (I = TYy) < 5|1 = Tha — (T = Ty,

forall z,y € H,
(iii) a mapping T is called a-inverse strongly monotone if there exists o > 0 such that

(Tx — Ty, x —y) > a|| Tz — Ty|?, forall z,y € C,
(iv) a mapping T is called firmly nonexpansive if
| Tz — Ty||? < (x —y, Tz — Ty), forall x,y € C.

The fixed point theorem based on the contraction principle has studied the existence
and uniqueness of the solutions. This theory was developed extensively and applied in
various fields. For example, the performances of the fixed point method are applied to
ridge regression in statistics and are used in communication engineering as a tool to solve
problems. The fixed point problem for the mapping ¢ : H — C'is to find « € H such that

ple) = =,
we denote the set of fixed point of a mapping ¢ by F'(¢).

For many years, numerous mathematicians have developed methods for solving fixed
point problems by constructing sequences {z,,} in various forms, such as the Mann itera-
tion [32], the Halpern iteration [33], the Ishikawa iteration [34], and others. Additionally,
such sequences have been extended to solve other problems beyond fixed point problems
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as well.

Using the technique for creating sequences {z,} as Mann and Viscosity iteration, Yao
etal. [17] introduced the following sequences {x,,} and {y,, } which is called the intermixed
algorithm by the definition of the sequences {x,} and {y,} depend on each other as the
following algorithm:

Algorithm 1. For arbitrarily given x1,y, € C, let the sequences {x,} and {y,} be generated

iteratively by

(1.6)
Tpi1 = (1= Bn)xn + BuPolanf(yn) + (1 — k — an)a, + kT2,), foralln € N,
Yn4+1 = (1 - Bn)yn + ﬁnPC[ang(xn) + (1 — k- an)yn + k’SynL fO?" alln € N,

where S,T : C — C is a A-strictly pseudo-contraction, f : C — H is a p,-contraction and
g : C — H is a py-contraction, k € (0,1 — X) is a constant and {cv, }, {5} are two real number
sequences in (0,1). Furthermore, under some control conditions, they proved that the iterative
sequences {x,,} and {y, } defined by (3.19) converge to x* = Pp(ry f(y*) and y* = Ppsyg9(x*),
respectively.

Inspired by Algorithm 1, Khuangsatung and Kangtunyakarn [20] proposed a novel
intermixed algorithm that leverages viscosity techniques to address the problem of find-
ing a common solution for the combination of mixed variational inequality problems and
fixed-point problems involving nonexpansive mappings in a real Hilbert space. Their
algorithm is outlined as follows:

Theorem 1.1. Let C be a nonempty, closed, and convex subset of H. For every i = 1,2, let
fi + H— R U {+o0} be a proper, convex, and lower semicontinuous function let A;,B; : C —
H be 6*- and §B-inverse strongly monotone operators, respectively, with §; = min {6;“, 68}
and let T; : C — C' be nonexpansive mappings. Assume that Q; = F (T;) N VI (C, Ay, fi) N
VI(C,B, f;) #0,foralli = 1,2. Let g1, g2 : H — H be 01- and o4- contraction mappings with
01,02 € (0,1) and 0 = max {01, 02}. Let the sequences {x,}, {y.} be generated by x1,y; € C
and

Wp, —b2yn+(1 _bQ)TQyna
Yn+1 - ( n) Wn, + Bn (anQQ ( ) + (1 - an) J»?f (yn - 72(012142 + (1 - Clg) B2)yn))7
Zn =bixy, + (1 —b1) Ty,

Tpy1 = (1 - 671) Zn + BnPc<angl (yn) + (1 - an) J»%f (xn - N (alAl + (]- - al) Bl) xn))v
forall n € N, where {B,} , {an} € [0,1], v € (0,20;), ai, b € (0,1),and J'; : H — H defined
as Ji; = (I + ViV fi) " is the resolvent operator for all i = 1,2. Assume that the following
conditions hold:

(i) limy, o0ty = 0, and Y07 | v, = 00, B
(ii) 0 <1< B, <lforalln € Nand for somel,1 >0,
(iii) D07 1 |ams1 — an] <00, Yoot |Brs1 — Bul < .
Then, {x,} and {y,,} converge strongly to x* = Pq,¢1 (y*) and y* = Pq, g2 (x*), respectively.

In contemporary research, the intermixed algorithm has undergone numerous modi-
fications and enhancements to address a diverse range of problems, as evidenced in the
works of [21, 22, 23, 24, 25, 26] and many others.

We establish a convergence theorem for identifying an element of the solution set of the
general split variational inequality problem. This theorem utilizes the solution technique
of the intermixed algorithm, as demonstrated in Theorem 3.2 of Section 3. Moreover, we
apply our main theorem to prove a strong convergence theorem for finding solutions to
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the SVIP, the SFP, and the minimization problem. Finally, we provide numerical examples
to illustrate and support our main result.

2. PRELIMINARIES

This section states some basic properties and lemmas used in our convergence theo-
rems and applications. For every x € H, there exist a unique nearest point Poz in C such
that

Pcx := argmin ||y — z||.
car i= argmin |y - o]

Such an operator Pc is called the metric projection of H onto C. Moreover, P¢ is a firmly
nonexpansive mapping, that is
1Pox — Peyl® < (Pow — Pey, = — y),
forall x,y € H.
Lemma 2.1. (See [1]) For a given z € Hand u € C,
u=Poz e (u—2z,v—u) >0, Yo e C.
Lemma 2.2. (See [1]) Let T be a mapping of C into H. Let uw € C, then for A > 0,
u=Pc(I - T)u<uecVICT),
where Pc is the metric projection of H onto C.
Lemma 2.3. (See [2]) Let {s,,} be a sequence of nonnegative real numbers satisfying
Snt1 = (1 — ap)sp + On, Vn > 0,

where {, } is a sequence in (0,1) and {4,,} is a sequence such that

oo 6 o0
1) ay, =00; 2)limsup — < 0or On| < 00. Then lim s, = 0.
7;1 n—>oop Qnp ; 1] n=oo
Lemma 2.4. (See [18]) Each Hilbert space H satisfies Opial’s condition, i.e., for any sequence
{zn} C H with x,, — x, the inequality
lim inf ||z, —z| < lim inf |z, —y|,
n— oo n—oo
holds for every y € H with y # .

Lemma 2.5. Let Ac : C — Hy, Ag : Q — Hj be ac, ag-inverse strongly monotone operater.
Assume that ® # (). Then the following conditions are equivalent:

(i) z* €,

(ii) 2* = Po(I — AcAc)(I — a(A*(I—PQ(IQ—AQAQ))A + B*(I_PQ(IQ_AQAQ))B))x*,
where A\c € (0,20¢), Ag € (0,2aq), a € (0, 1) and L = max{La, Lp} with L4, Lp are the
spectral radius of the operator A* A and B* B, respectively.
Proof. i) = ii). Let 2* € ®, we have z* € VI(C, Ac) and Az*, Bx* € VI(Q, Ag).
From Lemma 2.2 and Ac, A\g > 0, we have Po(I — A\cAc¢)z* = o* and Az* = Py(I —
)\QAQ)A.’L'*, Bz* = PQ(I — )\QAQ)Bw*.
It follows that

z* = Po(l = AcAc)(I —a(

A*(I — Po(I — AgAq))A | B*(I - Po(I —AgAq))B.. .
2 + 5 ))x*.
ii) = ). Let a* = Po(I — AoAc)(I — a(EUFellAeAe)d | BIU-PoU A0 A0))B ), «
and w € ®. From i) = ii), we have
A*(I = Po(I — AgAQ))A | B*(I - Po(I — AgAQ))B
5 + 5 )

w = Pc(I = AcAc)(I — af




THE APPROXIMATE SOLUTION OF THE GENERAL SPLIT VARIATIONAL INEQUALITY PROBLEM ... 635
A*(I—Po(I-AoAg))A |, B*(I—Po(I—)qAq))B
Put M = A Q(2 ede))A | BY( Q(2 Q4Q))

It implies that

la* —w|? <[|z* —w - a(Mz* — Mw)|]®
(2.7) =[|z* —w|* - 2a{z* —w, Mz* — Mw) + a*|Mz* — Mw|*.
From definition of M and L = max{L4, L}, we have
—2a{z* —w, Mz* — Mw)
Aw — Az* (I — PQ(I — )\QAQ))A.T*>
a(Bw — Bz, (I — Po(I — A\gAq))Bz™)
Aw — PQ(I - )\QAQ)ALL‘*, (I - PQ(I - )\QAQ))AJJ*>

=a

Jr/\

—~

a

+ a(PQ(I — )\QAQ)AJZ* — AJZ*, (I — PQ (I — )\QAQ))AJZ*>
+ a(Bw - PQ(I - /\QAQ)Bx*, (I - PQ(I — )\QAQ))BCE*>
+ a(PQ(I - )\QAQ)B:E* - Bl'*, (I - PQ(I - AQAQ))B$*>
a * *
<SIT = Po(I = AgA))Ax”|I* — al| (I — Po(I = AgAq)) Ax”||?
a " .
+ 51T = Po(I = AqAQ)) B |* — al|(I = Po(I — AAq)) B |
a
(2.8) == S IT = Po(I = AqAq))Az"|” - *H(I Po(I = AqAq))Bx™|I?,
and
(2.9)

a®||Mz* — Mwl|* < *( (I = Po(I = AgAq))Ax™|* + 2( L)|I(I - Po(I—XqAq))Bx"|*.
From (2.7), (2.8) and (2.9), we have
lz* = wlf* <[lz* - wl|* - g(l —aL)|[(I - Po(I — AqAq))Az"|
51— aD)||(1 — Po(I = AgAg))Ba* |
It implies that
(2.10) Az* = Po(I — AgAg)Az*, Ba* = Po(I — A\gAq)Bx
From (2.10) and Lemma 2.2, we have
(2.11) Az*,Bz* € VI(Q, Ag).

From (2.10), we have

AT = PoU — AgAQ)A | B*(I = Po(I — Ag4g))B

z* =Pc(I — AcAc)(I — a( 5 5

ZPC(I — /\0140).23*

)z

From Lemma 2.2, we have
(2.12) e VI(C, Ac).
From (2.11) and (2.12), we can conclude that z* € ®. O
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Remark 2.1. From a part of the proof of Lemma 2.5, it is clear that
1Pc(I = AcAc)(I — aM)x — Po(I = AcAc)(I — aM)y|®

51— aL)[[( = Po(I = AgAq))Ax — (I = Po(I = Ao Aq)) Ayl

(1—aL)|[(I — Po(I = A\qAQ))Bx — (I — Po(I — A\gAq))Byl?,

<z —yl* -
a
2

where M = A*(FPQ(I;/\QAQ))A + B*(FPQ(I;’\QAQ))B and for all x,y € C.

3. MAIN RESULTS

In this section, we prove a strong convergence theorem for finding an element of
the set of the solution of the general split variational inequality problem.

Theorem 3.2. Let Ac and A define as the same in Lemma 2.5, and A*, B* are adjoint of A, B,
respectively, with L = max{L4, L}, where L4, Lg are spectral radius of A*A, B*B, respec-
tively. Assume that ® # 0. Let f,g : Hy — H; be ay and ag-contraction mappings with
af,aq € (0,%) and @ = max{ay, ay}. Let the sequences {x,} and {y,} generated by x1,y1 € C
and

(3 13) Tn+l = (1 - an)wn + anPC(an(yn) + (1 - Bn)PC(I - /\C'AC)(I - aM):cn),
’ Yn+1 - (1 - an)yn + anPC(Bng(xn) + (1 - Bn)PC(I - )\CAC)(I - aM)yn)a

where M = A*(I_PQ(IQ_AQAQ))A + B*(I_PQ(I;/\QAQ))B, Ao € (072010), )\Q c (0,204@), a €
(0, 1) and {a,}, {Bn} are a sequence in (0,1), for all n € N. Suppose the following conditions
hold:
(i) limy, o0 B =0and Y7 | By = 00,
(i) 0 <8 < o, <0foralln € Nand for some 6,0 > 0,
(iii) 3ty [Bra1 — Bl <00, 32070 lant1 — an| < oo
Then {xy,} and {y, } converge strongly to x* = Py f(y*) and y* = Ppg(x™*), respectively.

Proof. Letz,y € C'and M = A*(I_PQ(IQ_/\QAQ))A + B*(I_PQ(IQ_’\QAQ))B.
Since A is ag-inverse strongly monotone mapping, we have
I = AgAQ)z — (I = XAQ)yl* =l — y — Ao(Aqz — Agy)lI?
<llz =yl = Ao(2aq — Ao)l gz — Aqy]?
<[z —yl*.

Hence (I — M\ Aq) is a nonexpansive mapping. Then, we obtain that Py(I — AgAg) is a
nonexpansive mapping.
Since M = A (I_PQ(IQ_AQAQ))A 4+ B (I_PQ(IQ_)‘QAQ))B

, we have
1M (z) — M(y)|)?
_” A*(I — PQ(I — /\QAQ))AI A*(I — PQ(I — )\QAQ))Ay
- 2 B 2
L B'U — Po(l — AAg))Bx _ B*(I - Po(l — )‘QAQ))B?/HQ
2 2

1, ., \
<14 = Po(I = AgAq))Aw — A™(I = Po(I = AgAq)) AyI*

1 * *
+ §||B (I — Po(I —XgAq))Bx — B*(I — Po(I — \gAq))Byll?

L
<5 = Po(I = AgAq))Ax — (I = Po(I — AeAq))Ay”
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(3.14) 20— Poll ~ AgAg))Ba — (I~ Poll ~ Ao Aq))Byl*
Since
I(I = Po(I = AgAq))Az — (I — Po(I — Mg Ag)) Ayl
=((I = Po(I = AgAq))Az — (I — Po(I — A\qAq))Ay, Az — Ay)
(I = Po(I — Ao Ag)) Az — (I — Po(I — AgAg)) Ay, Po(I — Ao Ag) Az
— Po(I — AgAq)Ay)
=(A™(I = Po(I = A@Aq)) Az — A™(I — Po(I — A@Aq)) Ay, x —y)
(I = Po(I = AqAQ)) Az — (I — Po(I — AgAq))Ay, Po(I — AgAq)Ay
— Po(I — A\gAg)Ax)
(AT = Po(I = A@Aq))Az — A™(I — Po(I — AqAqQ)) Ay, z —y)
+ %H(I — Po(I = MqAq))Ax — (I — Po(I — A\gAq))Ayll*,
then
I(I = Po(I = AgAq)) Az — (I — Po(I — Mg Ag)) Ayl
(3.15) <A — Po(I — AgAg)) Az — A*(I — Po(I — AoAo)) Ay, — y).
By using the same process as (3.15), we have
I(I = Po(I = AoAq))Bx — (I — Po(I — \oAq))Byll®
(3.16) <2(B*(I — Po(I — A\oAg))Bx — B*(I — Po(I — A\oAq)) By, — y).
Substituting (3.15) and (3.16) into (3.14), then
1M () — M (y)|”
SL(A™(I = Po(I — AgAq))Az — A™(I — Po(I — AgAq))Ay,z — y)
+ L(B*(I = Po(I — A\qAq))Bx — B*(I — Po(I — AgAq))By,z — y)
A*(I = Po(I = AgAq)) Az + B*(I — Po(I — A\gAg))Ba

—2L( -
B (A*(I — Po(I —A\Aq))Ay + B*(I — Po(I — /\QAQ))By) B
5 ;T —y)

=2L{M(z) = M(y), x —y).
So, we have M is 5--inverse strongly monotone.
From the definition of M, we obtain
I(7 = ad)a = (I — aM)y]®
=llz = ylI* — 20(M (x) = M(y), = —y) + a*| M (z) — M(y)|*
<lla = y|? = ZIM (@) = M(y)|> +a|[M (x) — M(y)]?
=lle — yl* ~ (7 ~ )| M(x) ~ M(y)]?
<|lz -yl
then
(3.17) (I —aM)x — (I —aM)y| < ||z —yl, forallz,y € C.

We will separate the proofs in the following order for the orderliness of proof.
Step 1. Show that {z,, } and {y, } are bounded.
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Let z € ®. By Lemma 2.5, we have z = Po(I — AcAc)(I — aM)z.
From (3.13), we have
s = 2]
=1 = an)(n = 2) + an(Pe(Buf (3n) + (1 = Bu) Poll = AoAc)(I — aM)z,) = 2)|
(1= an)llan = 2l + anllBaf (yn) + (1= Bu) Po(I = AcAc)T - aM)z, — 2|
<(I = an)llzy — 2|l
+ an(Bullf(yn) — 2l + (L = Bu)l[Pc(I = AcAc)(I — aM )z, — z|)
(I —an)llzn = 2ll + an(Bull f(yn) — 2l + (1 = Bn)l|2n — 2]))
(1= anfn)llzn = 2l + anBu(llf(yn) = F(2)I +[1f(2) = 2[)
<1 = anpn)llen — 2|l + anBulagllyn — 2l + [ f(2) — =)
(3.18)
<(1 = anpBn)llzn — 2l + anBrallyn — 2| + anBull f(2) — 2.
From (3.13) and by using the same method as (3.18), we have

ASRZASAN

(3.19) [Yn+1 =2l < (1= anBu)llyn — 2l + anfnalzn — 2l + anBullg(z) — 2|
Combining (3.18) and (??), then

[Zn1 = 2l + [yns1 — 2]l
<L = anfBn)llzn = 2l + anBnallyn — 2|l + anfBull f(2) - 2|l
+ (1= anBu)llyn — 2l + anfnalzn — 2l + anBullg(z) — 2|
=(1 = anfn(l = a))([lzn = 2 + [lyn — =[1)

anﬁn(l -

+ 20828 ) 2 4 g(e) - =)

<M

)

where M = max{||z; — 2| + |ly1 — 2], Hf(z)fzﬂfgg(z)*zu}.
Such that ||z, — z|| + ||y, — 2| < M.
Hence, {z,,} and {y,,} are bounded.
Step 2. Show that lim,, o ||Zr4+1 — 2n|| = 0 and lim,, o0 ||Yn+1 — Ynll = 0.
From (3.13), we have
[Zn+1 — @nll
(320) <1 —an)lzn — -1l + lan-1 — anl[|zn_1]|
+ ol Bnf(yn) + (1= Bn)Pc(I = AcAc)(I — aM)zy,
= (Ba—1f(yn-1) + (1 = Bu—1)Pe(I = AcAc)(I — aM)xy—1)||
+ lan = a1 || Pe(Bn-1f (yn—1) + (1 = Brn-1)Pc(I = AcAc)(I — aM)an—1)|
<(I = ap)llzn = zp-1ll + lan—1 — anll|lzn-1
+ o (Bl f(yn) = fyn—0)ll + [Br = Bu=1lllf (yn-1)ll
+ (1= Bu)llzn — xp-1ll + |Ba-1 = BulllPc(I — AcAc)(I — aM )z, 1]])
+ lan = a1 |[|[Pe(Bn-1f(yn—1) + (1 = Bun-1)Pc(I = AcAc)(I — aM)zn—1)|
<1 —anBu)llzn — w1l + [an—1 — an|l|zn-1]]
+ o (Bnallyn — yn—1ll + [Bn = Ba-alllf(yn-1)|
+1B8n—1 = BulllPc(I = AcAc)(I — aM)zy—1]])
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G21)  +lan —an-1ll[Pe(Bu-1f(Yn-1) + (1 = Bn1)Pc(I — AcAc)I — aM)xp_1)|.
By using the same process as (3.20), we have

Yn+1 — Yull
<(I = anBu)llyn = Yn—-1ll + lan—1 — an|llyn—1]|
+ an(Bnallen — zn_1ll + [Bn = Bn-alllg(@n—1)ll + [Bn-1 = BulllPo(I = AcAc)(I — aM)yn 1))
(3.22)
+ |ow = an—1[[[Po(Bn-19(zn-1) + (1 = Bu—1)Pc(I — AcAc)(I — aM)yy—1)|.-
From (3.20) and (3.22), we have
[2n41 = 2nll + 1yn+1 — ynll
<A = anfn(l = a)([[zn — zn-1ll + llyn — yn-1l)
+ lan—1 = an|(zn-1] + lyn-1ll
+ [[Pe(Ba-1f (Yn—1) + (1 = Bn—1)Pc(I — AcAc)(I — aM )z, )|
+ [1Pe(Bn-19(zn-1) + (1 = Bn-1)Po(I = AcAc)(I — aM)yn_1)]|)
+ [Brn—1 = Bul(llf -0l + [lg(zn-1)|| + [P (I = AcAc) (I — aM )z ||
+ [[Pe( = AcAc)(I — aM)yn-1]).
Applying Lemma 2.3 and the conditions i), iii), we have
(3.23) nh_{go [Zns1 — 20l = nlggo Yn+1 = yull = 0.

Step 3. Show that lim,,_, ||, — Wy || = 0 where W,, = B.f(yn) + (1 — Bn)Pc(I —

AcAc)(I — aM)x, and limp, o [yn — Vull = 0 where V,, = Bug(an) + (1 — Bp)Po(I —

AcAc)I = aM)yy.
Let Z,§ € ®. From (3.13), we obtain that

2741 — &2
=(1— ap)||lzn — Z||* + an|PcWy — &2 — an(l — ap,)||zn — PeW, |2
<(1 = o)z = Zl° + an|[We — 2] = an(1 — ap)|Jan — PeWa||?
(1= an) | — 3
T B (o) — PolT — AcAc)(I — aM)za) + Po(l — Ao Ac)(I — aM )z, — &
—an(l = ap)||zn — PeW,|?
<(1 = an)llzn = Zl1* + an(|Pe(I = AcAc)(I — aM)z, — &
26, (f () — P = Ao Ac)(T — aM)zp, Wy — 5)) — (1 — )2 — PoWWo |
<(1 = an)llzn = 2l + an(llen — 2% + 2Ball £ (yn) — Pe(I = AcAc)(I — aM)ay [[||W, — Z)
—an(l = ap)||zn — PeW,|?
=llwn = Z* + 200 B0l f (yn) — Po(I = AcAc)I — aM)z,||[|[Wn — Z|
—an(1 = ap)||zn — PeWalf?,
which implies that
an(1 = ay)||zn — PeW,|?
Slwn = Z1* = lonr1 = 21 + 200 8ull £ (yn) — Po(I = AcAc)(I — aM )z, ||[W, — 7|
lzn = zniall(flen = 2l + 201 = Z[)
+ 20 Bl f (yn) — Po(I = AcAc)(I — aM)z, ||| W, — 2.
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By (3.23), the conditions i) and ii), then we get
(3.24) li_>m |z — PcW,]|| = 0.
By using the same process as (3.24), we have
(3.25) lim [ly, — PcVyll = 0.
n—oo

From firmly nonexpansiveness of Pc, we have

1PeWs = &|* =[|PcW, — Pod||?

§<Wn - j7 PcW, — 53)

1 . -
:§(||Wn - $H2 + [|[PeWy — x”Q — Wy, — PCWn||2)'

It implies that

(3.26) [PeW, — 2|* < W — 2] — [[Wa — PeWal|*.
By using the same process as (3.26), we have

(3:27) 1PeVe =3l < Vo = GlI* = [V = PeVal*.

From the definitions of W,, and V,,, we have
[Wa = 2|1 <Bull f(yn) = ZI* + (1 = Bu) | Pe(I = AeAc)(I — aM)z, — 7|
(3.28) <Bull f(yn) = Z|* + (1 = Ba)&n — E[1*.
And
Ve = 9l <Bullg(zn) = 71> + (1 = Bu)IPe(I = AcAc)(I — aM)y, — |
(3.29) <Bullg(zn) = g1 + (1 = Ba)llyn — 9II*-
From (3.26) and (3.28), we have
[2n1 = Z)* <1 = an)llzn — 21 + an|| PeW, — 2|2
<(1 = an)llzn = Z[* + an(|Wy = Z|* — W — PeWal?)
<(1 = an)llzn — |
+an(Ball f(yn) = ZI* + (1= Bu)llen — Z|° = Wy — PeWalf?)
=(1 = anfo)llen — 2)1* + anfull f(yn) = ZlI* — an|| Wy — PeWy 1%
It implies that
an|Wy = PeWal? <llen — 2 = l|znsr — 22 + anfBall £ (yn) — 2|
<llzn = zntall(len = 2 + lznsr — 2)) + anball f(yn) — 2>

From (3.23) and condition i), we have

(3.30) Jim W, — PcW,]| =0.

From the definition of V,, and utilizing the similar technique as (3.30), it can conclude that
(3.31) Jim Vi, — PcV,| = 0.

Since

zn — Wall <llzn — PeWyl| + [[PeWn — Wl
From (3.24) and (3.30), we have
(3.32) liﬁm |lzn — Wy|l = 0.
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Similarly
yn = Vall <llyn — PVl + 1PcVi = Vall.
From (3.25) and (3.31), we have
(3.33) Jim [y, — Vo[ = 0.
Step 4. Show that lim,,, ||zn — Pc(I — AcAc)(I — aM)x,|| = 0 and lim, 0 [|yn —

Pc(I — AcAc)(I — G,M)ynH = 0.
Since

Wn — Tn :an(yn) + (1 - ﬁn)PC(I - ACAC)(I - aM)(En — Tn
:ﬂn(f(yn> - xn) + (1 - Bn)(PC(I - )\CAC)<I - aM)-Tn - -'L'n>7
then
(L= Bu)lPc(I = AcAc)( — aM)zyn — an | < Bullf(yn) — anll + W — zn .
From condition i) and (3.32), we have
(3.34) lim |, — Po(I = AcAc)(I — aM)z, | = 0.
Similarly
:ﬂn(g(xn) - yn) + (1 - 5n)(PC(I - ACAC)(I - aM)yn - yn)v
then
(L= Bl[Pc(I = AcAc)I — aM)yn — yull < Bullg(@n) — ynll + Vi — ynll-
From condition i) and (3.33), we have
(3.35) Jim |y, — Po(I = AcAc)(I — aM)y,| = 0.
Step 5. Show that lim,, _, o sup(f(y*)—z*, W,,—z*) < 0and lim,,_, o sup{g(z*)—y*, V,, —

y*) <0, where 2" = Py f(y*) and y* = Popg(z™).
Indeed, take a subsequence {W,,, } of {W,,} such that

lim sup(f(y*) — «*, W, — ") = lim sup(f(y*) — ", W, — z*).

n—00 k—ro0
Since {z, } is bounded, without loss of generality, we may assume that z,, — & as k — o0
where & € C. We obtain W,,, — £ as k — oo.

Assume that & # Po(I — AcAc)(I — aM)3Z.
From Remark 2.1, (3.17), (3.34) and Opial’s property, we have

lim inf ||z, — 2| < lim inf |2, — Pc(I — AcAc)(I — aM)Z||
k—o0 ) k—o0 )
< klim inf(||zn, — Po(I — AcAc)I — aM)z,, ||
—00
+ H.Pc(f — AcAc)(I — G,M):,an - Pc(.[ - AcAc)(I — aM)ch)
< lim inf ||z,, — Z|.
k—o0
This is a contradiction, and then, we have
T = Pc(l - AcAc)<I - aM)fc,
then
(3.36) &€ F(Po(I — AcAc)(I —aM)).
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Since W,,, — & as k — o0, (3.36) and Lemma 2.1, we can derive that

lim sup(f(y*) — «*, W,, — 2*) = lim sup(f(y*) —a*, W, —x")

n—00 k—o0
=(f(y") — 2", & — ")

(3.37) <0.
Similarly, indeed, take a subsequence {V;,, } of {V,,} such that

lim sup(g(z*) —y*,V, —y*) = klgrolo sup(g(z*) — y*, Vo, — y*).

n— o0

Since {y,, } is bounded, without loss of generality, we may assume that y,,, — §as k — oo
where y € C. We obtain V,,, — g as k — oc.
Following the same method as (3.37), we easily obtain that

(3.38) lim sup(g(«*) —y*, Vo —y") < 0.
Step 6. Show that {x,} converses strongly to z*, where z* = Py f(y*) and {y,} con-

verses strongly to y*, where y* = Pgg(z*).
From (3.13), we have

41 — 2"
(1= o) llzn — 27| + o[ Pe Wi — 2]
(1= o) llwn — 27| + o [|Wy, — 27|
(1= an)llzn = 27I* + ol Ba(f (yn) — %) + (1 = Ba)(Pe(I = AcAc)(I — aM)a, — z*)|?
(1= )z —27|* + an (1 = Bo) | Po(I = AcAc)(I — aM )z, — 2™
+ 280 (f(yn) — 2", Wy, — 27))
(1= an)llwn — 27 + (1 = Ba)llwn — 2| + 280 (f (yn) — 2", Wy — 27))
(1= anfo)llzn — 2™ + 2008 ((F(yn) = F ("), Wo — 2%) + (f(y") — 2™, W — 27))
<(1 = anBo)lzn — &1 + 200 Bl f (yn) = FUMAWn = @nga |l + znga — 2*[1)

+ 20080 (f(y") — 2", Wi — 27)
<(1 = anBo)lzn = a1 + 20nBallyn = y* [(IWn = @ngall + lznss — 271)

+ 200 0n(f(y") — 2", W —27)
<(1 = anBu)zn — 2" + 200 Bnallyn — y*[[IWn — znga |

+anBnalllyn =y II° + lwns — 2" |%) + 200 B (f (") — 2™ Wi — 2%),
it implies that

(1= @nBud)l2nss — 22 (1= anBu)llen — 271 + 200 Bullyn — v [[Wn — 2o
+ anfnlyn — y*I° + 200 Bu(f(y") — ", Wi — 2¥),

IAIA

A Al

A

then
[
1- a”ﬁ" 2 2anﬁnd
D L Y P _20nbnd e
Q fn@ 112 20, B . . .
-y - —_— — W, —
+17an5nr1”y” y'll +17%5na<f(y> Wy, — %)

anﬁn(l _ a) 2 2an5na
B A S TP 200508
(1 e oo = £ =9 11—
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anﬁnaf * (|12 2anﬁn *) ok ok

Similarly, as derived above, we also have
Hyn-i-l - y*H2

anﬂn(l B a‘) * 20énﬂn(_l *
<(1- 2B o 4 220 IV

1 — anBna 1—anbn
O‘nﬂna %112 2anﬂn % % %
3.40 — ||, — —_— -y, VL —y").
(3.40) +1_an5ndllx, x| +1_anﬁnd<9(~r) y y)

From (3.39) and (3.40), we have

lznsr = 22 + llynrs =y

anfBn(1 —2a) ) 1|2
<(1 - ZhEmA- 2 _ _
<1 - 22220 a2 g =)
20, Bna * *
71_%571&(\\%*% Ve = yntall + lyn — ¥ MIWn = 2nga|)
(3.41) o Zombn (f(y") —a* Wy —a%) + (9(") —y", Vo = y"))
. 1—a,B.a Yy , Wn g Y ,Vn—Y )

By (3.23), (3.32), (3.33), (3.37), (3.38), the condition i), and Lemma 2.3, this implies by
(3.41) that the sequences {x,} and {y,} converge to z* = Py f(y*) and y* = Psg(z*),
respectively. This completes the proof. O

4. APPLICATIONS

4.1. The split variational inequality problem and the split feasibility problem. In 2012,
Censor et al. [19] introduced the split variational inequality (SVIP), which is to find z € C
such that

(4.42) (f1Z,2 —T) > 0, vz € C,
and find § = D7 € @ such that
(4.43) (foyoy—y) >0, Vyeq,

where f; : C — H; and f» : Q — Hy are nonlinear mappings and D : H; — Hy is
a bounded linear operator. The set of all solution of the SVIP is denoted by ¢ = {z €
VI(C, f1) : y € VI(C, f2)}. The SVIP reduces to the split feasibility problem (SFP) if
fl = fQ =0.

Corollary 4.1. Let C, Q, A, Ac, Aq, f, and g define as the same in Theorem 3.2. Assume that
¢ # 0. For given x1,y1 € C and let the sequences {x,} and {y,} generated by (3.13), where
M =A*(I—-Po(I-XgAQ))A a= (0, ﬁ) and parameters ay, ag, G, Ac, AQ, {an}, {Bn}, and
the conditions (i)-(iii) define as the same in Theorem 3.2. Then, {x,} and {y,} converge strongly
to x* = Py f(y*) and y* = Pyg(x*), respectively.

Proof. If we put A = B, in Theorem 3.2. The conclusion of Corollary 4.1 can be obtained
from Theorem 3.2. O

Corollary 4.2. Let C, Q, A, f, and g define as the same in Theorem 3.2. Assume that T # (). For

given x1,y1 € C and let the sequences {x, } and {y, } generated by

(4.44) T+l = (1 - an)xn + O‘nPC(ﬁnf(yn) + (1 - BH)PC(I - a(A*(I - PQ)A))xn)a
Yn+1= (L= an)yn + anPo(Bng(zn) + (1 = Bn)Po(l — a(A*(1 — PQ)A))yn)v
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where a € (0, ﬁ) and parameters ay, ag, @, {an}, {Bn}, and the conditions (i)-(iii) define as

the same in Theorem 3.2. Then, {x,} and {y,} converge strongly to x* = Prf(y*) and y* =
Prg(x*), respectively.

Proof. If we put Ac = Ag =0, in Corollary 4.1, we obtain the desired conclusion. O

4.2. The minimization problem. The constrained minimization problem is to find z* € C
such that
1
(4.45) h(x*) = min h(z) = =||(I — Pg)Az|?,
zeC 2
where h : H; — R is a continuous differentiable function.

After that, Kantunyakarn [31] introduced the general constrained minimization prob-
lem as follows:

, I (1 — Po)Ax|®  ||(I - Pg) Bz’
4.4 h(z) := .
(4.46) min i(z) 1 * 4
The set of all solution of (4.46) is denoted by T'), = {z* € C : h (z*) < h(x), Yz € C}.
By using the concepts of (4.45) and (4.46), we introduce the modified general constrained
minimization problem as follows;

(4.47) min h(z) = L= ol = AgAg))Az|® | I = Po(Il = AoAg)) Bzl
’ xzcC ' 4 4 '

The set of all solution of (4.47) is denoted by I'y, = {* € C': h(z*) < h(z),Vx € C}.
From (1.3), if we put Ac = 0, then we have a new problem to find z* € C and y% =
Ax*,yp = Bx* € Q such that

(4.48) (z =y, Aqya) = 0,
and
(4.49) (z —yp,Aqyp) = 0,

for all z € Q. The set of all solutions of (4.48) and (4.49) is denoted by § = {z* € C :
Ax*,Bx* € VI(Q, Ag)}.

By applying Lemma 2.5, we get a lemma that expresses the relationship between the
constrained minimization problem and problems (4.48) and (4.49) as follow:

Lemma 4.6. Let A*, B* are adjoint of A and B, respectively, and let h : H; — R be a continuous
2 2
differentiable function defined by h(x) = ”(I_PQ(I_ZQAQ))A'T” + ”(I_PQ(I_ZQAQ))BM , for all
x € Hy. Assume that 6 # (. Then the followings are equivalent.
(i) x* €6,
(ii) «* € Ty,

(iii) * = Po(I — a(A*(I—PQ(g—AQAQ))A + B*(I—PQ(IQ—AQAQ))B))JJ*'

Proof. i) & iii). If we put Ac = 0in Lemma 2.5, it is easy to see that i) equivalent iii).
ii) =1). Letz* € I';, and let € §, we get z € C and Az, Bz € VI(Q, Ag).
Since z* € I'},, we have
I = Po(I = doAg) Az | I = PoI = AgAq))Ba"||”
4 4
- T = Po( = AoAQ)) Ayl | I = Po(I = AgAq)) Byll”
— 4 4 )
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forally € C.
Since T € C, we have

[(I — Po(I — XoAq))Az*|? N [(I — Po(I — XqAq))Bz*|?

4 4
— _ +112 _ _ _112
(4.50) < (1 — Po(I 4)‘QAQ))A33|| " (I = Po(I 4)\QAQ))B;CH '

Since Az, Bz € VI(Q, Ag), wehave AT = Po(I — \gAqg)AT and BT = Py(I — \gAq)BZ
From (4.50), we have
[(1 — Po(I — AAq))Az*|? 4 U= Po(l - AAq))Bz*|?
4 4
It implies that Az* = Po(I — A\gAg)Az* € VI(Q, Ag) and Bx* = Po(I — A\gAq)Bz* €
VI(Q, Ag).
Since z* € ', then z* € C.
Hence z* € 6. -
i) = ii). Let z* € §, we have * € C and Ax*, Bz* € VI(Q, Ag). Then, we have

(I = Po(I = AoAq))Az*|? LU= PolI = AqAq))Ba*|?

=0.

4 4 =0
_ I =PI = A AQ) Ayl | 11 = PoI = AgAq)) Byl
— 4 4 )
for all y € C. It implies that z* € T'y,. O

Remark 4.2. From (4.47), we observe that Vh = AI- PQ(I A@AQ))A +

where A* and B* are adjoint of A and B, respectively, and Vh is a gradient of h.

B*(I—Po(I— AQAQ))B
2

We get the result of Vi to prove Theorem 4.3 as follow:
Theorem 4.3. Let Ac, Aq, f, and g define as the same in Theorem 3.2. Let the function h :
Hy — R be a continuous differentiable function defined by h(z) = ”(I—PQ(I—/\cw‘lrg))x‘\ﬂvl\2
[{Chnd o1 Chm AQAQ))BI” , forall x € Hy. Assume that Ty, # (. For given x1,y1 € C and let the
sequences {xn} and {y, } generated by

{xn+1 - (1 - an)xn + anPC(ﬁnf(yn) + (1 - Bn)PC(I - G,Vh)l’n),

451
#51) Yot = (1= ) + anPo(Bug(n) + (1 — Bu) Poll — aVh)yn),

where parameters ay, ag, @, Ac, Aqg, {an}, {Bn}, and the conditions (i)-(iii) define as the same in
Theorem 3.2. Then, {x,} and {y,} converge strongly to * = Pr, f(y*) and y* = Pr, g(z*),
respectively.

Proof. From Theorem 3.2 and Lemma 4.6, we can conclude Theorem 4.3. O

5. EXAMPLES

In this section, we present two distinct numerical examples: one in R? and another in
l.

Example 5.1. Let R be the set of real numbers, and let (-,-) : R* x R? — R be an inner product
defined by (x,y) = x-y = x1-y1 + T2 - yo forall x = (z1,22) € R?, y = (y1,y2) € R?

and a usual norm || - || : R? — R be defined by ||x|| = \/2? + 23, where x = (x1,22) € R%
Let H = Hy = R2, C' = [~100,100] x [~100,100], Q = [~200,200] x [~200,200]. Let
Ac : C — Hyand Ag : Q — Hs be defined by
(1 T2 — (3L %2
ACX_(273) and AQX (475)7



646 Kanyanee Saechou and Atid Kangtunyakarn
forall x = (1, 22) € R%. Let the mappings f,g : Hy — H, be defined by

1 T2
f(X):(Z’g),
and 2 143
T, —2
]

forall x = (1, 22) € R%. Let the mappings A, B : R? — R? be defined by
A(x) = (221 — o2, 21 + 222) and B(x) = (z1 + x2, 71 — x2),
and let A*, B* : R? — R? be defined by
A*(x) = (2z1 + x2, —21 + 222) and B* (x) = (z1 + z2,21 — x2),
forall x = (x1,75) € R2
From the definitions of Ac, Aq, f,and g, then Ac, Ag are % and %—inverse strongly monotone,
respectively, and f, g are % and i—contmction mappings, respectively, with Ac € (0,1), Ag €
(0,2), and a = max{3, 3} = 5. Moreover, the spectral radius of the operators A*A, B*B are 5
and 2, respectively, thus L = max{5, 2} = 5. Define M : R* — R? by
_ A*(I — Po(I — M\gAg))A N B*(I — Po(I — \gAg))B
2 2 ’

Let 1 = (x1,2%), 11 = (yi,y}) € C and the sequences {xy}, {yn} generated by (3.13), where
Xn = (2, 22), yn = (), 92), an = =5 and B, = L, for every n € N. By the definitions of

A, B, Ac, Ag, f and g, we have {(0,0)} € ®. For every n € N, we can rewrite (3.13) as follows:

Xnir = (1= )+ () Po - flya) + (1= 1) Pe(l = AcAc)(T — (5)M)xa),

Vx € R2.

M(x)

3
Y1 = (1= )y + (o) Pol - glxa) + (1= H)Pe(l = AcAc)(T — ()M)yn),

where Po (1, x2) = (max{min{z,,100}, —100}, max{min{z,, 100}, —100}) and Py(x1, z2) =
(max{min{z,200}, —200}, max{min{zz, 200}, —200}).

The following Table 1 and Figure 1 shows the values of {xn} and {yn} with z; = (x1,23) =
(—1,1), 51 = (i, 97) = (=1,1), A\c = 5, Ao = 5 and n = N = 500.

TABLE 1. The values of {x,} and {yn} with z; = (2},2?) = (-1,1),
y1 = (y1,97) = (-1, 1),and n = N = 500.

xn = (25, 22)  ¥Yn = (Up,vp)
(-1.0000,1.0000) (-1.0000,1.0000)
(-0.2500,0.2000) (-0.6000,0.6667)
(-0.1748,0.1531) (-0.4637,0.5556)
(-0.1359,0.1278) (-0.3963,0.4997)

S N SO N N

250 (-0.0024,0.0076)  (-0.0267,0.0724)

496  (-0.0011,0.0045) (-0.0155,0.0484)
497 (-0.0011,0.0045) (-0.0155,0.0483)
498  (-0.0011,0.0045) (-0.0154,0.0483)
499 (-0.0011,0.0045) (-0.0154,0.0482)
500 (-0.0011,0.0045) (-0.0154,0.0481)




Example 5.2. Let R be the set of real numbers. Let Hy = ly := {x = (z1,%2, %3, ...)
and Y ;- | ¥} < oo} with the inner product defined by

oo
= § TrYk,
k=1

and let C = H(«,0) := {z = (21, 22, ...

R k=1,2,..
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1

FIGURE 1. The convergence of {x,} and {yn} with z;
(—1,1),and n = N = 500.

<_17 1)/ Y1 = (y}a

where o = (a1, aa, g, -..),

-

yi) =

we obtain

Pra,0x =% —

forall x = (x1,xa, ..

)612:

')7y:

(a,2) =0} ={z € Iy

Db CkTE

{Xn}

! ﬁ\

220:1 ai

and {yn} with
- ) and y1 = (yuyhyhyh--

= 20.

(y17y27 .

1 2 3 4
Yn = (YUnsYns Yns Yns )

\.

TABLE 2. The wvalues of
1.2 .3 4 _ /1 1
(I17x13z1ax17"') - (ﬁv%a /12
1 1 1 1
—— - ——= ———_.),and n

( V20 Ve V127 V200
n xn:(zi,zi,zi,zi,...)
1 (0.7071,0.4082,0.2887,0.2236,...)
2 (-0.3536-0.2041,-0.1443,0.1118,...
3 (:0.1316-0.0760,-0.0556,0.0431,...)
4 (-0.0811,-0.0468-0.0354.-0.0275,...
10 (-0.0271,-0.0156,-0.0134,-0.0105,...
17 (0.0166,-0.0096,-0.0089,-0.0070,..
18 (-0.0158,-0.0091,-0.0085,-0.0067..
19 (-0.0151,-0.0087,-0.0082,-0.0065,..
20 (-0.0145-0.0083,-0.0079,-0.0062,...

L

(-0.7071,-0.4082,-0.2887 ,-0.2236,...)
(0.1768,0.1021,0.0722,0.0559,...)
(0.0550, 0.0317 ,0.0206 ,0.0159,...)
(0.0320, 0.0185,0.0109 ,0.0084,...)

%0.0119,0.0069 ,0.0027,0.0020,...)

(0.0086, 0.0050 ,0.0017 ,0.0012,...)
(0.0084, 0.0049 ,0.0016 ,0.0011,...)
(0.0081, 0.0047 ,0.0015 ,0.0011,...)
(0.0079, 0.0046, 0.0015 ,0.0010,...)

[—100, 100]

(xl,xg,xg,x4). Let Ac : C — Hy be defined by

Ac(z

21 22

) = (57 9 ")v

forall z = (2, za, ..

) € C,

(xhxl

647

) =

From Theorem 3.2 we can guarantee that the sequences {xn } and {yn } approach to (0,0).

LT €

) S Hl,

P Y1 anze = 0},

X1

[~100, 100] x
., max{min{zy, 100}, —100}), where

) =

Let Hy = R* with the inner product defined by (Z,§) = x1y1 +T2y2 +x3y3 + T4y, forall T =

(xlv T2,x3, ZE4) g = (yla Y2, Y3, y4) S R4 ﬂnd ZEt Q =
100, 100], we have P = (max{min{x;, 100}, =100}, ..

[—100, 100]
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and let Ag : QQ — Ho defined by
_ T2 T3 T4
A = =, =, =
Q(T) (7'17 2 I 3 ’ 4
Let A, B : Hy — Hj be defined by

A(x) = (0,21, 22, x3), forallx = (z1,x2,...) € lg,

)7 fOTﬂll?jZ(Tl,TQ,Tg,’lZ;)EQ.

and
B(x) = (0,0, 1, x2), forallx = (x1,22,...) € lg,
and let A*, B* : Hy — H; be defined by
A*(Z) = (z2, 3, 24,0,0,...), forall & = (21,29, 3, 24) € RY,
and
B*(i‘) = (l‘g, x4,0,0,0, ), fOT all z = (l‘1, $2,£3,$4) € R4,
where Ly = sup{|A|: (A*A—A)x=0}=1and Lp = sup{|\|: (B*B—- X))z =0} =1
with L =max{La,Lg} =1anda € (0,1).
Let f,g : Hy — H; be defined by
hl hQ hl h2
h)=(—,—/,.. —_ ..
f( ) ( 2 ) 2 ) ) 4 ) 4 )
From the definitions of Ac, Aq, f,and g, then Ac, Ag are % and %—inverse strongly monotone,
respectively, and f, g are § and t-contraction mappings, respectively, with A\c € (0,1), Ag €
(0,2),and @ = max{3, 1} = 3. Let M : Hy — H be defined by
_ AU = Po(I = AgAQ))A(x) | B*(I — PoI — Ag4g))B(x)
2 2 ’
forall x = (x1,x2,...) € la. By the definitions of A, B, Ac, Ag, f, and g, we have

Po(I — AcAc)(I — aM)(z1, 22, x3,...) = (21, T2, X3, ...),

and gh) =( ), forallh = (hy, h,...) € la.

M(x)

then
(z1,22,23,...) = (0,0,0,0,...).
Hence, (0,0,0,0, ...) is fixed point of Pc(I — A\cAc)(I — aM).

Let x1 = (z1,2%,23%,...),y1 = (y1,9%, 43, ...) € C, and the sequences {xy } and {yn} gener-
ated by (3.13), where x,, = (z}, 22,23 ...), yn = (v}, v2, 42, ...) forall n € Nand the parameters
{on,} and {B,,} define as the same in Example 5.1 and we choose a = %, A\c = %, and Ag = 3.
For every n € N, we can rewrite (3.13) as follows:

X = (L= g+ () Pol - flya) + (1= 2)Po(l — 1 Ac)(I - 3 Mxy),
Y1 = (1= )y + (-5 Pol -glxn) + (1= D)Pe(l — 1 Ac)(T — sM)yn).

From Theorem 3.2, we can conclude that the sequences {xy} and {yn} converge strongly to
(0,0,0,...). To illustrate the numerical example, we choose

1 . — —
o D] ik =2n—1,
0 = 1

k(k—1)

ik =2n,

where n € N, we have C = {z = (z1,22,23,...) € Hy | Y poqarzy = 0} and Pox =

D oheq ATk e’}
X — ﬁ =X —-y o apTy, Where x = (x1, X2, x3,...) and a = (a1, a2, as, ...).

k
To demonstrate the convergence of the sequences {xn } and {yn }, where x, = (z1, 22 23, 23 ..
6 .7

yo = (YL, v2,y3,y}, ...) forall n € N, we observe that the values x5, x5 2T, ...and y> yS yT, ...

n»*¥nrn

D),
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s : 1,2 .3 4 1,2 .3 4 ;
exhibit the same convergence behavior as x,,, x5, x,, x,, and y,,, Y., Y., Y., respectively. There-

fore, we only show the first four values of the sequences {xX} and {yX}. The following Table

2 and Figure 2 show the values of {xn} and {yn} with x; = (z},2% 23, 21,...) and y, =

1,2 ,3 4 k _ 1 k_ 1 N —
(yl,yl,yl,yl,...),wherexl—\/mandyl m,forullkeN,andn N = 20.

FIGURE 2. The convergence of the sequences {x,} and {yn} with x;
(x%>x%a$%7xélla ) = (%7 %7 \/ﬁ7 /20 ) and Y1 = (y%7y%?y§ay£117 )
)

=0
—
I

1 1 1

1
(_ﬁa_\/g7_\/ﬁ7_\/7*07"'

From Theorem 3.2 we can guarantee that the sequences {xn } and {yn } approach to (0,0,0, ...),

— 1 2 .3 .4 — T ,2 ,3 ,4
where Xn = (xnaxnaxnvxnv ) lﬂ’ld Yn = (yn7yn7ynayn7 )
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