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Algorithmic and Analytical Approach for a System of
Generalized Multi-valued Resolvent Equations- Part II:
Algorithms and Convergence

JAVAD BALOOEE 1 AND SULIMAN AL-HOMIDAN 2,3

ABSTRACT. The concept of resolvent operator associated with a P -η-accretive mapping is used in construct-
ing of a new iterative algorithm for solving a new system of generalized multi-valued resolvent equations in
the framework of Banach spaces. The convergence analysis of the sequences generated by our proposed itera-
tive algorithm under some appropriate conditions is studied. The results presented in this paper are new, and
improve and generalize many known corresponding results.

1. INTRODUCTION

Building on the foundational work established in Part I [1], this section delves into
the convergence properties of the proposed iterative algorithm for solving the system of
generalized multi-valued resolvent equations within Banach spaces. Part I introduced
the concept of the resolvent operator associated with a P − η-accretive mapping and
demonstrated its Lipschitz continuity, accompanied by an estimate of its Lipschitz con-
stant under novel conditions. These results provided a solid theoretical framework and
generalized several existing findings in the field. Additionally, Part I laid out definitions,
examples, and the primary theoretical advancements, which collectively highlighted the
versatility and applicability of the newly proposed algorithm. Also, we reviewed some
definitions and theoretical developments of the η-accretive, strictly η-accretive, r-strongly
η-accretive, ϱ-Lipschitz continuous, k-strongly η-accretive and generalized m-accretive (or
η-m-accretive) for vector-valued mapping and multi-valued mapping. Also, we derived
our main result showing that if P is a δ-strongly η-accretive mapping, η is a τ -Lipschitz
continuous mapping and M is a P -η-accretive mapping this implies that P -η-proximal-
point mapping JM

ρ is τ
δ -Lipschitz continuous.

In this part, we extend the analysis by focusing on the convergence of the sequences
generated by the algorithm. By imposing appropriate conditions, we aim to ensure rig-
orous convergence results, further enhancing the algorithm’s utility and reliability in ad-
dressing complex variational inclusion problems.

In 2009, Ahmad and Yao [4] considered and studied a system of generalized resolvent
equations (for short, SGRE) in a uniformly smooth Banach space setting. They established
an equivalence relation between the SGRE and a system of variational inclusions and
then by employing the obtained equivalence formulation, they suggested some iterative
algorithms for finding the approximate solutions of the SGRE. Finally, they discussed
the existence of the solution of the SGRE and studied the convergence analysis of the
sequences generated by their proposed iterative algorithms.
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Inspired and motivated by recent research going on in this fascinating and interest
fields, in this paper, using the notion of resolvent operator associated with a P -η-accretive
mapping, we first construct a new iterative algorithm for finding the approximate solu-
tion of a system of generalized multi-valued resolvent equations (for short, SGMRE) in a
real Banach space setting. Then, we discuss the existence of the solution of the SGMRE
and study the convergence analysis of the sequences generated by our iterative algorithm
under some appropriate conditions. The results derived in this paper are new, and im-
prove and generalize the results presented in [4] and many known corresponding results.

2. PRELIMINARY NOTIONS AND RESULTS

In order to make the paper self-contained we begin by introducing some preliminary
notions. Consider E a real Banach space and E∗ its topological dual space. For the sake
of simplicity, the norms in E and E∗ will be designated by the same symbol ∥.∥, and the
metric induced by the norm ∥.∥ will be denoted by d. As usual, the notation x∗ stands for
the weak* topology in E∗, while by ⟨x, x∗⟩ we denote the value of the inner continuous
functional x∗ ∈ E∗ at x ∈ E. We also use the symbol CB(E) (resp. 2E) to represent the
set of all nonempty closed and bounded (resp., all nonempty) subsets of E. We define the
graph and range of a given multi-valued mapping M : E → 2E by

Graph(M) := {(x, u) ∈ E × E : u ∈ M(x)}
and

Range(M) := {y ∈ E : ∃x ∈ E : (x, y) ∈ Graph(M)} =
⋃
x∈E

M(x),

respectively. We shall denote by SE and BE respectively the unite sphere and the unit ball
in E.

Let us recall that a normed space E is called strictly convex if SE is strictly convex,
that is, the inequality ∥x + y∥ < 2 holds for all distinct unit vectors x and y in E. It
is said to be smooth if for every vector x in E there exists a unique x∗ ∈ E∗ such that
∥x∗∥ = ⟨x, x∗⟩ = 1.

It is known that E is smooth if E∗ is strictly convex, and that E is strictly convex if E∗

is smooth.

Definition 2.1. A normed space E is said to be uniformly convex if for any given ε > 0 there
exists δ > 0 such that for all x, y ∈ BE with ∥x−y∥ ≥ ε the inequality ∥x+y∥ ≤ 2(1−δ) holds.

The modulus of convexity of E is a function δE : [0, 2] → [0, 1] defined in the following
way:

δE(ε) = inf{1− ∥x+ y∥
2

: x, y ∈ BE , ∥x− y∥ ≥ ε}.

It should be pointed out that in the definition of δE(ε) we can as well take the infimum
over all vectors x, y ∈ SE with ∥x − y∥ = ε, see for example [5]. The functional δE is
continuous and increasing on the interval [0, 2] and δE(0) = 0. Obviously, invoking the
definition of the function δE , a normed space E is uniformly convex if δE(ε) > 0 for every
ε ∈ (0, 2]. For any Banach space E, its modulus of convexity is bounded from above by

the modulus of convexity of a Hilbert space H, δE(ε) ≤ δH(ε) = 1−
√

1− ε2

4 . This means
that Hilbert spaces are the most convex among all Banach spaces.

Definition 2.2. A normed space E is called uniformly smooth if for any given ε > 0 there exists
τ > 0 such that for all x, y ∈ E with ∥x∥ ≤ 1 and ∥y∥ ≤ τ , the inequality ∥x+ y∥+ ∥x− y∥ ≤
2 + ε∥y∥ holds.
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The function ρE : [0,+∞) → [0,+∞) defined by the formula

ρE(τ) = sup{1
2
(∥x+ τy∥+ ∥x− τy∥)− 1 : x, y ∈ SE}

is called the modulus of smoothness of E. Note, in particular, that the function ρE is
convex, continuous and increasing on the interval [0,+∞) and ρE(0) = 0. In addition
ρE(τ) ≤ τ for all τ ≥ 0. In the light of the definition of the function ρE , a normed space is
uniformly smooth if lim

τ→0
τ−1ρE(τ) = 0.

Any uniformly convex and any uniformly smooth Banach space is reflexive. A Ba-
nach space E is uniformly convex (resp., uniformly smooth) if and only if E∗ is uniformly
smooth (resp., uniformly convex). The spaces lp, Lp and W p

m, 1 < p < ∞, m ∈ N, are uni-
formly convex as well as uniformly smooth, see [6, 8, 13]. At the same time, the modulus
of convexity and smoothness of a Hilbert space and the spaces lp, Lp and W p

m, 1 < p < ∞,
m ∈ N, can be found in [6, 8, 13].

Let us recall that the normalized duality mapping F : E → 2E
∗

is defined by

F(x) = {f ∈ E∗ : ⟨x, f⟩ = ∥x∥∥f∥, ∥x∥ = ∥f∥}, ∀x ∈ E.

We observe immediately that if E = H, a Hilbert space, then F is the identity mapping on
H. Furthermore, it is an immediate consequence of the Hahn-Banach theorem that F(x) is
nonempty for each x ∈ E. In the sequel, the notation j will be used to represent a selection
of the normalized duality mapping F .

Definition 2.3. Let P : E → E and η : E × E → E be two vector-valued mappings and
F : E → 2E

∗
be the normalized duality mapping. Then P is said to be

(i) η-accretive if,

⟨P (x)− P (y), j(η(x, y))⟩ ≥ 0, ∀x, y ∈ E, j(η(x, y)) ∈ F(η(x, y));

(ii) strictly η-accretive if, P is η-accretive and equality holds if and only if x = y;
(iii) r-strongly η-accretive if there exists a constant r > 0 such that

⟨P (x)− P (y), j(η(x, y))⟩ ≥ r∥x− y∥2, ∀x, y ∈ E, j(η(x, y)) ∈ F(η(x, y));

(iv) ϱ-Lipschitz continuous if there exists a constant ϱ > 0 such that

∥P (x)− P (y)∥ ≤ ϱ∥x− y∥, ∀x, y ∈ E.

It should be pointed that if η(x, y) = x− y, for all x, y ∈ E, then parts (i) to (iii) of Defi-
nition 2.3 reduce to the definitions of accretivity, strict accretivity and strong accretivity of
the mapping P , respectively.

Definition 2.4. Let η : E×E → E be a vector-valued mapping, M : E → 2E be a multi-valued
mapping, and let F : E → 2E

∗
be the normalized duality mapping. Then M is said to be

(i) η-accretive if

⟨u− v, j(η(x, y))⟩ ≥ 0, ∀(x, u), (y, v) ∈ Graph(M), j(η(x, y)) ∈ F(η(x, y));

(ii) strictly η-accretive if, M is η-accretive and equality holds if and only if x = y;
(iii) k-strongly η-accretive if there exists a constant k > 0 such that

⟨u− v, j(η(x, y))⟩ ≥ k∥x− y∥2, ∀(x, u), (y, v) ∈ Graph(M), j(η(x, y)) ∈ F(η(x, y));

(iv) generalized m-accretive (or η-m-accretive) if M is η-accretive and (I + ρM)(E) = E
holds for every real constant ρ > 0, where I stands for identity mapping.
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It should be remarked that if η(x, y) = x − y for all x, y ∈ E, then parts (i) to (iv) of
Definition 2.4 reduce to the definitions of accretivity, strict accretivity, strong accretivity
and m-accretivity of the mapping M , respectively.

We note that M is a generalized m-accretive (or η-m-accretive) mapping if and only if
M is η-accretive and there is no other η-accretive mapping whose graph contains strictly
Graph(M). The generalized m-accretivity is to be understood in terms of inclusion of
graphs. If M : E → 2E is a generalized m-accretive mapping, then adding anything to its
graph so as to obtain the graph of a new multi-valued mapping, destroys the η-accretivity.
In fact, the extended mapping is no longer η-accretive. In other words, for every pair
(x, u) ∈ E × E\Graph(M) there exist (y, v) ∈ Graph(M) and j(η(x, y)) ∈ F(η(x, y)) such
that ⟨u − v, j(η(x, y))⟩ < 0. In the light of the above-mentioned discussion, a necessary
and sufficient condition for a multi-valued mapping M : E → 2E to be generalized m-
accretive is that for any (x, u) ∈ E × E, the property

⟨u− v, j(η(x, y))⟩ ≥ 0, ∀(y, v) ∈ Graph(M), j(η(x, y)) ∈ F(η(x, y))

is equivalent to (x, u) ∈ Graph(M). The above characterization of generalized m-accretive
mappings provides us a useful and manageable way for recognizing that an element u
belongs to M(x).

Definition 2.5. Let P : E → E and η : E × E → E be vector-valued mappings, and M :
E → 2E be a multi-valued mapping. M is said to be P -η-accretive if M is η-accretive and
(P + ρM)(E) = E holds for every real constant ρ > 0.

3. FORMULATIONS, ITERATIVE ALGORITHMS AND CONVERGENCE RESULTS

Let for each i ∈ {1, 2}, Ei be a real Banach space, ηi : Ei × Ei → Ei be a vector-valued
mapping and Pi : Ei → Ei be a strictly ηi-accretive mapping. Suppose that S : E1×E2 →
E1, T : E1 × E2 → E2, f : E1 → E1 and g : E2 → E2 are single-valued mappings, and let
p,H : E1 → 2E1 and q, F : E2 → 2E2 be four multi-valued mappings. Let M : E1 × E1 →
2E1 and N : E2 × E2 → 2E2 be two multi-valued mappings such that for each z ∈ E1,
M(., z) : E1 → 2E1 is a P1-η1-accretive mapping with f(E1)∩D(M(., z)) ̸= ∅, and for each
t ∈ E2, N(., t) : E2 → 2E2 is a P2-η2-accretive mapping with g(E2) ∩ D(N(., t)) ̸= ∅. For
given two arbitrary real constants ρ, γ > 0, we consider the problem of finding (x, y) ∈
E1 × E2, w ∈ p(x), u ∈ H(x), v ∈ F (y), ν ∈ q(y), z′ ∈ E1 and z′′ ∈ E2 such that{

S(w, v) + ρ−1R
M(.,x),P1
ρ,η1 (z′) = 0,

T (u, ν) + γ−1R
N(.,y),P2
γ,η2 (z′′) = 0,

(3.1)

where R
M(.,x),P1
ρ,η1 = I1 − P1 ◦ J

M(.,x),P1
ρ,η1 = I1 − P1(J

M(.,x),P1
ρ,η1 (.)), RN(.,y),P2

γ,η2 = I2 − P2 ◦
J
N(.,y),P2
γ,η2 = I2 − P2(J

N(.,y),P2
γ,η2 (.)), Ii is the identity mapping on Ei, J

M(.,x),P1
ρ,η1 is the resol-

vent operator (or P1-η1-proximal-point mapping) associated with P1-η1-accretive map-
ping M(., x), JN(.,y),P2

γ,η2 is the resolvent operator (or P2-η2-proximal-point mapping) as-
sociated with P2-η2-accretive mapping N(., y), and P1 ◦ J

M(.,x),P1
ρ,η1 (resp. P2 ◦ J

N(.,y),P2
γ,η2 )

denotes P1 composition J
M(.,x),P1
ρ,η1 (resp. P2 composition J

N(.,y),P2
γ,η2 ). The problem (3.1) is

called a system of generalized multi-valued resolvent equations (SGMRE).
Let Ei, Pi, ηi (i = 1, 2), M,N,S, T, F,H, f, g, p and q be the same as in the SGMRE (3.1).

Corresponding to the SGMRE (3.1), we now consider the following system of generalized
variational inclusions (SGVI): Find (x, y) ∈ E1 × E2, w ∈ p(x), u ∈ H(x), v ∈ F (y) and
ν ∈ q(y) such that {

0 ∈ S(w, v) +M(f(x), x),
0 ∈ T (u, ν) +N(g(y), y).

(3.2)
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If p : E1 → E1 and q : E2 → E2 be two single-valued mappings, M : E1 → 2E1 is a
P1-η1-accretive mapping and N : E2 → 2E2 is a P2-η2-accretive mapping, then the system
(3.1) reduces to the problem of finding (x, y) ∈ E1 × E2, u ∈ H(x), v ∈ F (y), z′ ∈ E1 and
z′′ ∈ E2 such that {

S(p(x), v) + ρ−1RM,P1
ρ,η1

(z′) = 0,
T (u, q(y)) + γ−1RN,P2

γ,η2
(z′′) = 0,

(3.3)

where RM,P1
ρ,η1

= I1 − P1 ◦ JM,P1
ρ,η1

= I1 − P1(J
M,P1
ρ,η1

(.)), RN,P2
γ,η2

= I2 − P2 ◦ JN,P2
γ,η2

=

I2 − P2(J
N,P2
γ,η2

(.)), Ii is the identity mapping on Ei, JM,P1
ρ,η1

is the resolvent operator (or P1-
η1-proximal-point mapping) associated with P1-η1-accretive mapping M , JN,P2

γ,η2
is the re-

solvent operator (or P2-η2-proximal-point mapping) associated with P2-η2-accretive map-
ping N , and P1 ◦ JM,P1

ρ,η1
(resp. P2 ◦ JN,P2

γ,η2
) denotes P1 composition JM,P1

ρ,η1
(resp. P2 compo-

sition JN,P2
γ,η2

). The problem (3.3) is also called a system of generalized multi-valued resolvent
equations.

It should be remarked that for appropriate and suitable choices of the mappings Pi, ηi(i =
1, 2), M,N,S, T, F,H, f, g, p, q and the underlying spaces Ei (i = 1, 2), the SGVI (3.2) in-
cludes various systems of variational inequalities/inclusions and many classes of varia-
tional inequality/inclusion problems, see, for example, [2–4, 7, 10–12] and the references
therein.

As a direct consequence of the definition of resolvent operator (or P -η-proximal-point
mapping) and using some simple arguments, we now present the following assertion
which has a key role in obtaining the main results of this paper.

Lemma 3.1. Suppose that Ei, Pi, ηi(i = 1, 2),M,N, S, T, F,H, f, g, p and q are the same as in
the SGMRE (3.1). Moreover, let for each i ∈ {1, 2}, Pi be a strictly ηi-accretive mapping, and
the multi-valued mappings M : E1 → 2E1 and N : E2 → 2E2 be P1-η1-accretive and P2-η2-
accretive, respectively. Then (x, y, u, v, w, ν) ∈ E1×E2×H(x)×F (y)×p(x)×q(y) is a solution
of the SGVI (3.2) if and only if (x, y, u, v, w, ν) satisfies the relations{

f(x) = J
M(.,x),P1
ρ,η1 [P1 ◦ f(x)− ρS(w, v)],

g(y) = J
N(.,y),P2
γ,η2 [P2 ◦ g(y)− γT (u, ν)],

(3.4)

where ρ, γ > 0, J
M(.,x),P1
ρ,η1 and J

N(.,y),P2
γ,η2 are the same as in the SGMRE (3.1), and P1 ◦ f (resp.

P2 ◦ g) denotes P1 composition f (resp. P2 composition g).

Thanks to the above last assertion, we now present the following conclusion in which
the equivalence between the SGMRE (3.1) and SGVI (3.2) is established and has a promi-
nent role in constructing iterative algorithms and in the study of convergence analysis of
the sequences generated by our proposed iterative algorithms.

Proposition 3.1. Let Ei, Pi, ηi(i = 1, 2),M,N, S, T, F,H, f, g, p and q be the same as in Lemma
3.1. Then (x, y, u, v, w, ν) with (x, y) ∈ E1 × E2, u ∈ H(x), v ∈ F (y), w ∈ p(x) and ν ∈ q(y)
is a solution of the SGVI (3.2) if and only if (x, y, u, v, w, ν, z′, z′′), where (z′, z′′) ∈ E1 × E2, is
a solution of the SGMRE (3.1) satisfying

f(x) = J
M(.,x),P1
ρ,η1 (z′),

g(y) = J
N(.,y),P2
γ,η2 (z′′),

z′ = P1 ◦ f(x)− ρS(w, v),
z′′ = P2 ◦ g(y)− γT (u, ν),

(3.5)

where ρ, γ > 0 and J
M(.,x),P1
ρ,η1 and J

N(.,y),P2
γ,η2 are the same as in the SGMRE (3.1).
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Proof. Utilizing Lemma 3.1, (x, y, u, v, w, ν) ∈ E1 × E2 × H(x) × F (y) × p(x) × q(y) is a
solution of the SGVI (3.2) if and only if

{
f(x) = J

M(.,x),P1
ρ,η1 [P1 ◦ f(x)− ρS(w, v)],

g(y) = J
N(.,y),P2
γ,η2 [P2 ◦ g(y)− γT (u, ν)],

⇔


f(x) = J

M(.,x),P1
ρ,η1 (z′),

g(y) = J
N(.,y),P2
γ,η2 (z′′),

z′ = P1 ◦ f(x)− ρS(w, v),
z′′ = P2 ◦ g(y)− γT (u, ν),

⇔

{
z′ = P1(J

M(.,x),P1
ρ,η1 (z′))− ρS(w, v),

z′′ = P2(J
N(.,y),P2
γ,η2 (z′′))− γT (u, ν),

⇔

{ (
I1 − P1 ◦ JM(.,x),P1

ρ,η1

)
(z′) = −ρS(w, v),(

I2 − P2 ◦ JN(.,y),P2
γ,η2

)
(z′′) = −γT (u, ν),

⇔

{
S(w, v) + ρ−1R

M(.,x),P1
ρ,η1 (z′) = 0,

T (u, ν) + γ−1R
N(.,y),P2
γ,η2 (z′′) = 0,

where R
M(.,x),P1
ρ,η1 = I1 − P1 ◦ JM(.,x),P1

ρ,η1 and R
N(.,y),P2
γ,η2 = I2 − P2 ◦ JN(.,y),P2

γ,η2 . Accordingly,
(x, y, u, v, w, ν, z′, z′′) ∈ E1 × E2 ×H(x)× F (y)× p(x)× q(y) is a solution of the SGMRE
(3.1). Hence, the solution sets of the SGMRE (3.1) and SGVI (3.2) are the same. This gives
us the desired result. □

Lemma 3.2. [14] Let E be a complete metric space, and T : E → CB(E) be a multi-valued
mapping. Then for any ε > 0 and for any given x, y ∈ E, u ∈ T (x), there exists v ∈ T (y) such
that

d(u, v) ≤ (1 + ε)D(T (x), T (y)),

where D(., .) is the Hausdorff metric on CB(E) defined by

D(A,B) = max{sup
x∈A

inf
y∈B

∥x− y∥, sup
y∈B

inf
x∈A

∥x− y∥}, ∀A,B ∈ CB(E).

We employ Proposition 3.1 and Nadler technique [14] and suggest the following itera-
tive algorithm for approximating a solution of the SGMRE (3.1).

Algorithm 3.1. Let Ei, Pi, ηi(i = 1, 2),M,N, S, T, F,H, f, g, p and q be the same as in the
SGMRE (3.1) such that the mappings f and g are onto. For any given (x0, y0), (z

′
0, z

′′
0 ) ∈

E1 × E2, u0 ∈ H(x0), v0 ∈ F (y0), w0 ∈ p(x0) and ν0 ∈ q(y0), compute the sequences
{xn}∞n=0, {yn}∞n=0, {un}∞n=0, {vn}∞n=0, {wn}∞n=0, {νn}∞n=0, {z′n}∞n=0 and {z′′n}∞n=0 by the fol-
lowing iterative schemes:

f(xn) = J
M(.,xn),P1
ρ,η1 (z′n),

g(yn) = J
N(.,yn),P2
γ,η2 (z′′n),

un ∈ H(xn); ∥un+1 − un∥1 ≤ (1 + 1
1+n )D1(H(xn+1), H(xn)),

vn ∈ F (yn); ∥vn+1 − vn∥2 ≤ (1 + 1
1+n )D2(F (yn+1), F (yn)),

wn ∈ p(xn); ∥wn+1 − wn∥1 ≤ (1 + 1
1+n )D1(p(xn+1), p(xn)),

νn ∈ q(yn); ∥νn+1 − νn∥2 ≤ (1 + 1
1+n )D2(q(yn+1), q(yn)),

z′n+1 = P1 ◦ f(xn)− ρS(wn, vn),
z′′n+1 = P2 ◦ g(yn)− γT (un, νn),

(3.6)

where n = 0, 1, 2, . . . ; ρ, γ > 0 are positive real constants and for i = 1, 2, Di is the Haus-
dorff metric on CB(Ei).

If p, q,M and N are the same as in the system (3.3), then Algorithm 3.1 reduces to the
following iterative algorithm.

Algorithm 3.2. Suppose that Ei, Pi, ηi(i = 1, 2), S, T be the same as in the SGMRE (3.1)
and M,N, p and q are the same as in the system (3.3). For any given (x0, y0), (z

′
0, z

′′
0 ) ∈
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E1 × E2, u0 ∈ H(x0) and v0 ∈ F (y0), define the sequences {xn}∞n=0, {yn}∞n=0, {un}∞n=0,
{vn}∞n=0, {z′n}∞n=0 and {z′′n}∞n=0 in the following way:

f(xn) = JM,P1
ρ,η1

(z′n),
g(yn) = JN,P2

γ,η2
(z′′n),

un ∈ H(xn); ∥un+1 − un∥1 ≤ (1 + 1
1+n )D1(H(xn+1), H(xn)),

vn ∈ F (yn); ∥vn+1 − vn∥2 ≤ (1 + 1
1+n )D2(F (yn+1), F (yn)),

z′n+1 = P1 ◦ f(xn)− ρS(p(xn), vn),
z′′n+1 = P2 ◦ g(yn)− γT (un, q(yn)),

where n = 0, 1, 2, . . . ; ρ, γ > 0 are positive real constants and for i = 1, 2, Di is the Haus-
dorff metric on CB(Ei).

We are now in a position to present the main result of this section regarding the strong
convergence of the sequences generated by our suggested iterative algorithms to a solu-
tion of the SGMRE (3.1). For this end, we need to recall some definitions and a useful
result.

Definition 3.6. A mapping T : E × E → E is said to be
(i) ξ-Lipschitz continuous in the first argument if, there exists a constant ξ > 0 such that

∥T (x, z)− T (y, z)∥ ≤ ξ∥x− y∥, ∀x, y, z ∈ E;

(ii) ς-Lipschitz continuous in the second argument if, there exists a constant ς > 0 such that

∥T (z, x)− T (z, y)∥ ≤ ς∥x− y∥, ∀x, y, z ∈ E.

Definition 3.7. A multi-valued mapping S : E → CB(E) is said to be D-Lipschitz continuous
with constant λS (or λS-D-Lipschitz continuous) if, there exists a constant λS > 0 such that

D(S(x), S(y)) ≤ λS∥x− y∥, ∀x, y ∈ E;

where D(., .) is the Hausdorff metric on CB(E).

Lemma 3.3. [15] Let E be a uniformly smooth Banach space and F be the normalized duality
mapping from E into E∗. Then, for all x, y ∈ E, we have

(i) ∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, J(x+ y)⟩;
(ii) ⟨x− y, J(x)− J(y)⟩ ≤ 2d2(x, y)ρE

( 4∥x−y∥
d(x,y)

)
, where d(x, y) =

√
∥x∥2+∥y∥2

2 .

Theorem 3.1. Let for each i ∈ {1, 2}, Ei be a real uniformly smooth Banach space with the
dual space E∗

i and module of smoothness ρEi(t) ≤ Cit
2 for some Ci > 0. Assume that for each

i ∈ {1, 2}, ηi : Ei × Ei → Ei is a τi-Lipschitz continuous mapping, and Pi : Ei → Ei is a
ϱi-strongly ηi-accretive and ςi-Lipschitz continuous mapping. Let M : E1 × E1 → 2E1 and N :
E2×E2 → 2E2 be two multi-valued mappings such that for each z ∈ E1, M(., z) : E1 → 2E1 is a
P1-η1-accretive mapping with f(E1) ∩D(M(., z)) ̸= ∅, and for each t ∈ E2, N(., t) : E2 → 2E2

is a P2-η2-accretive mapping with g(E2) ∩ D(N(., t)) ̸= ∅. Suppose that S : E1 × E2 → E1

is a Lipschitz continuous mapping in the first and second arguments with constants λS1
and

λS2
, respectively, T : E1 × E2 → E2 is a Lipschitz continuous mapping in the first and second

arguments with constants λT1
and λT2

, respectively, f : E1 → E1 is an α-strongly accretive,
δ1-Lipschitz continuous onto mapping, and g : E2 → E2 is a β-strongly accretive, δ2-Lipschitz
continuous and onto mapping. Let p,H : E1 → CB(E1) be D1-Lipschitz continuous with
constants λDp

and λDH
, respectively, and q, F : E2 → CB(E2) be D2-Lipschitz continuous with

constants λDq
and λDF

, respectively. If there exist constants σi (i = 1, 2), ρ, γ > 0 such that

∥JM(.,x′),P1
ρ,η1

(z)− JM(.,x′′),P1
ρ,η1

(z)∥1 ≤ σ1∥x′ − x′′∥1, ∀x′, x′′, z ∈ E1,(3.7)

∥JN(.,y′),P2
γ,η2

(t)− JN(.,y′′),P2
γ,η2

(t)∥2 ≤ σ2∥y′ − y′′∥2, ∀y′, y′′, t ∈ E2,(3.8)
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and  0 < (B′+δ1(1+ς1)+
√

θ̂1+
√

θ̂4)τ1
ϱ1(1−B′−σ1)

< 1,

0 < (B′′+δ2(1+ς2)+
√

θ̂2+
√

θ̂3)τ2
ϱ2(1−B′′−σ2)

< 1,
(3.9)

where

θ̂1 =
1 + ρλS1λDF

1− ρ(λS1
λDp

+ λS2
λDF

)
, θ̂2 =

ρλS2λDF

1− ρ(λS1
λDp

+ λS2
λDF

)
,

θ̂3 =
1 + γλT2

λDq

1− γ(λT1λDH
+ λT2λDq )

, θ̂4 =
γλT1

λDH

1− γ(λT1λDH
+ λT2λDq )

,

B′ =
√
1− 2α+ 64C1δ21 and B′′ =

√
1− 2β + 64C2δ22 such that 2α < 1 + 64C1δ

2
1 and 2β <

1 + 64C2δ
2
2 . Then, the iterative sequences {xn}∞n=0, {yn}∞n=0, {un}∞n=0, {vn}∞n=0, {wn}∞n=0,

{νn}∞n=0, {z′n}∞n=0 and {z′′n}∞n=0 generated by Algorithm 3.1 converge strongly to x, y, u, v, w, ν, z′

and z′′, respectively, and (x, y, u, v, w, ν, z′, z′′) is a solution of the SGMRE (3.1).

Proof. Using (3.6), we yield

∥z′n+1 − z′n∥1 = ∥P1 ◦ f(xn)− ρS(wn, vn)− (P1 ◦ f(xn−1)− ρS(wn−1, vn−1))∥1
≤ ∥xn − xn−1 − (P1 ◦ f(xn)− P1 ◦ f(xn−1))∥1
+ ∥xn − xn−1 − ρ(S(wn, vn)− S(wn−1, vn−1))∥1

≤ ∥xn − xn−1 − (f(xn)− f(xn−1))∥1
+ ∥f(xn)− f(xn−1)∥1 + ∥P1 ◦ f(xn)− P1 ◦ f(xn−1)∥1
+ ∥xn − xn−1 − ρ(S(wn, vn)− S(wn−1, vn−1))∥1.

(3.10)

Since f is α-strongly accretive and δ1-Lipschitz continuous, and E1 is a uniformly smooth
Banach space with ρE1

(t) ≤ C1t
2 for all t ∈ E1 and for some t ∈ E1, by using Lemma 3.3,

it follows that

∥xn − xn−1 − (f(xn)− f(xn−1))∥21
≤ ∥xn − xn−1∥21 + 2⟨F1(xn − xn−1 − (f(xn)− f(xn−1))),−(f(xn)− f(xn−1))⟩1
= ∥xn − xn−1∥21 − 2⟨F1(xn − xn−1), f(xn)− f(xn−1)⟩1
+ 2⟨F1(xn − xn−1 − (f(xn)− f(xn−1))−F1(xn − xn−1),−(f(xn)− f(xn−1))⟩1

≤ ∥xn − xn−1∥21 − 2α∥xn − xn−1∥21
+ 4d2n(xn − xn−1 − (f(xn)− f(xn−1)), xn − xn−1)

× ρE1

( 4∥f(xn)− f(xn−1)∥1
dn(xn − xn−1 − (f(xn)− f(xn−1)), xn − xn−1)

)
≤ (1− 2α)∥xn − xn−1∥21 + 64C1∥f(xn)− f(xn−1)∥21
= (1− 2α+ 64C1δ

2
1)∥xn − xn−1∥21,

where F1 is the normalized duality mapping from E1 into E∗
1 . The last inequality implies

that

∥xn − xn−1 − (f(xn)− f(xn−1))∥1 ≤
√

1− 2α+ 64C1δ21∥xn − xn−1∥1.(3.11)

Considering the fact that f and P1 are δ1-Lipschitz and ς1-Lipschitz continuous, respec-
tively, we yield

∥f(xn)− f(xn−1)∥1 ≤ δ1∥xn − xn−1∥1(3.12)
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and

∥P1 ◦ f(xn)− P1 ◦ f(xn−1)∥1 ≤ ς1δ1∥xn − xn−1∥1.(3.13)

Making use of Lemma 3.3(i), we obtain

∥xn − xn−1 − ρ(S(Wn, vn)− S(wn−1, vn−1))∥21
≤ ∥xn − xn−1∥21 − 2ρ⟨S(wn, vn)− S(wn−1, vn−1),

F1(xn − xn−1 − ρ(S(wn, vn)− S(wn−1, vn−1)))⟩1
≤ ∥xn − xn−1∥21 + 2ρ∥S(wn, vn)− S(wn−1, vn−1)∥1
× ∥xn − xn−1 − ρ(S(wn, vn)− S(wn−1, vn−1))∥1.

(3.14)

Taking into account that S is Lipschitz continuous in the first and second arguments with
constants λS1 and λS2 , respectively, p and F are λD1 -D1-Lipschitz continuous and λDF

-
D2-Lipschitz continuous, respectively, it follows that

∥S(wn, vn)− S(wn−1, vn−1)∥1 ≤ λS1∥wn − wn−1∥1 + λS2∥vn − vn−1∥2

≤ λS1(1 +
1

n
)D1(p(xn), p(xn−1)) + λS2(1 +

1

n
)D2(F (yn), F (yn−1))

≤ λS1λDp(1 +
1

n
)∥xn − xn−1∥1 + λS2λDF

(1 +
1

n
)∥yn − yn−1∥2.

(3.15)

Let Ω = ∥xn − xn−1 − ρ(S(wn, vn)− S(wn−1, vn−1))∥1, then substituting (3.15) into (3.14),
we get

Ω2 ≤ ∥xn − xn−1∥21 + 2ρ(λS1λDp(1 +
1

n
)∥xn − xn−1∥1 + λS2λDF

(1 +
1

n
)∥yn − yn−1∥2)Ω

= ∥xn − xn−1∥21 + 2ρλS1λDp(1 +
1

n
)∥xn − xn−1∥1Ω+ 2ρλS2λDF

(1 +
1

n
)∥yn − yn−1∥2Ω

≤ (1 + ρλS1λDp(1 +
1

n
))∥xn − xn−1∥21 + ρ(λS1λDp + λS2λDF

)(1 +
1

n
)Ω2

+ ρλS2
λDF

(1 +
1

n
)∥yn − yn−1∥22,

which implies that

Ω ≤ θ̂1,n∥xn − xn−1∥21 + θ̂2,n∥yn − yn−1∥22

≤ θ̂1,n∥xn − xn−1∥21 + 2
√
θ̂1,nθ̂2,n∥xn − xn−1∥1∥yn − yn−1∥2 + θ̂2,n∥yn − yn−1∥22(3.16)

=
(√

θ̂1,n∥xn − xn−1∥1 +
√
θ̂2,n∥yn − yn−1∥2)2,

where for all n ∈ N,

θ̂1,n =
1 + ρλS1λDp(1 +

1
n )

1− ρ(λS1
λDp

+ λS2
λDF

)(1 + 1
n )

, θ̂2,n =
ρλS2

λDF
(1 + 1

n )

1− ρ(λS1
λDp

+ λS2
λDF

)(1 + 1
n )

.

Therefore, using (3.16), we deduce that

Ω ≤
√
θ̂1,n∥xn − xn−1∥1 +

√
θ̂2,n∥yn − yn−1∥2.(3.17)

Combining (3.10)–(3.13) and (3.17), yields

∥z′n+1 − z′n∥1 ≤
(√

1− 2α+ 64C1δ21 + δ1(1 + ς1) +

√
θ̂1,n

)
∥xn − xn−1∥1

+

√
θ̂2,n∥yn − yn−1∥2 + ∥P1 ◦ f(xn−1)− P1 ◦ f(xn−1)∥1

= (B′ + δ1(1 + ς1) +

√
θ̂1,n)∥xn − xn−1∥1 +

√
θ̂2,n∥yn − yn−1∥2,

(3.18)
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where B′ =
√
1− 2α+ 64C1δ21 . In the light of the facts that g is β-strongly accretive

and δ2-Lipschitz continuous, P2 is ς2-Lipschitz continuous, T is Lipscchitz continuous
in the first and second arguments with constants λT1

and λT2
, respectively, H and q are

λDH
-D1-Lipschitz continuous and λDq -D2-Lipschitz continuous, respectively, and E2 is a

uniformly smooth Banach space with ρE2(t) ≤ C2t
2 for all t ∈ E2 and for some C2 > 0, by

an argument analogous to the previous one, by using Lemma 3.3 and (3.6), one can show
that

∥z′′n+1 − z′′n∥2 ≤
√

θ̂4,n∥xn − xn−1∥1 + (B′′ + δ2(1 + ς2) +

√
θ̂3,n)∥yn − yn−1∥2,(3.19)

where

θ̂3,n =
1 + γλT2

λDq
(1 + 1

n )

1− γ(λT1
λDH

+ λT2
λDq

)(1 + 1
n )

, θ̂4,n =
γλT1λDH

(1 + 1
n )

1− γ(λT1
λDH

+ λT2
λDq

)(1 + 1
n )

and B′′ =
√
1− 2β + 64C2δ22 . Let us now define a norm ∥.∥∗ on E1 × E2 by

∥(x, y)∥∗ = ∥x∥1 + ∥y∥2, ∀(x, y) ∈ E1 × E2.

It can be easily observed that (E1 × E2, ∥.∥∗) is a Banach space. Then, adding (3.18) and
(3.19), for each n ∈ N, we get

∥(z′n+1, z
′′
n+1)− (z′n, z

′′
n)∥∗ = ∥z′n+1 − z′n∥1 + ∥z′′n+1 − z′′n∥2

≤ (B′ + δ1(1 + ς1) +

√
θ̂1,n +

√
θ̂4,n)∥xn − xn−1∥1

+ (B′′ + δ2(1 + ς2) +

√
θ̂2,n +

√
θ̂3,n)∥yn − yn−1∥2.

(3.20)

Applying (3.6), (3.11) and Theorem 3.2 of Part I, we obtain

∥xn − xn−1∥1 = ∥xn − xn−1 − (f(xn)− f(xn−1))

+ JM(.,xn),P1
ρ,η1

(z′n)− JM(.,xn−1),P1
ρ,η1

(z′n−1)∥1
≤ ∥xn − xn−1 − (f(xn)− f(xn−1))∥1
+ ∥JM(.,xn),P1

ρ,η1
(z′n)− JM(.,xn−1),P1

ρ,η1
(z′n−1)∥1

≤ B′∥xn − xn−1∥1 + ∥JM(.,xn),P1
ρ,η1

(z′n)− JM(.,xn),P1
ρ,η1

(z′n−1)∥1
+ ∥JM(.,xn),P1

ρ,η1
(z′n−1)− JM(.,xn−1),P1

ρ,η1
(z′n−1)∥1

≤ B′∥xn − xn−1∥1 +
τ1
ϱ1

∥z′n − z′n−1∥1 + σ1∥xn − xn−1∥1

(3.21)

and
∥yn − yn−1∥2 = ∥yn − yn−1 − (g(yn)− g(yn−1))

+ JN(.,yn),P2
γ,η2

(z′′n)− JN(.,yn−1),P2
γ,η2

(z′′n−1)∥2
≤ ∥yn − yn−1 − (g(yn)− g(yn−1))∥2
+ ∥JN(.,yn),P2

γ,η2
(z′′n)− JN(.,yn−1),P2

γ,η2
(z′′n−1)∥2

≤ B′′∥yn − yn−1∥2 + ∥JN(.,yn),P2
γ,η2

(z′′n)− JN(.,yn),P2
γ,η2

(z′′n−1)∥2
+ ∥JN(.,yn),P2

γ,η2
(z′′n−1)− JN(.,yn−1),P2

γ,η2
(z′′n−1)∥2

≤ B′′∥yn − yn−1∥2 +
τ2
ϱ2

∥z′′n − z′′n−1∥2 + σ2∥yn − yn−1∥2.

(3.22)

Recalling (3.21) and (3.22) it follows that for each n ∈ N,

∥xn − xn−1∥1 ≤ τ1
ϱ1(1−B′ − σ1)

∥z′n − z′n−1∥1(3.23)
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and

∥yn − yn−1∥2 ≤ τ2
ϱ2(1−B′′ − σ2)

∥z′′n − z′′n−1∥2.(3.24)

Substituting (3.23) and (3.24) into (3.20), we yield

∥(z′n+1, z
′′
n+1)− (z′n, z

′′
n)∥∗ ≤ (B′ + δ1(1 + ς1) +

√
θ̂1,n +

√
θ̂4,n)× ∥xn − xn−1∥1

+ (B′′ + δ2(1 + ς1) +

√
θ̂2,n +

√
θ̂3,n)× ∥yn − yn−1∥2

≤
(B′ + δ1(1 + ς1) +

√
θ̂1,n +

√
θ̂4,n)τ1

ϱ1(1−B′ − σ1)
× ∥z′n − z′n−1∥1

+
(B′′ + δ2(1 + ς2) +

√
θ̂2,n +

√
θ̂3,n)τ2

ϱ2(1−B′′ − σ2)
× ∥z′′n − z′′n−1∥2

≤ φn(∥z′n − z′n−1∥1 + ∥z′′n − z′′n−1∥2)
= φn∥(z′n, z′′n)− (z′n−1, z

′′
n−1)∥∗,

(3.25)

where for each n ∈ N,

φn = max
{ (B′ + δ1(1 + ς1) +

√
θ̂1,n +

√
θ̂4,n)τ1

ϱ1(1−B′ − σ1)
,
(B′′ + δ2(1 + ς2) +

√
θ̂2,n +

√
θ̂3,n)τ2

ϱ2(1−B′′ − σ2)

}
.

In virtue of the fact that for i = 1, 2, 3, 4, we have θ̂i,n → θ̂i, as n → ∞, where

θ̂1 =
1 + ρλS1

λDp

1− ρ(λS1λDp + λS2λDF
)
, θ̂2 =

ρλS2
λDF

1− ρ(λS1λDp + λS2λDF
)
,

θ̂3 =
1 + γλT2

λDq

1− γ(λT1
λDH

+ λT2
λDq

)
and θ̂4 =

γλT1
λDH

1− γ(λT1
λDH

+ λT2
λDq

)
,

it follows that φn → φ, as n → ∞, where

φ = max
{ (B′ + δ1(1 + ς1) +

√
θ̂1 +

√
θ̂4)τ1

ϱ1(1−B′ − σ1)
,
(B′′ + δ2(1 + ς2) +

√
θ̂2 +

√
θ̂3)τ2

ϱ2(1−B′′ − σ2)

}
.

Evidently, (3.9) implies that φ ∈ (0, 1). Accordingly, there exists n0 ∈ N and φ̂ ∈ (φ, 1)
such that φn ≤ φ̂, for all n ≥ n0. Consequently, for all n > n0, by (3.25), we obtain

∥(z′n+1, z
′′
n+1)− (z′n, z

′′
n)∥∗ ≤ φn∥(z′n, z′′n)− (z′n−1, z

′′
n−1)∥∗

≤ φ̂∥(z′n, z′′n)− (z′n−1, z
′′
n−1)∥∗

≤ φ̂2∥(z′n−1, z
′′
n−1)− (z′n−2, z

′′
n−2)∥∗

≤ . . .

≤ φ̂n−n0∥(z′n0+1, z
′′
n0+1)− (z′n0

, z′′n0
)∥∗.

(3.26)

From (3.26), it follows that for any m ≥ n > n0,

∥(z′m, z′′m)− (z′n, z
′′
n)∥∗ ≤

m−1∑
k=n

∥(z′k+1, z
′′
k+1)− (z′k, z

′′
k )∥∗

≤
m−1∑
k=n

φ̂k−n0∥(z′n0+1, z
′′
n0+1)− (z′n0

, z′′n0
)∥∗.

(3.27)

In view of the fact that φ̂ ∈ (0, 1), we conclude that the right-hand side of (3.27) approaches
zero, as n → ∞, that is, ∥(z′m, z′′m) − (z′n, z

′′
n)∥∗ → 0, as n → ∞. Thereby, {(z′n, z′′n)}∞n=0 is
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a Cauchy sequence in E1 × E2. In the light of the completeness of E1 × E2, there is
(z′, z′′) ∈ E1 × E2 such that (z′n, z′′n) → (z′, z′′), as n → ∞. Making use of (3.23) and
(3.24) it follows that xn → x and yn → y, as n → ∞. Then, using (3.6) and owing to the
fact that the mappings H,F, p and q are λDH

-D1-Lipschitz continuous, λDF
-D2-Lipschitz

continuous, λDp -D1-Lipschitz continuous and λDq -D2-Lipschitz continuous, respectively,
it can be easily seen that {un}∞n=0, {wn}∞n=0, {vn}∞n=0, {νn}∞n=0 are Cauchy sequences in E1

and E2, respectively. Consequently, there are u,w ∈ E1 and v, ν1 ∈ E2 such that un → u,
wn → w, vn → v and νn → ν, as n → ∞. In view of the fact that un ∈ H(xn) for each
n ≥ 0, we have

d1(u,H(x)) = inf{∥u− s∥1 : s ∈ H(x)}
≤ ∥u− un∥1 + d1(un, H(x))

≤ ∥u− un∥1 +D1(H(xn), H(x))

≤ ∥u− un∥1 + λDH
∥xn − x∥1.

Clearly, the right-hand side of the preceding inequality tends to zero, as n → ∞, and
so thanks to the fact that H(x) is closed, it follows that u ∈ H(x). Following the same
argument, we can show that v ∈ F (y), w ∈ p(x) and ν ∈ q(y). Since xn → x, yn → y,
un → u, wn → w and νn → ν, as n → ∞, and in view of the Lipschitz continuity of the
mappings f, g, S and T , it follows that z′n → z′ = P1 ◦ f(x) − ρS(w, v) and z′′n → z′′ =
P2 ◦ g(y) − γT (u, ν), as n → ∞. In the meanwhile, using Theorem 3.2 of Part I, for each
n ≥ 0, we obtain

∥JM(.,xn),P1
ρ,η1

(z′n)− JM(.,x),P1
ρ,η1

(z′)∥1 ≤ ∥JM(.,xn),P1
ρ,η1

(z′n)− JM(.,xn),P1
ρ,η1

(z′)∥1
+ ∥JM(.,xn),P1

ρ,η1
(z′)− JM(.,x),P1

ρ,η1
(z′)∥1

≤ τ1
ϱ1

∥z′n − z′∥1 + ς1∥xn − x∥1

(3.28)

and
∥JN(.,yn),P2

γ,η2
(z′′n)− JN(.,y),P2

γ,η2
(z′′)∥2 ≤ ∥JN(.,yn),P2

γ,η2
(z′′n)− JN(.,yn),P2

γ,η2
(z′′)∥2

+ ∥JN(.,yn),P2
γ,η2

(z′′)− JN(.,y),P2
γ,η2

(z′′)∥2

≤ τ2
ϱ2

∥z′′n − z′′∥2 + ς2∥yn − y∥2.
(3.29)

Now, taking into account that z′n → z′ and z′′n → z′′, as n → ∞, (3.28) and (3.29) imply
that

∥JM(.,xn),P1
ρ,η1

(z′n)− JM(.,x),P1
ρ,η1

(z′)∥1 → 0 and

∥JN(.,yn),P2
γ,η2

(z′′n)− JN(.,y),P2
γ,η2

(z′′)∥2 → 0, as n → ∞, as so

J
M(.,xn),P1
ρ,η1 (z′n) → J

M(.,x),P1
ρ,η1 (z′) and J

N(.,yn),P2
γ,η2 (z′′n) → J

N(.,y),P2
γ,η2 (z′′),

as n → ∞. Now, in the light of the Lipschitz continuity of the mappings f and g and using
(3.6), we deduce that f(x) = J

M(.,x),P1
ρ,η1 (z′) and g(y) = J

N(.,y),P2
γ,η2 (z′′). Thereby, thanks to

the above-mentioned arguments, it follows that (x, y, u, v, w, ν) ∈ E1×E2×H(x)×F (y)×
p(x)× q(y) is a solution of the SGMRE (3.1). This completes the proof. □

As an immediate consequence of the last result, we obtain the following corollary
which generalizes and improves Theorem 3.1 in [4].

Corollary 3.1. Suppose that Ei, Pi, ηi(i = 1, 2), S, T, F,H, f and g are the same as in Theorem
3.1. Assume that p : E1 → E1 and q : E2 → E2 are λp-Lipschitz continuous and λq-Lipschitz
continuous, respectively. Moreover, let M : E1 → 2E1 and N : E2 → 2E2 be P1-η1-accretive
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and P2-η2-accretive mappings with f(E1) ∩ D(M) ̸= ∅ and g(E2) ∩ D(N) ̸= ∅. If there exist
constants ρ, γ > 0 such that {

0 < (B′+
√
θ1+

√
θ4)τ1

ϱ1(1−B′) < 1,

0 < (B′′+
√
θ2+

√
θ3)τ2

ϱ2(1−B′′) < 1,
(3.30)

where

θ1 =
1 + ρλS1

λDF

1− ρ(λS1λp + λS2λDF
)
, θ2 =

ρλS2
λDF

1− ρ(λS1λp + λS2λDF
)
,

θ3 =
1 + γλT2λq

1− γ(λT1
λDH

+ λT2
λq)

, θ4 =
γλT1λDH

1− γ(λT1
λDH

+ λT2
λq)

,

and B′ and B′′ are the same as in (3.9). Then, the iterative sequences {xn}∞n=0, {yn}∞n=0,
{un}∞n=0, {vn}∞n=0, {z′n}∞n=0 and {z′′n}∞n=0 generated by Algorithm 3.2 converge strongly to
x, y, u, v, z′ and z′′, respectively, and (x, y, u, v, z′, z′′) is a solution to the system (3.4).

4. CONCLUSIONS

The study of nonlinear equations of evolution in the setting of Banach spaces was the
main incentive to introduce the notion of accretive mappings which the beginning of their
study comes back to the sixties. Remember that during the past decades, the applications
in different branches of sciences have been major motivations and driving forces for de-
veloping and generalizing such mappings in different contexts. In one of the pioneering
studies in this direction, the introduction of the concept of P -η-accretive mapping was first
made by Kazmi and Khan [9] in 2007. The above description motivated us to construct a
new iterative algorithm for solving a new system of generalized multi-valued resolvent
equations (for short, SGMRE) in the framework of Banach spaces. We have studied the
convergence analysis of the sequences generated by our proposed iterative algorithm un-
der some appropriate conditions along with new results which improve and generalize
many known corresponding results.
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