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Optimal solutions of minimization problems via new best
proximity point results on quasi metric spaces
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ABSTRACT. In this paper, we prove some Boyd-Wong type best proximity point results in the setting of quasi
metric spaces via Q-functions. First, we modify the fundamental concepts and notations in the best proximity
point theory by taking into account unsymmetrical condition of quasi metric spaces. We provide some illustra-
tive examples to examine our notations. Then, we introduce new concepts so called proximal BW -contraction
and best BW -contraction mappings. Hence, we obtain best proximity point results for such mappings. Also,
we give some nontrivial and comparative examples to show the effectiveness of our results. Next, we provide
some corollaries and consequences to partial metric spaces of our main results. Finally, we present an existence
and uniqueness result for nonlinear Volterra integral equations.

1. INTRODUCTION

It is well known that a pseudo metric σ on a non-empty set X is a real valued function
defined on X ×X which satisfies the axioms of a metric except that the distance of distinct
points is nonzero. In this case, many suitable famous results on metric spaces such as Baire
category, Cantor intersection and Banach fixed point theorems can be easily extended to
pseudo metric settings. However, when the symmetry condition is removed, many def-
initions of Cauchyness and completeness arise, unlike pseudo-metric spaces. Therefore,
these extensions are not as easy to get as in pseudo-metric spaces. Despite this fact, study-
ing by omitting the symmetry condition has attracted the attention of many authors due
to the wide range of applications of unsymmetric distance functions in many branches as
well as mathematics [8, 15, 25]. In this sense, the concept of quasi metric was first used
by Wilson. [26]. Then, Kelly [14] obtained some generalizations of well known results
such as Urysohn Lemma and Baire category theorem by taking into account biotopolog-
ical spaces which are closely related with quasi metric spaces. Further, it was defined
Cauchy sequence for a quasi pseudo metric spaces in the same paper by Kelly. How-
ever, Reilly et al. [20] observed that any convergent sequence may not be Cauchy in the
sense of Kelly. To overcome this disadvantage, they proposed many kinds of definitions
of Cauchy sequence in quasi metric spaces. Very recently, Altun et al. [2] proved some
fixed point theorems on quasi metric spaces by classifying the definitions of Cauchyness
and completeness. It can be found many nice, interesting and noteworthy results in this
direction (see, for example, [4, 11] and the references therein). Now, we recall some fun-
damental notations and properties about quasi metric spaces: Let X be a nonempty set
and σ : X ×X → R+ (the set of non negative real numbers) be a function such that for all
ζ, η, ξ ∈ X ,

(i) σ(ζ, η) = σ(η, ζ) = 0 ⇐⇒ ζ = η,
(ii) σ(ζ, ξ) ≤ σ(ζ, η) + σ(η, ξ).
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Then, the function σ is called quasi metric on X . Also, the pair (X , σ) is said to be a
quasi metric space. In addition to (ii), if σ satisfies σ(ζ, η) = 0 ⇐⇒ ζ = η, then σ is called
T1-quasi metric on X . Let (X , σ) be a quasi metric space, σ−1 : X × X → [0,∞) and
σs : X × X → [0,∞) be mappings defined by

σ−1(ζ, η) = σ(η, ζ)

and
σs(ζ, η) = max{σ(ζ, η), σ−1(ζ, η)}

for all ζ, η ∈ X . Then, σ−1 is also a quasi metric (called conjugate of σ) and σs is an
ordinary metric on X . The subset M of X is said to be σ-open if for all ζ ∈ M , there exists
r > 0 such that

Bσ(ζ, r) = {η ∈ X : σ(ζ, η) < r} ⊆ M,

the subset M of X is said to be σ−1-open if for all ζ ∈ M , there exists r > 0 such that

Bσ−1(ζ, r) = {η ∈ X : σ−1(ζ, η) < r} ⊆ M.

If τσ and τσ−1 denote the family of all σ-open subsets of X and the family of all σ−1-open
subsets of X , respectively, then τσ and τσ−1 are T0-topologies on X . Hence, a sequence
{ζn} converges to ζ ∈ X with respect to τσ if and only if σ(ζ, ζn) → 0 as n → ∞.

As we mentioned before, there are many definitions for the Cauchyness and complete-
ness on quasi metric spaces. Throughout of this paper, we say that a quasi metric space
(X , σ) is complete if every σs-Cauchy sequence in X is σ−1-convergent [17]. Recall that a
sequence {ζn} in X is called σs-Cauchy sequence if for ε > 0, there exists k ∈ N such that
σs(ζn, ζm) < ε whenever m,n ≥ k.

Recently, there is a tendency to improve results proved on metric spaces by using some
functions such as w-distance or τ -function [12, 21]. Therefore, Al-Homidan et al. [1] in-
troduced a new concept, Q-function, on quasi metric spaces to generalize such functions.
Then, a number of fixed point theorems has been presented by using Q-function in terms
of quasi metric spaces [3, 10, 13]. In this sense, recently, Marin et al. [16] obtained some
Boyd-Wong type fixed point results via Q-functions on the complete quasi metric spaces.
First, they showed that Boyd-Wong fixed point theorem [7] doesn’t extend to complete
quasi metric spaces via quasi metric distance. However, using Q-functions, they obtained
a nice quasi metric version of Boyd-Wong’s result. Now, we recall the definition of Q-
function given by Al-Homidan et al. [1].

Definition 1.1 ([1]). Let (X , σ) be a quasi metric space. Then, q : X × X → R+ is called
Q-function if the following conditions hold:

(Q1) q(ζ, ξ) ≤ q(ζ, η) + q(η, ξ) for all ζ, η, ξ ∈ X .
(Q2) If ζ ∈ X , M > 0 and the sequence {ηn} converges to a point η ∈ X with respect to τσ−1

and satisfies q(ζ, ηn) ≤ M for all n ∈ N, then q(ζ, η) ≤ M
(Q3) For each ε > 0, there exists δ > 0 such that

q(ζ, η) ≤ δ and q(ζ, ξ) ≤ δ =⇒ σ(η, ξ) ≤ ε.

The following lemmas play important roles in our main results.

Lemma 1.1 ([16]). Let q be a Q-function on a quasi metric space (X , σ). Then, for each ε > 0,
there exists δ > 0 such that q(ζ, η) ≤ δ and q(ζ, ξ) ≤ δ imply σs(η, ξ) ≤ ε.

Lemma 1.2 ([1]). Let (X , σ) be a quasi metric space, {ζn},{ηn} be sequences in X and q :
X × X → R+ be a Q-function. Assume that the sequences {αn} and {βn} are in R+ such that
αn → 0 and βn → 0 as n → ∞. Then, the following ones hold for all ζ, η, ξ ∈ X ,

(i) If q(ζn, η) ≤ αn and q(ζn, ξ) ≤ βn for all n ∈ N, then η = ξ.
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(ii) If q(ζn, ηn) ≤ αn and q(ζn, η) ≤ βn for all n ∈ N, then σs(ηn, η) → 0.
(iii) If q(ζn, ζm) ≤ αn for all n,m ∈ N with m > n, then {ζn} is a σs-Cauchy sequence.

On the other hand, the metric fixed point theory has been extended in a different way
from the literature by using nonself mappings F : M → N where M,N are nonempty
subsets of a metric space (X , σ). In case of M ∩ N = ∅, there is no fixed point of the
mapping F . In this case, it is reasonable to investigate whether the mapping F has a
point ζ in M such that σ(ζ, Fζ) = σ(M,N) which is called best proximity point of F .
Hence, Basha and Veeramani [6] obtained an optimal solution for the minimization prob-
lem minζ∈M σ(ζ, Fζ) and proved some best proximity point results. Recently, since the
best proximity point theory includes the fixed point theory in special case M = N = X ,
this topic has been studied by many authors [9, 22, 23, 24]. Now, we state some notations
and definitions of best proximity point theory: Let (X , σ) be a metric space, M and N be
nonempty subsets of X . Then, N is said to be approximately compact with respect to M ,
if all sequence {ηn} in N such that σ(ζ, ηn) → σ(ζ,N) for some ζ ∈ M has a convergent
subsequence in N .

Basha [5] extended the Banach contraction principle to the best proximity point theory
via the following definition.

Definition 1.2. Let (X , σ) be a metric space, M,N be nonempty subsets of X and F : M → N
be a mapping. If there exists k ∈ (0, 1) such that

σ(η1, F ζ1) = σ(M,N)
σ(η2, F ζ2) = σ(M,N)

}
=⇒ σ(η1, η2) ≤ kσ(ζ1, ζ2)

for all η1, η2, ζ1, ζ2 ∈ M , then F is called proximal contraction mapping.

Raj [19] presented a different aspect in the best proximity point theory by introducing
the concept of P-property.

Definition 1.3. Let (X , σ) be a metric space and M,N be nonempty subsets of X . The pair
(M,N) is said to have P -property if and only if

σ(ζ1, η1) = σ(M,N)
σ(ζ2, η2) = σ(M,N)

}
=⇒ σ(ζ1, ζ2) = σ(η1, η2)

for all ζ1, ζ2 ∈ M and η1, η2 ∈ N .

In this paper, we prove some Boyd-Wong type best proximity point results in the set-
ting of quasi metric spaces via Q-functions. First, we modify the fundamental concepts
and notations in the best proximity point theory by taking into account unsymmetrical
condition of quasi metric spaces. We provide some illustrative examples to examine our
notations. Then, we introduce new concepts so called proximal BW -contraction and best
BW -contraction mappings. Hence, we obtain best proximity point results for such map-
pings. Also, we give some nontrivial and comparative examples to show the effective-
ness of our results. Next, we provide some corollaries and consequences to partial metric
spaces of our main results. Finally, we present an existence and uniqueness result for
nonlinear Volterra integral equations.

2. THE RESULTS FOR PROXIMAL CONTRACTIONS

In quasi metric spaces, since the symmetry property is no longer available, we revised
some definitions and notations of best proximity point as follows:

ML
0 = {ζ ∈ M : σ(ζ, η) = σ(M,N) for some η ∈ N} ,

MR
0 = {ζ ∈ M : σ(η, ζ) = σ(N,M) for some η ∈ N} ,
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and
NL

0 = {η ∈ N : σ(η, ζ) = σ(N,M) for some ζ ∈ M} ,
NR

0 = {η ∈ N : σ(ζ, η) = σ(M,N) for some ζ ∈ M} .

Definition 2.4. Let (X , σ) be a quasi metric space, M,N be nonempty subsets of X and F :
M → N be a mapping. A point ζ is called left (right) best proximity point of F if σ(ζ, Fζ) =
σ(M,N) (σ(Fζ, ζ) = σ(N,M)). Also, we say that a point ζ is best proximity point of F if it is
both left and right best proximity point of F .

Definition 2.5. Let (X , σ) be a quasi metric space, M and N be nonempty subsets of X . Then,
N is said to be σ-approximately compact with respect to M if all sequence {ηn} in N such that
σ(ηn, ζ) → σ(N, ζ) for some ζ ∈ M has a convergent subsequence with respect to τσ in N .

Now, we provide an example to show that the set N is a σ−1-approximately compact
with respect to M , but it is not σ-approximately compact. Also, this example is important
to show that the sequence {ηn} mentioned in Definition 2.5 has a subsequence which is
τσ−1 -convergent, but it is not τσs -convergent.

Example 2.1. Let X = N be the set of all natural numbers with the quasi metric σ defined by
σ(n, n) = 0 and σ(n,m) = 1

n for all n,m ∈ N. Consider the subsets M and N as

M = {2n : n ∈ N}
and

N = {2n+ 1 : n ∈ N}.
It is clear that for every sequence {ηn} in N and for every ζ in M we have σ(ζ, ηn) → σ(ζ,N).
In this case, if the set {ηn : n ∈ N} is a finite set, then it is well known that {ηn} has a convergent
subsequence in N . Now, assume {ηn : n ∈ N} is infinite set. Then, there exists a subsequence
{ηnk

} such that ηnk
> k for all k ∈ N. Therefore, for every η ∈ N we have σ(ηnk

, η) → 0 as
k → ∞. Hence, for all sequence {ηn} in N such that σ(ζ, ηn) → σ(ζ,N) for some ζ ∈ M has a
convergent subsequence with respect to τσ−1 in N , that is, N is σ−1-approximately compact with
respect to M . Now consider the sequence {ηn} in N defined by ηn = 2n + 1 for all n ∈ N, then
{ηn} does not have a τσ-convergent (and so τσs -convergent) subsequence in N . Note that, for all
ζ ∈ M , σ(2n + 1, ζ) → σ(N, ζ) = 0 as n → ∞. Therefore, N is not σ-approximately compact
with respect to M .

Now, we recall the concept of Boyd-Wong function which will be considered in our
contractions: Let φ : [0,∞) → [0,∞) be a function. If φ satisfies φ(0) = 0, φ(t) < t for all
t > 0 and lim supr→t+ φ(r) < t for all t > 0, then it is said to be a Boyd-Wong function. We
will denote the family of all Boyd-Wong functions φ by Ω.

Now, we introduce the following definition which includes the definition of proximal
contraction.

Definition 2.6. Let (X , σ) be a quasi metric space, M and N be nonempty subsets of X . Let
F : M → N be a mapping and q : X × X → [0,∞) be a Q-function. If there exists φ ∈ Ω such
that

(2.1) σ(η1, F ζ1) = σ(M,N)
σ(η2, F ζ2) = σ(M,N)

}
=⇒ q(η1, η2) ≤ φ(q(ζ1, ζ2))

for all η1, η2, ζ1, ζ2 ∈ M , then F is called left proximal BW -contraction mapping. If the implica-
tion

(2.2) σ(Fζ1, η1) = σ(N,M)
σ(Fζ2, η2) = σ(N,M)

}
=⇒ q(η1, η2) ≤ φ(q(ζ1, ζ2))

holds for all η1, η2, ζ1, ζ2 ∈ M , then F is called right proximal BW -contraction mapping.
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Remark 2.1. Let (X , σ) be a quasi metric space, M and N be nonempty subsets of X . Let
q : X ×X → [0,∞) be a Q-function and F : M → N be a left (right) proximal BW -contraction
mapping. In this case, the left (right) best proximity point of F in M is unique if it exists. Indeed,
assume ζ∗ and ζ∗∗ are two left best proximity point of F in M . Then, from (2.1) we have

q(ζ∗, ζ∗∗) ≤ φ(q(ζ∗, ζ∗∗)),

and so q(ζ∗, ζ∗∗) = 0 (otherwise we have a contradiction). Similarly, we get q(ζ∗∗, ζ∗) = 0.
Therefore, we have

q(ζ∗, ζ∗) ≤ q(ζ∗, ζ∗∗) + q(ζ∗∗, ζ∗) = 0,

hence, from Lemma 1.1, we have ζ∗ = ζ∗∗.

Now, we give our main result for the left proximal BW -contraction mappings as fol-
lows:

Theorem 2.1. Let (X , σ) be a complete quasi metric space, M,N be nonempty subsets of X
where M is a closed subset with respect to τσ−1 , F : M → N be a mapping and ML

0 ̸= ∅. Let
q : X × X → [0,∞) be a Q-function, N be an σ−1-approximately compact subset with respect to
M and F (ML

0 ) ⊆ NR
0 . If F is a left proximal BW -contraction mapping, then F has a unique left

best proximity point ζ∗ in M . Moreover, q(ζ∗, ζ∗) = 0.

Proof. Let ζ0 ∈ ML
0 be an arbitrary point. Since Fζ0 ∈ F (ML

0 ) ⊆ NR
0 , there exists ζ1 ∈ ML

0

such that
σ(ζ1, F ζ0) = σ(M,N).

Similarly, since Fζ1 ∈ F (ML
0 ) ⊆ NR

0 , there exists ζ2 ∈ ML
0 such that

σ(ζ2, F ζ1) = σ(M,N).

Since F is a left proximal BW -contraction mapping, we have

q(ζ1, ζ2) ≤ φ(q(ζ0, ζ1)).

Continuing this process, we can construct a sequence {ζn} in M such that

(2.3) σ(ζn+1, F ζn) = σ(M,N)

and

(2.4) q(ζn, ζn+1) ≤ φ(q(ζn−1, ζn))

for all n ∈ N. If there exists n0 ∈ N such that q(ζn0
, ζn0+1) = 0, then φ(q(ζn0

, ζn0+1)) = 0.
Therefore, we have q(ζn, ζn+1) = 0 for all n ≥ n0 and so q(ζn, ζn+1) → 0 as n → ∞. Now,
we assume that q(ζn, ζn+1) > 0 for all n ∈ N. Then, from (2.4) we obtain

q(ζn, ζn+1) ≤ φ(q(ζn−1, ζn))

< q(ζn−1, ζn)

for all n ∈ N. Hence, {q(ζn, ζn+1)} is a decreasing sequence in R. Then, there exists η ∈ R+

such that
lim
n→∞

q(ζn, ζn+1) = η.

We claim that η = 0. Assume η > 0. In this case, we have

η = lim
n→∞

q(ζn, ζn+1)

≤ lim
n→∞

φ(q(ζn−1, ζn))

≤ lim sup
n→∞

φ(q(ζn−1, ζn))

< η.
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This is a contradiction. Therefore, limn→∞ q(ζn, ζn+1) = 0. Similarly, we have limn→∞ q(ζn+1, ζn) =
0.

Now, we shall show that for each ε > 0, there exists n0 ∈ N such that q(ζn, ζm) < ε for
all m > n ≥ n0. Assume the contrary. Then, there exist ε0 > 0 and two sequences {nk}
and {mk} with mk > nk ≥ k such that

(2.5) q(ζnk
, ζmk

) ≥ ε0

for all k ∈ N where mk is the smallest integer satisfying (2.5) corresponding to nk. Hence,
we have

q(ζnk
, ζmk−1) < ε0.

Then, we get

ε0 ≤ q(ζnk
, ζmk

)

≤ q(ζnk
, ζmk−1) + q(ζmk−1, ζmk

)

< ε0 + q(ζmk−1, ζmk
).

Since limn→∞ q(ζn, ζn+1) = 0, we get

q(ζnk
, ζmk

) → ε+0 as k → ∞.

Also, we obtain

ε0 ≤ q(ζnk
, ζmk

)

≤ q(ζnk
, ζnk+1) + q(ζnk+1, ζmk+1) + q(ζmk+1, ζmk

)

≤ q(ζnk
, ζnk+1) + φ(q(ζnk

, ζmk
)) + q(ζmk+1, ζmk

),

and so
ε0 ≤ lim

k→∞
supφ(q(ζnk

, ζmk
)) < ε0,

which is a contradiction. Let ε > 0 and δ = δ(ε) satisfying (Q3). Then, there exists n0 ∈ N
such that q(ζn, ζm) < δ for all m > n ≥ n0. Since q(ζn0

, ζn) < δ and q(ζn0
, ζm) < δ for all

n,m ≥ n0, we have σs(ζn, ζm) ≤ ε. Thus, {ζn} is a σs-Cauchy sequence. Since (X , σ) is
a complete quasi metric space and M is a closed subset of X with respect to τσ−1 , there
exists ζ∗ ∈ M such that

σ(ζn, ζ
∗) → 0 as n → ∞.

Let ε > 0. Then, there exists n0 ∈ N such that q(ζn, ζm) < ε for all m > n ≥ n0. Now, fix
n ≥ n0. Using (Q2), we have q(ζn, ζ

∗) ≤ ε for all n ≥ n0. Hence, q(ζn, ζ∗) → 0 as n → ∞.
Since q(ζn, ζm) → 0 and q(ζn, ζ

∗) → 0 as n,m → ∞, then from Lemma 1.2 (ii), we also
have σs(ζn, ζ

∗) → 0 as n → ∞. Hence, we get

σ(ζ∗, N) ≤ σ(ζ∗, F ζn)

≤ σ(ζ∗, ζn+1) + σ(ζn+1, F ζn)

= σ(ζ∗, ζn+1) + σ(M,N)

≤ σs(ζn+1, ζ
∗) + σ(ζ∗, N),

and so σ(ζ∗, F ζn) → σ(ζ∗, N) as n → ∞. Since N is a σ−1-approximately compact with
respect to. M , there exists a subsequence {Fζnk

} of {Fζn} such that {Fζnk
} converges to

a point η∗ in N with respect to τσ−1 , that is,

σ(Fζnk
, η∗) → 0 as k → ∞
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for some η∗ ∈ N . Hence, we have

σ(M,N) ≤ σ(ζ∗, η∗)

≤ σ(ζ∗, ζnk+1) + σ(ζnk+1, F ζnk
) + σ(Fζnk

, η∗)

≤ σs(ζnk+1, ζ
∗) + σ(M,N) + σ(Fζnk

, η∗).

Taking the limit k → ∞ in last inequality, we get

σ(ζ∗, η∗) = σ(M,N).

Since ζ∗ ∈ ML
0 , we have Fζ∗ ∈ NR

0 and so there exists ξ ∈ ML
0 such that

(2.6) σ(ξ, Fζ∗) = σ(M,N).

Using inequalities (2.1), (2.3) and (2.6), we get q(ζn, ξ) → 0 as n → ∞. Because of
q(ζn, ζ

∗) → 0 as n → ∞ and from Lemma 1.2 (i), we have ζ∗ = ξ. Hence, we obtain
σ(ζ∗, F ζ∗) = σ(M,N), and so ζ∗ is a left best proximity point of F. From Remark 2.1, the
left best proximity point of F is unique. Now, we want to show that q(ζ∗, ζ∗) = 0. Assume
the contrary, that is, q(ζ∗, ζ∗) > 0. Since σ(ζ∗, F ζ∗) = σ(M,N) and F is a left proximal
BW -contraction mapping, we get

q(ζ∗, ζ∗) ≤ φ(q(ζ∗, ζ∗)) < q(ζ∗, ζ∗),

which is a contradiction. □

Now, we present an example to illustrate the effectiveness of our main theorem in this
section. Note that, the mapping F is not a proximal BW -contraction in the sense of quasi
metric σ.

Example 2.2. Let X = [0,∞) × [0,∞), σ : X × X → R+ and q : X × X → R+be functions
defined by

σ(t, s) = σ((t1, t2), (s1, s2)) = max{s1 − t1, 0}+ |t2 − s2|
and

q(t, s) = q((t1, t2), (s1, s2)) = s1 + s2

for all t, s ∈ X , respectively. Then, (X , σ) is a complete quasi metric space and q is a Q-function.
Let

M = [0, 2]× {4, 5} ∪ {(0, 0)}
and

N = [2, 3]× {0, 2, 7}
be subsets of X . It can be easily seen that M is a closed subsets of X with respect to τσ−1 , N is a
σ−1-approximately compact subset with respect to M . Also, we have ML

0 = {(0, 0), (2, 4) , (2, 5)}, NR
0 =

{(2, 0), (2, 2) , (2, 7)} and σ(M,N) = 2. Define the mappings F : M → N and φ : [0,∞) →
[0,∞) as follows:

Fζ =


(
3− a

4 , 0
)

ζ = (a, b) ∈ M −ML
0

(2, 0) ζ = (0, 0) and ζ = (2, 4)
(2, 2) ζ = (2, 5)

and
φ(t) =

6

7
t.

In this case, F (ML
0 ) ⊆ NR

0 . Now, we claim that F is a left proximal BW -contraction. Since there
is no η1 ∈ M satisfying

σ(η1, F ζ1) = σ(M,N)

whenever ζ1 ∈ M −ML
0 , it is enough to consider the following cases:
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Case 1. Let ζ1 = (0, 0) and ζ2 = (2, 4). Then η1 = (0, 0) = η2, and so we have

q(η1, η2) = 0 ≤ φ(q(ζ1, ζ2))

and
q(η2, η1) = 0 ≤ φ(q(ζ2, ζ1)).

Case 2. Let ζ1 = (0, 0) and ζ2 = (2, 5). Then η1 = (0, 0) and η2 = (2, 4), and so we have

q(η1, η2) = 6 ≤ φ(q(ζ1, ζ2))

and
q(η2, η1) = 0 ≤ φ(q(ζ2, ζ1)).

Case 3. Let ζ1 = (2, 4) and ζ2 = (2, 5). Then η1 = (0, 0) and η2 = (2, 4), and so we have

q(η1, η2) = 6 ≤ φ(q(ζ1, ζ2))

and
q(η2, η1) = 0 ≤ φ(q(ζ2, ζ1)).

Then, all hypotheses of Theorem 2.1 are satisfied. Therefore, F has a unique left best proximity
point in M .

Note that, for ζ1 = (2, 4), ζ2 = (2, 5), η1 = (0, 0) and η2 = (2, 4) in M , we have

σ(η1, F ζ1) = σ(M,N)
σ(η2, F ζ2) = σ(M,N)

}
.

However,

σ(η1, η2) = 6 >
6

7
= φ(σ(ζ1, ζ2)).

Hence, the mapping F is not a left proximal BW -contraction in the sense of quasi metric σ.

Taking into account the subsets MR
0 and NL

0 in Theorem 2.1, we can obtain the follow-
ing theorem.

Theorem 2.2. Let (X , σ) be a complete quasi metric space, M,N be nonempty subsets of X
where M is a closed subset with respect to τσ−1 , F : M → N be a mapping and MR

0 ̸= ∅. Let
q : X × X → [0,∞) be a Q-function, N be a σ-approximately compact subset with respect to M
and F (MR

0 ) ⊆ NL
0 . If F is a right proximal BW -contraction mapping, then F has a unique right

best proximity point ζ∗ in M . Moreover q(ζ∗, ζ∗) = 0.

Theorem 2.1 and Theorem 2.2 are independent of each other. A mapping has a left best
proximity point, but it has not a right best proximitiy point and vice versa. The following
example shows this fact.

Example 2.3. Let X , σ, q be as in Example 2.2. Consider the following subsets of X :

M = [0, 2]× {4, 5} ∪ {(0, 0)}

and

N =

[
5

2
, 3

]
× {0, 2, 7}.

It can be easily seen that M is a closed subsets of X with respect to τσ−1 , N is a σ-approximately
compact subset with respect to M . Also, we have MR

0 = {(0, 0)}, NL
0 =

[
5
2 , 3
]
× {0} and

σ(N,M) = 0. Define the mappings F : M → N and φ : [0,∞) → [0,∞) as follows:

Fζ =


(
3− a

4 , 2
)

, ζ = (a, b) ∈ M − {(0, 0), (2, 4), (2, 5)}
(3, 0) , ζ = (0, 0) and ζ = (2, 4)
(3, 2) , ζ = (2, 5)
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and
φ(t) =

t

2
.

In this case, although F (MR
0 ) ⊆ NL

0 , it is obvious that F (ML
0 ) ⊈ NR

0 . Also, F is a right
proximal BW -contraction mapping. Then, all hypotheses of Theorem 2.2 are satisfied, and so F
has a unique right best proximity point in M . However, F does not have a left proximity point in
M .

3. THE RESULTS WITH P -PROPERTY

We begin this section by introducing the concepts of generalized PL
q -Property and gen-

eralized PR
q -Property for a pair subsets of a quasi metric space and best BW -contraction

for a nonself mapping.

Definition 3.7. Let (X , σ) be a quasi metric space, q be a Q-function on X and M,N ⊆ X . The
pair (M,N) is said to have generalized PL

q -Property if and only if

σ(ζ1, η1) = σ(M,N)
σ(ζ2, η2) = σ(M,N)

}
=⇒ q(ζ1, ζ2) = q(η1, η2)

for all ζ1, ζ2 ∈ M with ζ1 ̸= ζ2 and η1, η2 ∈ N .

Definition 3.8. Let (X , σ) be a quasi metric space, q be a Q-function on X and M,N ⊆ X . The
pair (M,N) is said to have generalized PR

q -Property if and only if

σ(η1, ζ1) = σ(N,M)
σ(η2, ζ2) = σ(N,M)

}
=⇒ q(ζ1, ζ2) = q(η1, η2)

for all ζ1, ζ2 ∈ M with ζ1 ̸= ζ2 and η1, η2 ∈ N .

Definition 3.7 and Definition 3.8 are independent of each other. Indeed, let X = R,
σ : X × X → R+ and q : X × X → R+ be mappings defined by

σ(ζ, η) =

 η − ζ, ζ ≤ η

2(ζ − η), otherwise
.

and q(ζ, η) = |ζ − η| for all ζ, η ∈ X . Then, (X , σ) is a quasi metric space and q is a Q-
function. Consider the subsets M = [1, 2] and N = { 1

2} ∪ [3, 4]. Then, although the pair
(M,N) does not have the generalized PL

q -property, it has the generalized PR
q -property.

Indeed, for ζ1 = 1, ζ2 = 2, η1 = 1
2 and η2 = 3 we have

σ(1, 1
2 ) = 1 = σ(M,N)

σ(2, 3) = 1 = σ(M,N)

}
,

but
q(ζ1, ζ2) = 1 ̸= 5

2
= q(η1, η2).

Therefore, (M,N) does not have the generalized PL
q -property. On the other hand, we

have σ(N,M) = 1
2 . Note that there is no pair (ζ, η) in M × N except for (1, 1

2 ) satisfying
σ(η, ζ) = σ(N,M). Hence, (M,N) has the generalized PR

q -property.

Definition 3.9. Let (X , σ) be a quasi metric space, M,N be nonempty subsets of X . Let F :
M → N be a mapping and q : X × X → [0,∞) be a Q-function. If there exists φ ∈ Ω such that

(3.7) q(Fζ, Fη) ≤ φ (q(ζ, η))

for all ζ, η ∈ M , then F is called best BW -contraction mapping.
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Theorem 3.3. Let (X , σ) be a complete quasi metric space, M,N be closed nonempty subsets of
X with respect to τσ−1 , F : M → N be a mapping and ML

0 ̸= ∅. Let q : X × X → [0,∞)
be a Q-function, (M,N) has the generalized PL

q -Property and F (ML
0 ) ⊆ NR

0 . If F is a best
BW -contraction mapping, then F has a unique left best proximity point ζ∗ in M .

Proof. Let ζ0 ∈ ML
0 be an arbitrary point. Since Fζ0 ∈ F (ML

0 ) ⊆ NR
0 , there exists ζ1 ∈ ML

0

such that

(3.8) σ(ζ1, F ζ0) = σ(M,N).

Similarly, there exists ζ2 ∈ ML
0 such that

(3.9) σ(ζ2, F ζ1) = σ(M,N).

By the similar way, we can construct a sequence {ζn} in M such that

(3.10) σ(ζn+1, F ζn) = σ(M,N)

for all n ∈ N. If there exists k ∈ N such that ζk = ζk+1, then, from (3.10), ζk is a left best
proximity point. Hence, we assume that ζn ̸= ζn+1 for all n ∈ N. Since (M,N) has the
generalized PL

q -Property, from (3.10), we get

(3.11) q(ζn, ζn+1) = q(Fζn−1, F ζn)

for all n ∈ N. From (3.7), we have

(3.12) q(Fζn, F ζn+1) ≤ φ(q(ζn, ζn+1))

for all n ∈ N. Then, from (3.11) and (3.12), we have

q(ζn, ζn+1) = q (Fζn−1, F ζn)

≤ φ(q(ζn−1, ζn))(3.13)

for all n ∈ N. As in the proof of Theorem 2.1, we can obtain

lim
n→∞

q(ζn, ζn+1) = 0 and lim
n→∞

q(ζn+1, ζn) = 0.

Now, we want to show that for each ε > 0, there exists n0 ∈ N such that q(ζn, ζm) < ε
for all m > n ≥ n0. Assume the contrary. In this case, there exist ε0 > 0 and two sequences
{nk} and {mk} with mk > nk > k such that

(3.14) q(ζnk
, ζmk

) ≥ ε0

for all k ∈ N where mk is the smallest integer satisfying the inequality (3.14) correspond-
ing to nk. Hence, we have

q(ζnk
, ζmk−1) < ε0.

Then, we get

ε0 ≤ q(ζnk
, ζmk

)

≤ q(ζnk
, ζmk−1) + q(ζmk−1, ζmk

)

< ε0 + q(ζmk−1, ζmk
).

Since limn→∞ q(ζn, ζn+1) = 0, we get

q(ζnk
, ζmk

) → ε+0 as k → ∞.

Now, we have two cases.
Case 1: Assume that there exists k0 ∈ N such that ζnk+1 ̸= ζmk+1 for all k ≥ k0. Then, we
get
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ε0 ≤ q(ζnk
, ζmk

)

≤ q(ζnk
, ζnk+1) + q(ζnk+1, ζmk+1) + q(ζmk+1, ζmk

)

= q(ζnk
, ζnk+1) + q(Fζnk

, F ζmk
) + q(ζmk+1, ζmk

)

≤ q(ζnk
, ζnk+1) + φ(q(ζnk

, ζmk
)) + q(ζmk+1, ζmk

)

for all k ≥ k0.
Case 2: Assume the contrary of Case 1. Then, we have ζnk+1 = ζmk+1 for infinitely many
k ∈ N. In this case, because of ζnk+2 ̸= ζmk+1 and generalized PL

q -Property, we obtain

ε0 ≤ q(ζnk
, ζmk

)

≤ q(ζnk
, ζnk+1) + q(ζnk+1, ζnk+2) + q(ζnk+2, ζmk+1) + q(ζmk+1, ζmk

)

= q(ζnk
, ζnk+1) + q(ζnk+1, ζnk+2) + q(Fζnk+1, F ζmk

) + q(ζmk+1, ζmk
)

≤ q(ζnk
, ζnk+1) + q(ζnk+1, ζnk+2) + q(Fζnk+1, F ζnk

)

+q(Fζnk
, F ζmk

) + q(ζmk+1, ζmk
)

≤ q(ζnk
, ζnk+1) + q(ζnk+1, ζnk+2) + q(ζnk+2, ζnk+1)

+φ(q(ζnk
, ζmk

)) + q(ζmk+1, ζmk
).

for all k ∈ N. In both cases, we have

(3.15) ε0 ≤ lim
k→∞

supφ(q(ζnk
, ζmk

)) < ε0,

which is a contradiction. Let ε > 0. From (Q3), there exists δ > 0 such that q(ζ, η) ≤ δ and
q(ζ, ξ) ≤ δ implies σs(η, ξ) ≤ ε. Hence, there exists n0 ∈ N such that q(ζn, ζm) < δ for all
m > n ≥ n0. Then, since

q(ζn0
, ζn) < δ and q(ζn0

, ζm) < δ,

from Lemma 1.1, we have σs(ζn, ζm) ≤ ε and so {ζn} is a σs-Cauchy sequence in M . Since
(X , σ) is a complete quasi metric space and M is a closed subset of X with respect to τσ−1 ,
there exists ζ∗ ∈ M such that

σ(ζn, ζ
∗) → 0 as n → ∞.

Let ε > 0. Then, there exists n0 ∈ N such that q(ζn, ζm) < ε for all m > n ≥ n0. Now,
fix n ≥ n0. Using (Q2), we have q(ζn, ζ

∗) ≤ ε for all n ≥ n0. Hence, q(ζn, ζ∗) → 0 as
n → ∞. Since q(ζn, ζm) → 0 and q(ζn, ζ

∗) → 0 as n,m → ∞, we also have σs(ζn, ζ
∗) → 0

as n → ∞. From (3.11), since {Fζn} is a σs-Cauchy sequence in N and N is a closed subset
of X with respect to τσ−1 , there exists η∗ ∈ N such that

σ(Fζn, η
∗) → 0 as n → ∞.

Similarly, it can be easily shown that q(Fζn, η
∗) → 0. Also, we have

σ(M,N) ≤ σ(ζ∗, η∗)

= σ(ζ∗, ζn+1) + σ(ζn+1, F ζn) + σ(Fζn, η
∗)

≤ σs(ζn+1, ζ
∗) + σ(M,N) + σ(Fζn, η

∗)

Taking the limit n → ∞ in last inequality, we get

(3.16) σ(ζ∗, η∗) = σ(M,N).

Then, because of q(ζn, ζ∗) → 0 as n → ∞ and the inequality (3.7), we have q(Fζn, F ζ∗) →
0 as n → ∞. Hence, using Lemma 1.2 (i), we obtain σs(η∗, F ζ∗) = 0, and so η∗ = Fζ∗.
Therefore, from (3.16), ζ∗ is a left best proximity point of F in M . Now, assume ζ∗ and
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ζ∗∗ are different two left best proximity points of F in M . Then, from the generalized
PL
q -property we have

q(ζ∗, ζ∗∗) = q(Fζ∗, F ζ∗∗),

and then, from (3.7), we get

q(ζ∗, ζ∗∗) = q(Fζ∗, F ζ∗∗) ≤ φ(q(ζ∗, ζ∗∗)).

Therefore, we have q(ζ∗, ζ∗∗) = 0 (otherwise we have a contradiction). Similarly we get
q(ζ∗∗, ζ∗) = 0. Hence, we have

q(ζ∗, ζ∗) ≤ q(ζ∗, ζ∗∗) + q(ζ∗∗, ζ∗) = 0,

and so from Lemma 1.1, we have ζ∗ = ζ∗∗. This is a contradiction. □

We will now provide two examples to illustrate the effectiveness of our asymmetric
approach.

Example 3.4. Let X = [0,∞), σ : X × X → [0,∞) and q : X × X → [0,∞) be mappings
defined by

σ(ζ, η) =


0 , ζ = η

ζ
2 + η , ζ ̸= η

and

q(ζ, η) =


ζ
2 , ζ = η

ζ
2 + η , ζ ̸= η

for all ζ, η ∈ X , respectively. Then, (X , σ) is a quasi metric space and q is a Q-function. Also
(X , σ) is complete. Indeed, let {ζn} be a σs-Cauchy sequence in X , then {ζn} converges to 0 in
the usual sense or it is eventually constant. On the other hand, since

Bσ−1

(
ζ,

ζ

2

)
= {ζ} for all ζ > 0

and
Bσ−1

(
0,

ε

2

)
= [0, ε),

then every σs-Cauchy sequence in X is σ−1-convergent. Consider the sets M = [e2, 10), N =

[2, 3] are closed subsets of X with respect to τσ−1 . Thus, we have σ(M,N) = e2+2
2 . Define a

mapping F : M → N as Fζ = ln ζ for all ζ ∈ M . In this case, ML
0 = {e2}, NR

0 = {2},
and so F (ML

0 ) = NR
0 . Also, (M,N) has the generalized PL

q -Property. Now, consider a mapping
φ : [0,∞) → [0,∞) as follows.

φ(t) =


14t
5e2 , t < e2

7
5 ln t , t ≥ e2

0 5 10 15 20 25

5

10

15

y
1
=
14t
5e2

y
2
= lnt
7
5

y
3
=t

y

t

Figure 1. Figures of φ(t) and t
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Then, it can be easily seen the function φ ∈ Ω from Figure 1. We will show that the inequal-
ity (3.7) holds. We have following cases:
Case 1: Assume that ζ = η. Then, we have Fζ = Fη, and so

q(Fζ, Fη) =
Fζ

2
=

ln ζ

2
≤ 7ζ

10e2
= φ(q(ζ, η)).

Case 2: Assume that ζ ̸= η. If Fζ = Fη, from Case 1 it is obvious. Now suppose Fζ ̸= Fη. In
this case, we have

q(Fζ, Fη) = Fζ + Fη

= ln ζ + ln η

= ln(ζη).(3.17)

On the other hand, it is well known that
√√

ζη ≤
√
ζ+η
2 for all ζ, η ≥ 0. Then, we have

(
√

ζη)5 ≤ (
√
ζ + η)10

210
=

(
√
ζ + η)3

210
(
√
ζ + η)7.

Since (
√
ζ+η)3

210 ≤ 1 for all ζ, η ∈ M , we get

(
√
ζη)5 ≤ (

√
ζ + η)7

for all ζ, η ∈ M , and so we have, from (3.17),

q(Fζ, Fη) = ln
(√

ζη
)
≤ 7

5
ln
(√

ζ + η
)
≤ 7

5
ln

(
ζ

2
+ η

)
= φ(ζ + η) = φ(q(ζ, η)).

Hence, all hypotheses of Theorem 3.3 are satisfied. Therefore, F has a unique left best proximity
point in M .

Example 3.5. Let X , σ, q be as in Example 3.4. Consider the sets M = [4, 5), N = [ 45 , 2] are
closed subsets of X with respect to τσ−1 . Thus, we have σ(M,N) = 14

5 . Define two mappings
F : M → N as Fζ = ζ

1+ζ for all ζ ∈ M and φ : [0,∞) → [0,∞) as φ(t) = t2

1+t . In this case
ML

0 = {4} and NR
0 = { 4

5}, and so F (ML
0 ) = NR

0 . Also, the pair (M,N) has the generalized
PL
q -Property. We will show that the inequality (3.7) holds. We have following cases:

Case 1: Assume that ζ = η. Then, we have Fζ = Fη, and so

q(Fζ, Fη) =
Fζ

2

=
ζ

2(1 + ζ)

≤ ζ2

2(2 + ζ)

= φ(q(ζ, η)).(3.18)

Case 2: Assume that ζ ̸= η. If Fζ = Fη, from Case 1 it is obvious. Now suppose Fζ ̸= Fη. Then,
we have

q(Fζ, Fη) =
ζ

2(1 + ζ)
+

η

1 + η

≤ ζ2 + 4η2 + 4ζη

4 + 2ζ + 4η

= φ(q(ζ, η)).

Hence, all hypotheses of Theorem 3.3 are satisfied. Therefore, F has a unique left best proximity
point in M .
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Similarly, we can obtain the following theorem.

Theorem 3.4. Let (X , σ) be a complete quasi metric space, M,N be closed nonempty subsets of
X with respect to τσ−1 , F : M → N be a mapping and MR

0 ̸= ∅. Let q : X × X → [0,∞)
be a Q-function, (M,N) has the generalized PR

q -Property and F (MR
0 ) ⊆ NL

0 . If F is a best
BW -contraction mapping, then F has a unique right best proximity point ζ∗ in M .

4. SOME CONSEQUENCES AND APPLICATIONS

In this section, taking into account the relation between a quasi metric and a partial
metric we provide some corollaries in partial metric spaces. Finally, we present an exis-
tence and uniqueness theorem for nonlinear Volterra integral equations.

In 1992, the concept of partial metric was introduced by Matthews [18] as follows:

Definition 4.10. Let X be a nonempty set. Then, the mapping p : X × X → [0,∞) is said to be
a partial metric if the following conditions hold:

p1) p(ζ, ζ) = p(ζ, η) = p(η, η) if and only if ζ = η,
p2) p(ζ, ζ) ≤ p(ζ, η),
p3) p(ζ, η) = p(η, ζ),
p4) p(ζ, ξ) ≤ p(ζ, η) + p(η, ξ)− p(η, η)

for all ζ, η, ξ ∈ X . The pair (X , p) is called partial metric space.

Each partial metric p on X induces a T0 topology τp on X which has as a base the family
of open balls {Bp(ζ, ε) : ζ ∈ X , ε > 0} where

Bp(ζ, ε) = {η ∈ X : p(ζ, η) < p(ζ, ζ) + ε}.
Recall that a sequence {ζn} in X is called Cauchy sequence if the limit limn,m→∞ p(ζn, ζm)

exists and is finite. Also, a partial metric space (X , p) is complete if every Cauchy sequence
in X is τp-convergent to ζ ∈ X such that

lim
n,m→∞

p(ζn, ζm) = p(ζ, ζ).

Also, Matthews [18] showed that partial metric spaces are equivalent to a subclass of
quasi metric spaces named as weightable quasi metric spaces.

Definition 4.11 ([18]). Let (X , σ) be a quasi metric space. Then, (X , σ) is said to be a weightable
if there exists a function w : X → [0,∞) such that

σ(ζ, η) + w(ζ) = σ(η, ζ) + w(η)

for all ζ, η ∈ X . In this case, w is called a weighting function.

The following example shows that there is a weightable T1-quasi metric function but it
is not ordinary metric.

Example 4.6. Let X = [1,∞) and σ : X × X → [0,∞) be a mapping defined by

σ(ζ, η) =

 0 , ζ = η

η , ζ ̸= η

Then, σ is complete weightable quasi metric with the weighting function w(ζ) = ζ. Moreover,
although it is a weightable T1-quasi metric, it is not an ordinary metric. On the other hand, we get
the induced partial metric pσ as follows:

pσ(ζ, η) =

 ζ , ζ = η

ζ + η , ζ ̸= η
.
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It is obvious that (X , pσ) is complete.

Now, we can present the equivalence of partial metric spaces and weightable quasi
metric spaces given by Matthews:

Theorem 4.5 ([18]). i) Let (X , σ) be a weightable quasi metric space with weighting function w.
Then, the function pσ : X ×X → [0,∞) defined by pσ(ζ, η) = σ(ζ, η) +w(ζ) for all ζ, η ∈ X is
a partial metric on X . Furthermore, τσ = τpσ

.
ii) Let (X , p) be a partial metric space. Then, the function σp : X × X → [0,∞) defined by

σp(ζ, η) = p(ζ, η) − p(ζ, ζ) for all ζ, η ∈ X is a weightable quasi metric on X with weighting
function w(ζ) = p(ζ, ζ) for all ζ ∈ X . Furthermore, τσp = τp.

The following lemma which is stated and proved in [16] as Proposition 2.10 is impor-
tant to find some nice examples of Q-functions on weightable quasi metric spaces.

Lemma 4.3. Let (X , σ) be a weightable quasi metric space. Then, the induced partial metric pσ is
a Q-function on X .

Remark 4.2. Note that, when Theorem 4.5 and Lemma 4.3 are considered together, it can be seen
that every partial metric p on X is a Q-function on the quasi metric space (X , σp).

Hence, considering Theorem 2.1 and Theorem 3.3 together with Remark 4.2 we can
present the following results:

Corollary 4.1. Let (X , p) be a complete partial metric space, σp be the induced weightable quasi
metric, M,N be nonempty subsets of X where M is a closed subset with respect to τσ−1

p
, F : M →

N be a mapping and ML
0 ̸= ∅. Let N be a σ−1

p -approximately compact subset with respect to M

and F (ML
0 ) ⊆ NR

0 . If F is a left proximal BW -contraction mapping with respect to p, that is, F
satisfies

σp(η1, F ζ1) = σp(M,N)
σp(η2, F ζ2) = σp(M,N)

}
=⇒ p(η1, η2) ≤ φ(p(ζ1, ζ2))

for all η1, η2, ζ1, ζ2 ∈ M , then F has a unique left best proximity point ζ∗ in M . Moreover
p(ζ∗, ζ∗) = 0.

Corollary 4.2. Let (X , p) be a complete partial metric space, σp be the induced weightable quasi
metric, M,N be closed nonempty subsets of X with respect to τσ−1

p
, F : M → N be a mapping

and ML
0 ̸= ∅. Let the pair (M,N) has the PL

p -Property and F (ML
0 ) ⊆ NR

0 . If F is best BW -
contraction mapping with respect to p, that is, F satisfies

p(Fζ, Fη) ≤ φ (p(ζ, η))

for all ζ, η ∈ M , then F has a unique left best proximity point ζ∗ in M . Moreover p(ζ∗, ζ∗) = 0.

Finally, we present an existence and uniqueness theorem for nonlinear Volterra integral
equations of the form

(4.19) η(t) =

∫ t

0

K(t, s, η(s))ds,

where K : [0, 1]
2× [0,∞) → [0,∞) is a continuous function. Taking into account Theorem

3.3, we give an existence and uniqueness result for solution of equation (4.19). We will
consider the space X as the positive cone of C[0, 1], that is,

X = {η ∈ C[0, 1] : η(t) ≥ 0 for all t ∈ [0, 1]}.
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Theorem 4.6. Suppose the following conditions hold:
(i) there exist a BW -function φ : [0,∞) → [0,∞) satisfying

sup
t∈[0,1]

φ(w(t)) ≤ φ( sup
t∈[0,1]

w(t))

for all w ∈ X and a continuous function p : [0, 1]
2 → [0,∞) such that

K(t, s, η) +K(t, s, ν) ≤ p(t, s)φ
(η
2
+ ν
)

for all t, s ∈ [0, 1] and η, ν ∈ [0,∞).
(ii) supt∈[0,1]

∫ t

0
p(t, s)ds ≤ 1.

Then, the integral equation (4.19) has a unique positive solution.

Proof. Define a quasi metric on X as

σ(η, ν) =


0 , η = ν

supt∈[0,1]

{
η(t)
2 + ν(t)

}
, η ̸= ν

and a Q-function as

q(η, ν) =


supt∈[0,1]

{
η(t)
2

}
, η = ν

supt∈[0,1]

{
η(t)
2 + ν(t)

}
, η ̸= ν

.

In this case, (X , σ) is a complete quasi metric space. Consider an operator F : X → X by

Fη(t) =

∫ t

0

K(t, s, η(s))ds.

Now, for all t ∈ [0, 1] and η, ν ∈ X , we have

Fη(t) + Fν(t) =

∫ t

0

K(t, s, η(s))ds+

∫ t

0

K(t, s, ν(s))ds

=

∫ t

0

[K(t, s, η(s)) +K(t, s, ν(s))]ds

≤
∫ t

0

p(t, s)φ(η(s) + ν(s))ds

≤
∫ t

0

p(t, s) sup
s∈[0,1]

φ

(
η(s)

2
+ ν(s)

)
ds

≤
∫ t

0

p(t, s)φ

(
sup

s∈[0,1]

{
η(s)

2
+ ν(s)

})
ds

≤ φ

(
sup

s∈[0,1]

{
η(s)

2
+ ν(s)

})∫ t

0

p(t, s)ds

= φ(q(η, ν))

∫ t

0

p(t, s)ds

hence, from (ii), we have
q(Fη, Fν) ≤ φ(q(η, ν)).

Then, by Theorem 3.3 F has a unique left best proximity point. Therefore, the equation
(4.19) has a unique positive solution because of the definition of the quasi metric σ. □
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Example 4.7. The following nonlinear Volterra integral equation

(4.20) η(t) =
π

2

∫ t

0

t sin(πts) |η(s)|
1 + |η(s)|

ds

has a unique positive solution in C [0, 1].

Proof. Define a function K : [0, 1]
2 × [0,∞) → [0,∞) by

K(t, s, η) =
πt sin(πts)η

4(1 + η)
,

then it satisfies the condition (i) of Theorem 4.6 with p(t, s) =
πt sin(πts)

2
and φ(t) =

t2

1 + t
.

Also, the condition (ii) holds, since

sup
t∈[0,1]

∫ t

0

p(t, s)ds = sup
t∈[0,1]

∫ t

0

πt sin(πts)

2
ds = 1.

Hence from Theorem 4.6, the equation (4.20) has a unique positive solution. □

5. CONCLUSIONS

In this paper, we first modify the fundamental concepts and notations in the best
proximity point theory by taking into account unsymmetrical condition of quasi metric
spaces. Then, we introduce new concepts so called proximal BW -contraction and best
BW -contraction mappings. Thus, we obtain some Boyd-Wong type best proximity point
results in the setting of quasi metric spaces via Q-functions. Next, we provide some corol-
laries and consequences to partial metric spaces of our main results. Finally, we present
an existence and uniqueness result for nonlinear Volterra integral equations.
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