
CARPATHIAN J. MATH.
Volume 41 (2025), No. 3,
Pages 813-835

Online version at https://www.carpathian.cunbm.utcluj.ro/

Print Edition: ISSN 1584 - 2851; Online Edition: ISSN 1843 - 4401

DOI: https://doi.org/10.37193/CJM.2025.03.12

Two-step inertial viscosity subgradient extragradient
algorithm with self-adaptive step sizes for solving
pseudomonotone equilibrium problems

MANATCHANOK KHONCHALIEW 1, NARIN PETROT 2,3,∗ , AND MONTIRA
SUWANNAPRAPA 4

ABSTRACT. This paper presents a two-step inertial viscosity subgradient extragradient algorithm with self-
adaptive step sizes for finding a solution to pseudomonotone equilibrium problems in the setting of a real
Hilbert space, where such a solution also includes some additional properties. Without prior knowledge of
the Lipschitz constants of the pseudomonotone bifunction, the strong convergence theorem of the suggested
algorithm is provided under some mild constraint qualifications for the scalar sequences. To demonstrate the
effectiveness of the constructed algorithm, numerical experiments are performed on Nash-Cournot oligopolistic
equilibrium models of electricity markets, Nash-Cournot models, and the image restoration problem.

1. INTRODUCTION

The equilibrium problem started to gain interest after the publication of a paper by
Blum and Oettli [5], which has been widely applied to study real world applications, see
[23, 29, 30], and the references therein. The equilibrium problem is a problem of finding a
point x∗ ∈ C such that

(1.1) f(x∗, y) ≥ 0,∀y ∈ C,

where C is a nonempty closed convex subset of a real Hilbert spaceH , and f : H×H → R
is a bifunction. The solution set of the equilibrium problem (1.1) will be denoted by
EP (f, C). Mathematically, the equilibrium problem (1.1) encompasses various signifi-
cant problems as particular cases. Examples include optimization problems, variational
inequality problems, minimax problems, Nash equilibrium problems, saddle point prob-
lems, and fixed point problems, as highlighted in [1, 10, 15, 22, 25, 33], and the references
therein.

To address the equilibrium problem (1.1) with f being a monotone bifunction, one often
resorts to approximate solutions using the proximal point method, as outlined below.

(1.2)

{
x0 ∈ H,

f(xk+1, y) +
1
λk

⟨xk+1 − xk, y − xk+1⟩ ≥ 0,∀y ∈ C,

where {λk} ⊂ (0,+∞). In [7], the authors demonstrated that the sequence {xk}, con-
structed by Algorithm (1.2), converges weakly to a solution of the equilibrium problem
(1.1). However, the proximal point method may not be applied for a weaker assumption,
such as a pseudomonotone, see [13]. To overcome this drawback, Tran et al. [31] proposed
the following so-called extragradient method for solving the equilibrium problem when
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the bifunction f is pseudomonotone and satisfies Lipschitz-type continuity with positive
constants c1 and c2:

(1.3)


x0 ∈ C,

yk = argmin
{
λf(xk, y) +

1
2∥y − xk∥2 : y ∈ C

}
,

xk+1 = argmin
{
λf(yk, y) +

1
2∥y − xk∥2 : y ∈ C

}
,

where 0 < λ < min
{

1
2c1
, 1
2c2

}
. The authors proved that the sequence {xk} generated by

Algorithm (1.3) converges weakly to a solution of the equilibrium problem (1.1). Observe
that the extragradient method needs to solve two optimization problems on the feasible
set C for finding yk and xk+1 at each iteration. This point may lead to difficulties in use
if the feasible set C has a complex structure. In order to improve this situation, Hieu
[14] proposed the following so-called subgradient extragradient method for solving the
equilibrium problem when the bifunction f is pseudomonotone and satisfies Lipschitz-
type continuity with positive constants c1 and c2:

(1.4)



x0 ∈ H,

yk = argmin
{
λkf(xk, y) +

1
2∥y − xk∥2 : y ∈ C

}
,

Tk = {z ∈ H : ⟨xk − λkvk − yk, z − yk⟩ ≤ 0} , vk ∈ ∂2f(xk, yk),

zk = argmin
{
λkf(yk, y) +

1
2∥y − xk∥2 : y ∈ Tk

}
,

xk+1 = αkx0 + (1− αk)zk,

where 0 < λk < min
{

1
2c1
, 1
2c2

}
, {αk} ⊂ (0, 1) such that

∞∑
k=0

αk = +∞ and lim
k→∞

αk = 0,

and ∂2f(xk, yk) is the subdifferential of f(xk, · ) at yk. They proved that the sequence {xk}
generated by Algorithm (1.4) converges strongly to PEP (f,C)(x0) where PEP (f,C)(x0) is
the metric projection of x0 onto EP (f, C). It is worth noting that the subgradient extra-
gradient method also involves solving two optimization problems to find yk and zk at each
iteration, similar to the extragradient method. However, the second optimization prob-
lem for finding zk is not performed over the feasible set C but only on the half-space Tk.
Consequently, the subgradient extragradient method holds a competitive advantage over
the extragradient method, particularly when the feasible set C is not straightforward. On
the other hand, for the application of the aforementioned algorithms, one must choose
suitable step sizes, dependent on the Lipschitz constants of the bifunction f . However,
this choice may impose restrictions in practical applications as the Lipschitz constants of
the bifunction are often unknown or challenging to estimate.

Meanwhile, inertial-type methods have garnered significant interest from researchers
in solving equilibrium problems, as demonstrated in [12, 17, 26, 32, 35, 36] and related
references. This method is derived from the heavy ball method, an implicit discretization
of second-order dynamics in time [2, 3], and is considered as a means to enhance con-
vergence properties. A key feature of inertial-type techniques is that the next iterate is
constructed using two prior iterates. In this context, this iterative scheme is referred to as
the one-step inertial method.

In 2021, Thong et al. [30] proposed the following algorithm by using the ideas of one-
step inertial and subgradient extragradient methods (shortly, One-step ISE) for solving the
equilibrium problem when the bifunction f is pseudomonotone and satisfies Lipschitz-
type continuity:
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Algorithm: One-step ISE Algorithm
Initialization. Choose parameters λ1 > 0, µ ∈ (0, 1), {θk} ⊂ [0, τ) for some τ > 0,

{γk} ⊂ (a, b) ⊂ (0, 1− αk), and {ϵk} ⊂ [0,∞), {αk} ⊂ (0, 1) such that
∞∑
k=1

αk = ∞,

lim
k→∞

αk = 0, and lim
k→∞

ϵk
αk

= 0. Pick x0, x1 ∈ H and set k = 1.

Step 1. Choose θk such that 0 ≤ θk ≤ θk, where

θk =

{
min

{
τ, ϵk

∥xk−xk−1∥

}
, if xk ̸= xk−1,

τ, otherwise.

Step 2. Compute

wk = xk + θk(xk − xk−1).

Step 3. Solve the strongly convex program

yk = argmin

{
λkf(wk, y) +

1

2
∥y − wk∥2 : y ∈ C

}
.

Step 4. Construct a half-space

Tk = {z ∈ H : ⟨wk − λkvk − yk, z − yk⟩ ≤ 0} ,
where vk ∈ ∂2f(wk, yk).

Step 5. Solve the strongly convex program

zk = argmin

{
λkf(yk, y) +

1

2
∥y − wk∥2 : y ∈ Tk

}
.

Step 6. Update the next iterate xk+1 as

xk+1 = (1− αk − γk)xk + γkzk,

Step 7. Compute

λk+1 =


min

{
λk,

µ(∥wk − yk∥2 + ∥zk − yk∥2)
2 [f(wk, zk)− f(wk, yk)− f(yk, zk)]

}
,

if f(wk, zk)− f(wk, yk)− f(yk, zk) > 0,

λk, otherwise.

Step 8. Put k := k + 1 and go to Step 1.

Consequently, the authors proved that the sequence {xk} generated by the One-step
ISE Algorithm converges strongly to an element p∗ ∈ EP (f, C) where ∥p∗∥ = min{∥p∥ :
p ∈ EP (f, C)}.

In 2022, Rehman et al. [25] proposed the following algorithm by using the techniques
of one-step modified inertial and subgradient extragradient methods (shortly, One-step
MISE) for solving the equilibrium problem when the bifunction f is pseudomonotone
and satisfies Lipschitz-type continuity:
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Algorithm: One-step MISE Algorithm

Initialization. Choose parameters λ1 > 0, µ ∈ (0, 1), τ ∈ (0, 1), η ∈ (0, 2 −
√
2), and

{αk} ⊂ (0, 1) such that
+∞∑
k=1

αk = +∞, lim
k→∞

αk = 0, and lim
k→∞

ϵk
αk

= 0. Pick x0, x1 ∈ H and

set k = 1.

Step 1. Choose θk such that 0 ≤ θk ≤ θk, where

θk =

{
min

{
τ, ϵk

∥xk−xk−1∥

}
, if xk ̸= xk−1,

τ, otherwise.

Step 2. Compute

wk = xk + θk(xk − xk−1)− αk [xk + θk(xk − xk−1)] .

Step 3. Solve the strongly convex program

yk = argmin

{
λkf(wk, y) +

1

2
∥y − wk∥2 : y ∈ C

}
.

Step 4. Construct a half-space

Tk = {z ∈ H : ⟨wk − λkvk − yk, z − yk⟩ ≤ 0} ,

where vk ∈ ∂2f(wk, yk).

Step 5. Update the next iterate xk+1 by solving the strongly convex program

xk+1 = argmin

{
λkf(yk, y) +

1

2
∥y − wk∥2 : y ∈ Tk

}
.

Step 7. Compute

λk+1 =


min

{
λk,

(2−
√
2− η)µ∥wk − yk∥2 + (2−

√
2− η)µ∥xk+1 − yk∥2

2 [f(wk, xk+1)− f(wk, yk)− f(yk, xk+1)]

}
,

if f(wk, xk+1)− f(wk, yk)− f(yk, xk+1) > 0,

λk, otherwise.

Step 8. Put k := k + 1 and go to Step 1.

Accordingly, the authors proved that the sequence {xk} generated by the One-step
MISE Algorithm converges strongly to p∗ ∈ EP (f, C). It is emphasized that both the
One-step ISE and One-step MISE Algorithms used a self-adaptive process to deal with
the unknown knowledge of the Lipschitz constants of the bifunction f .

In this paper, drawing from the literature mentioned earlier, our main focus will be on
the algorithm for solving the equilibrium problem (1.1). Additionally, we consider the
problem (1.1) in conjunction with a contraction mapping h : H → H and finding a point
p∗ in EP (f, C) such that ∥h(p∗) − p∗∥ ≤ ∥h(p∗) − p∥, for all p ∈ EP (f, C). It is worth
pointing out that this type of problem will not only yield a solution point for EP (f, C)
but also address concerns related to an optimization problem, as discussed in [21] and
reference therein for more information. We introduce a new iterative algorithm for finding
solutions to pseudomonotone equilibrium problems. To illustrate the convergence of the
introduced algorithm and to compare it with other noteworthy algorithms, we perform
numerical examples in the context of practical applications.
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This paper is organized as follows: Section 2 provides relevant definitions and proper-
ties that will be used in subsequent sections. In Section 3, we present the two-step inertial
viscosity subgradient extragradient algorithm with self-adaptive step sizes and prove the
convergence theorem. Section 4 discusses the performance of the introduced algorithm
by comparing it to well-known algorithms that have appeared previously.

2. PRELIMINARIES

This section will present the definitions and some important basic properties that will
be used throughout this paper. The notation R and N will stand for the set of the real
numbers and the natural numbers, respectively.

LetH be a real Hilbert space with inner product ⟨· , · ⟩, and its corresponding norm ∥ ·∥.
We will start by reviewing the definitions and some useful facts that will be utilized in
this paper. For a Hilbert space H , we know that

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩,

and

∥(1 + α)x− (α− β)y − βz∥2 = (1 + α)∥x∥2 − (α− β)∥y∥2 − β∥z∥2

+(1 + α)(α− β)∥x− y∥2 + β(1 + α)∥x− z∥2

−β(α− β)∥y − z∥2,(2.5)

for each x, y, z ∈ H , and for each α, β ∈ R, see [16].

Definition 2.1. Let C be a nonempty closed convex subset of H . A bifunction f : H ×H → R
is said to be:

(i) monotone on C if
f(x, y) + f(y, x) ≤ 0, ∀x, y ∈ C;

(ii) pseudomonotone on C if
f(x, y) ≥ 0 ⇒ f(y, x) ≤ 0, ∀x, y ∈ C;

(iii) Lipschitz-type continuity on H if there exists two positive constants c1 and c2 such that

(2.6) f(x, y) + f(y, z) ≥ f(x, z)− c1∥x− y∥2 − c2∥y − z∥2,∀x, y, z ∈ H.

Remark 2.1. A monotone bifunction is a pseudomonotone bifunction, but the converse is not true
in general, for instance, see [18].

For each x ∈ H , we denote the metric projection of x onto a nonempty closed convex
subset C of H by PC(x), that is

∥x− PC(x)∥ ≤ ∥x− y∥,∀y ∈ C.

Lemma 2.1. [6, 11] Let C be a nonempty closed convex subset of H . Then,
(i) PC(x) is singleton and well-defined for each x ∈ H ;

(ii) z = PC(x) if and only if ⟨x− z, y − z⟩ ≤ 0, ∀y ∈ C.

For a function f : H → R, the subdifferential of f at x ∈ H is defined by
∂f(x) = {z ∈ H : f(y)− f(x) ≥ ⟨z, y − x⟩,∀y ∈ H}.

The function f is said to be subdifferentiable at x if ∂f(x) ̸= ∅.

Lemma 2.2. [6] For any x ∈ H , the subdifferentiable ∂f(x) of a continuous convex function f is
a weakly closed and bounded convex set.
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Lemma 2.3. [9] Let C be a nonempty convex subset of H and f : C → R be a convex subdiffer-
entiable and lower semicontinuous function on C. Then, x∗ is a solution to the following convex
problem:

min {f(x) : x ∈ C}
if and only if 0 ∈ ∂f(x∗) + NC(x

∗), where NC(x
∗) is the normal cone of C at x∗, that is

NC(x
∗) := {z ∈ H : ⟨z, y − x∗⟩ ≤ 0,∀y ∈ C}.

We end this section by recalling some auxiliary results for obtaining the main results.

Lemma 2.4. [21] Let {ak} and {ck} be sequences of non-negative real numbers such that

ak+1 ≤ (1− αk)ak + αkbk + ck,∀k ∈ N ∪ {0},

where {αk} is a sequence in (0, 1) and {bk} is a sequence in R. Assume that
∞∑
k=0

ck < ∞. If
∞∑
k=0

αk = ∞ and lim sup
k→∞

bk ≤ 0, then lim
k→∞

ak = 0.

Lemma 2.5. [20] Let {ak} be a sequence of real numbers such that there exists a subsequence
{aki

} of {ak} such that aki
< aki+1, for all i ∈ N. Then, there exists a nondecreasing sequence

{mn} of positive integers such that lim
n→∞

mn = ∞ and the following properties hold:

amn
≤ amn+1 and an ≤ amn+1,

for all (sufficiently large) numbers n ∈ N. Indeed,mn is the largest number k in the set {1, 2, . . . , n}
such that

ak < ak+1.

3. MAIN RESULTS

Let C be a nonempty closed convex subset of a real Hilbert space H . The following
assumptions on the bifunction f : H ×H → R will be assumed in this work:
(A1) f(· , y) is sequentially weakly upper semicontinuous on C, for each fixed y ∈ C,

that is if {xk} ⊂ C is a sequence converging weakly to x ∈ C, then lim sup
k→∞

f(xk, y) ≤

f(x, y);
(A2) f(x, · ) is convex, subdifferentiable and lower semicontinuous onH , for each fixed

x ∈ H ;
(A3) f is psuedomonotone on C;
(A4) f is Lipschitz-type continuity on H .

Remark 3.2. (i) If the bifunction f satisfies the assumptions (A3) and (A4), then f(x, x) =
0, for each x ∈ C, see [32].

(ii) If the bifunction f satisfies the assumptions (A1)− (A3), then the solution set EP (f, C)
is closed and convex, see [24, 31] for more detail.

Now, to find a solution to the equilibrium problem (1.1) along with a ρ-contraction
mapping h : H → H , we introduce the following two-step inertial viscosity subgradient
extragradient algorithm:
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Algorithm: Two-step Inertial Viscosity Subgradient Extragradient Algorithm
(Two-step IVSE Algorithm)

Initialization. Choose parameters λ1 > 0, τ ∈ [0, 1), ς ∈ [0, 1), µ ∈ (0, 1), {βk} ∈ (0, 1)

with 0 < inf βk ≤ supβk < 1, and {ϵk} ⊂ [0,∞), {αk} ⊂
(
0, 1

2−ρ

)
such that

∞∑
k=1

αk = ∞,

lim
k→∞

αk = 0, and lim
k→∞

ϵk
αk

= 0. Pick x−1, x0, x1 ∈ H and set k = 1.

Step 1. Choose θk such that 0 ≤ θk ≤ θk, where

θk =

{
min

{
τ, ϵk

∥xk−xk−1∥

}
, if xk ̸= xk−1,

τ, otherwise,

and choose δk such that 0 ≤ δk ≤ δk, where

δk =

{
min

{
ς, ϵk

∥xk−xk−2∥ ,
ϵk

∥xk−1−xk−2∥

}
, if xk ̸= xk−2 and xk−1 ̸= xk−2,

ς, otherwise.

Step 2. Compute

wk = xk + θk(xk − xk−1) + δk(xk−1 − xk−2).

Step 3. Solve the strongly convex program

yk = argmin

{
λkf(wk, y) +

1

2
∥y − wk∥2 : y ∈ C

}
.

Step 4. Select vk ∈ ∆k and construct a half-space

Tk = {z ∈ H : ⟨wk − λkvk − yk, z − yk⟩ ≤ 0} ,
where

∆k = {s ∈ ∂2f(wk, yk) : λks+ yk = wk − t, ∃t ∈ NC(yk)} .
Step 5. Solve the strongly convex program

zk = argmin

{
λkf(yk, y) +

1

2
∥y − wk∥2 : y ∈ Tk

}
.

Step 6. Update the next iterate xk+1 as

xk+1 = αkh (wk) + (1− αk) (βkwk + (1− βk) zk) .

Step 7. Compute

λk+1 =


min

{
λk,

µ(∥wk − yk∥2 + ∥zk − yk∥2)
2 [f(wk, zk)− f(wk, yk)− f(yk, zk)]

}
,

if f(wk, zk)− f(wk, yk)− f(yk, zk) > 0,

λk, otherwise.

Step 8. Put k := k + 1 and go to Step 1.

Remark 3.3. (i) The terms θk(xk − xk−1) and δk(xk−1 − xk−2), included in the Two-step
IVSE Algorithm, are intended to enhance convergence properties. Consequently, the next
iterate in the Two-step IVSE Algorithm is constructed using three prior iterates, forming
what is referred to as the two-step inertial method. It is worth noting that if δk = 0, for
each k ∈ N, the Two-step IVSE Algorithm reduces to the one-step inertial viscosity sub-
gradient extragradient algorithm (shortly, One-step IVSE). Furthermore, we emphasize
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that the choice of parameters θk and δk can significantly influence the numerical behavior
of the Two-step IVSE Algorithm, potentially leading to superior performance.

(ii) The step size λk in the Two-step IVSE Algorithm is self-adaptive, supporting straightfor-
ward computations, as highlighted in [25, 28, 30]. This feature enables the implementa-
tion of the Two-step IVSE Algorithm without the need for prior knowledge of the Lipschitz
constants of the bifunction.

(iii) In particular, in the case that h is a constant operator, say h(x) = c for some c ∈ H and
for all x ∈ H , one sees that the sequence {xk} generated by the Two-step IVSE Algorithm
converges strongly to PEP (f,C)(c), which is the case that was considered in [14, 30].

(iv) In step 4, the nonemptiness of the set ∆k is guaranteed. Indeed, it is demonstrated by the
definition of yk and Lemma 2.3 that

0 ∈ ∂2

{
λkf(wk, yk) +

1

2
∥yk − wk∥2

}
+NC(yk).

Then, there exist s ∈ ∂2f(wk, yk) and t ∈ NC(yk) such that

λks+ yk − wk + t = 0.

This confirms that a solution exists within ∆k, ensuring its nonemptiness.

The following lemma establishes crucial relations in the convergence analysis of the
sequence generated by the Two-step IVSE Algorithm.

Lemma 3.6. Let f : H ×H → R be a bifunction which satisfies (A1) − (A4). Suppose that the
solution set EP (f, C) is nonempty. Let wk ∈ H . If yk, zk, and λk+1 are constructed as in the
process of the Two-step IVSE Algorithm, then the following result hold:

∥zk−p∥2 ≤ ∥wk−p∥2−
(
1− µλk

λk+1

)
∥wk−yk∥2−

(
1− µλk

λk+1

)
∥yk−zk∥2,∀p ∈ EP (f, C).

Proof. The proof of this Lemma follows the technique in [34, Lemma 3.2]. Nevertheless,
for the sake of completeness and detail, we have attached its detailed proof in the Appen-
dix section. □

Now, we present the strong convergence theorem for the Two-step IVSE Algorithm.

Theorem 3.1. Let f : H×H → R be a bifunction which satisfies (A1)−(A4), and h : H → H be
a ρ-contraction mapping. Suppose that the solution setEP (f, C) is nonempty. Then, the sequence
{xk} generated by the Two-step IVSE Algorithm converges strongly to p̃ ∈ EP (f, C) such that
p̃ = PEP (f,C)h(p̃).

Proof. Let p ∈ EP (f, C). Firstly, we note that {λk} is a nonincreasing sequence. On the
other hand, by the Lipschitz-type continuity of f onH , there exists two positive constants
c1 and c2 such that

f(wk, zk)− f(wk, yk)− f(yk, zk) ≤ c1∥wk − yk∥2 + c2∥yk − zk∥2

≤ max {c1, c2} (∥wk − yk∥2 + ∥yk − zk∥2).

So, by the definition of λk, we get

λk+1 ≥ min

{
λk,

µ

2max {c1, c2}

}
≥ . . . ≥ min

{
λ1,

µ

2max {c1, c2}

}
.
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This implies that {λk} is bounded from below. Consequently, we know that the limit of
{λk} exists. Now, let η ∈ (0, 1− µ) be fixed. These imply that

lim
k→∞

(
1− µλk

λk+1

)
= 1− µ > η > 0.

Thus, there exists k0 ∈ N such that

1− µλk
λk+1

≥ η > 0,

for each k ≥ k0. By Lemma 3.6 and the above facts, we have

∥zk − p∥2 ≤ ∥wk − p∥2 − η∥wk − yk∥2 − η∥yk − zk∥2,(3.7)

for each k ≥ k0. This implies that

∥zk − p∥ ≤ ∥wk − p∥,(3.8)

for each k ≥ k0.
Now, let uk = βkwk + (1− βk)zk. In view of the inequality (3.8), we get

∥uk − p∥ ≤ βk∥wk − p∥+ (1− βk)∥zk − p∥
≤ ∥wk − p∥,(3.9)

for each k ≥ k0. It follows from the definition of xk+1 that

∥xk+1 − p∥ ≤ αk∥h(wk)− p∥+ (1− αk)∥uk − p∥
≤ ραk∥wk − p∥+ αk∥h(p)− p∥+ (1− αk)∥wk − p∥

= (1− (1− ρ)αk) ∥wk − p∥+ (1− ρ)αk
∥h(p)− p∥

1− ρ
,

for each k ≥ k0. Using this one together with the definition of wk, we obtain, for each
k ≥ k0, that

∥xk+1 − p∥ ≤ (1− (1− ρ)αk) ∥xk − p∥+ (1− (1− ρ)αk) θk∥xk − xk−1∥

+(1− (1− ρ)αk) δk∥xk−1 − xk−2∥+ (1− ρ)αk
∥h(p)− p∥

1− ρ

= (1− (1− ρ)αk) ∥xk − p∥+ (1− ρ)αk

(
σk + ψk +

∥h(p)− p∥
1− ρ

)
,(3.10)

where σk =

(
1− (1− ρ)αk

1− ρ

)
θk
αk

∥xk−xk−1∥ andψk =

(
1− (1− ρ)αk

1− ρ

)
δk
αk

∥xk−1−xk−2∥.

Due to the choices of the sequences {θk} and {δk}, we have

σk =

(
1− (1− ρ)αk

1− ρ

)
θk
αk

∥xk − xk−1∥ ≤
(
1− (1− ρ)αk

1− ρ

)
ϵk
αk
,

and

ψk =

(
1− (1− ρ)αk

1− ρ

)
δk
αk

∥xk−1 − xk−2∥ ≤
(
1− (1− ρ)αk

1− ρ

)
ϵk
αk
,

for each k ∈ N. It follows from the properties of lim
k→∞

ϵk
αk

= 0 and lim
k→∞

αk = 0 that

(3.11) lim
k→∞

σk = 0,

and

(3.12) lim
k→∞

ψk = 0.
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Thus, there exist constants M0,M1 > 0 such that

(3.13) σk =

(
1− (1− ρ)αk

1− ρ

)
θk
αk

∥xk − xk−1∥ ≤M0,

and

(3.14) ψk =

(
1− (1− ρ)αk

1− ρ

)
δk
αk

∥xk−1 − xk−2∥ ≤M1,

for each k ∈ N. Using this one with the inequality (3.10), we get that

∥xk+1 − p∥ ≤ (1− (1− ρ)αk) ∥xk − p∥+ (1− ρ)αk

(
M0 +M1 +

∥h(p)− p∥
1− ρ

)
≤ max

{
∥xk − p∥,M0 +M1 +

∥h(p)− p∥
1− ρ

}
≤ · · ·

≤ max

{
∥xk0

− p∥,M0 +M1 +
∥h(p)− p∥

1− ρ

}
,

for each k ≥ k0. This implies that the sequence {∥xk−p∥} is bounded. Subsequently, {xk}
is a bounded sequence.

Furthermore, by the definition of wk and (2.5), we see that

∥wk − p∥2 = ∥(1 + θk)(xk − p)− (θk − δk)(xk−1 − p)− δk(xk−2 − p)∥2

= (1 + θk)∥xk − p∥2 − (θk − δk)∥xk−1 − p∥2 − δk∥xk−2 − p∥2

+(1 + θk)(θk − δk)∥xk − xk−1∥2 + δk(1 + θk)∥xk − xk−2∥2

−δk(θk − δk)∥xk−1 − xk−2∥2

≤ (1 + θk)∥xk − p∥2 − (θk − δk)∥xk−1 − p∥2 − δk∥xk−2 − p∥2

+(2θk − δk − θkδk)∥xk − xk−1∥2 + 2δk∥xk − xk−2∥2

+(δk − θkδk)∥xk−1 − xk−2∥2

≤ ∥xk − p∥2 + θk(∥xk − p∥2 − ∥xk−1 − p∥2) + δk
(
∥xk−1 − p∥2

−∥xk−2 − p∥2
)
+ 2θk∥xk − xk−1∥2 + 2δk∥xk − xk−2∥2

+δk∥xk−1 − xk−2∥2,(3.15)

for each k ∈ N. This, along with the relation (3.7), implies that

∥zk − p∥2 − ∥xk − p∥2 ≤ θk(∥xk − p∥2 − ∥xk−1 − p∥2) + δk
(
∥xk−1 − p∥2

−∥xk−2 − p∥2
)
+ 2θk∥xk − xk−1∥2 + 2δk∥xk − xk−2∥2

+δk∥xk−1 − xk−2∥2 − η∥wk − yk∥2 − η∥yk − zk∥2,(3.16)

for each k ≥ k0.
On the other hand, by the definition of uk and the relation (3.7), we have

∥uk − p∥2 ≤ βk∥wk − p∥2 + (1− βk)∥zk − p∥2

≤ βk∥wk − p∥2 + (1− βk)
(
∥wk − p∥2 − η∥wk − yk∥2 − η∥yk − zk∥2

)
= ∥wk − p∥2 − (1− βk)η

(
∥wk − yk∥2 + ∥yk − zk∥2

)
,
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for each k ≥ k0. Thus, applying the above inequality and the inequality (3.15) to the
definition of xk+1, we obtain that

∥xk+1 − p∥2 ≤ αk∥h(wk)− p∥2 + (1− αk)∥uk − p∥2

≤ αk∥h(wk)− p∥2 + (1− αk)
(
∥wk − p∥2 − (1− βk)η

(
∥wk − yk∥2

+∥yk − zk∥2
))

≤ αk∥h(wk)− p∥2 + (1− αk)∥xk − p∥2 + (1− αk)θk
(
∥xk − p∥2

−∥xk−1 − p∥2
)
+ (1− αk)δk(∥xk−1 − p∥2 − ∥xk−2 − p∥2)

+2(1− αk)θk∥xk − xk−1∥2 + 2(1− αk)δk∥xk − xk−2∥2

+(1− αk)δk∥xk−1 − xk−2∥2 − (1− αk)(1− βk)η
(
∥wk − yk∥2

+∥yk − zk∥2
)
,(3.17)

for each k ≥ k0. This implies, for each k ≥ k0, that

(1− βk)η∥wk − yk∥2 + (1− βk)η∥yk − zk∥2

≤ ∥xk − p∥2 − ∥xk+1 − p∥2 + (1− αk)θk(∥xk − p∥2 − ∥xk−1 − p∥2)
+(1− αk)δk(∥xk−1 − p∥2 − ∥xk−2 − p∥2) + 2(1− αk)θk∥xk − xk−1∥2

+2(1− αk)δk∥xk − xk−2∥2 + (1− αk)δk∥xk−1 − xk−2∥2 + αkM2,(3.18)

where M2 = sup
k≥k0

{|∥h(wk)−p∥2−∥xk−p∥2|+(1−βk)η∥wk−yk∥2+(1−βk)η∥yk− zk∥2}.

Now, since PEP (f,C)h is a contraction on H , we know that there exists p̃ ∈ EP (f, C)
such that p̃ = PEP (f,C)h(p̃). Next, we will show that the sequence {xk} converges strongly
to p̃. We investigate the following two possible cases.

Case 1. Suppose that ∥xk+1 − p̃∥ ≤ ∥xk − p̃∥, for all k ≥ k0. This means that {∥xk −
p̃∥}k≥k0

is a nonincreasing sequence. Consequently, by using this one together with the
boundness property of {∥xk − p̃∥}, we know that the limit of ∥xk − p̃∥ exists. Since
lim
k→∞

θk∥xk − xk−1∥2 = 0, lim
k→∞

δk∥xk − xk−2∥2 = 0, lim
k→∞

δk∥xk−1 − xk−2∥2 = 0, and

the properties of the control sequences {αk}, {βk}, {θk}, it follows from the inequality
(3.18) that

(3.19) lim
k→∞

∥wk − yk∥ = 0,

and

(3.20) lim
k→∞

∥yk − zk∥ = 0.

These imply that

(3.21) lim
k→∞

∥wk − zk∥ = 0.

In addition, since lim
k→∞

θk∥xk − xk−1∥ = 0 and lim
k→∞

δk∥xk−1 − xk−2∥ = 0, we get

(3.22) lim
k→∞

∥xk − wk∥ = 0.

This, combined with (3.19), implies that

(3.23) lim
k→∞

∥xk − yk∥ = 0.
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On the other hand, by the definition of xk+1 and the inequality (3.9), we have

∥xk+1 − p̃∥2 = ∥αk(h(wk)− p̃) + (1− αk)(uk − p̃)∥2

≤ (1− αk)
2∥uk − p̃∥2 + 2αk⟨h(wk)− p̃, xk+1 − p̃⟩

≤ (1− αk)
2∥wk − p̃∥2 + 2αk⟨h(wk)− p̃, xk+1 − p̃⟩

= (1− αk)
2∥wk − p̃∥2 + 2αk⟨h(wk)− h(p̃), xk+1 − p̃⟩

+2αk⟨h(p̃)− p̃, xk+1 − p̃⟩
≤ (1− αk)

2∥wk − p̃∥2 + 2αkρ∥wk − p̃∥∥xk+1 − p̃∥
+2αk⟨h(p̃)− p̃, xk+1 − p̃⟩

≤ (1− αk)
2∥wk − p̃∥2 + αkρ

(
∥wk − p̃∥2 + ∥xk+1 − p̃∥2

)
+2αk⟨h(p̃)− p̃, xk+1 − p̃⟩

=
(
(1− αk)

2 + αkρ
)
∥wk − p̃∥2 + αkρ∥xk+1 − p̃∥2

+2αk⟨h(p̃)− p̃, xk+1 − p̃⟩,(3.24)

for each k ≥ k0. Consider, for each k ∈ N,

∥wk − p̃∥2 ≤ (∥xk − p̃∥+ θk∥xk − xk−1∥+ δk∥xk−1 − xk−2∥)2

≤ ∥xk − p̃∥2 + θk∥xk − xk−1∥2 + δk∥xk−1 − xk−2∥2

+2θk∥xk − p̃∥∥xk − xk−1∥+ 2δk∥xk − p̃∥∥xk−1 − xk−2∥
+2δk∥xk − xk−1∥∥xk−1 − xk−2∥

≤ ∥xk − p̃∥2 + 3M3θk∥xk − xk−1∥+ 5M3δk∥xk−1 − xk−2∥,

where M3 = sup
k∈N

{∥xk − p̃∥, ∥xk − xk−1∥, ∥xk−1 − xk−2∥}. Combining this with the in-

equality (3.24), for each k ≥ k0, we have that

∥xk+1 − p̃∥2

≤
(
(1− αk)

2 + αkρ

1− αkρ

)
∥xk − p̃∥2 + 3M3

(
(1− αk)

2 + αkρ

1− αkρ

)
θk∥xk − xk−1∥

+5M3

(
(1− αk)

2 + αkρ

1− αkρ

)
δk∥xk−1 − xk−2∥+

(
2αk

1− αkρ

)
⟨h(p̃)− p̃, xk+1 − p̃⟩

≤
(
1− 2(1− ρ)αk

1− αkρ

)
∥xk − p̃∥2 + 3M3

(
1− (1− ρ)αk

1− αkρ

)
θk∥xk − xk−1∥

+5M3

(
1− (1− ρ)αk

1− αkρ

)
δk∥xk−1 − xk−2∥+

2(1− ρ)αk

1− αkρ

(
αk∥xk − p̃∥2

2(1− ρ)

+
1

1− ρ
⟨h(p̃)− p̃, xk+1 − p̃⟩

)

≤
(
1− 2(1− ρ)αk

1− αkρ

)
∥xk − p̃∥2 + 2(1− ρ)αk

1− αkρ

(
3M3

(
1− (1− ρ)αk

2(1− ρ)

)
θk
αk

∥xk − xk−1∥

+5M3

(
1− (1− ρ)αk

2(1− ρ)

)
δk
αk

∥xk−1 − xk−2∥+
αkM4

2(1− ρ)
+

1

1− ρ
⟨h(p̃)− p̃, xk+1 − p̃⟩

)
,



Two-step inertial viscosity subgradient extragradient algorithm 825

where M4 = sup
k≥k0

{
∥xk − p̃∥2

}
. Put γk =

2(1− ρ)αk

1− αkρ
, for each k ∈ N. Hence, the above

inequality implies that

∥xk+1 − p̃∥2 ≤ (1− γk)∥xk − p̃∥2 + γk

(
3M3σk

2
+

5M3ψk

2
+

αkM4

2(1− ρ)

+
1

(1− ρ)
⟨h(p̃)− p̃, xk+1 − p̃⟩

)
,(3.25)

for each k ≥ k0. Moreover, by the property of the sequence {αk}, we note that
∞∑
k=1

γk = ∞.(3.26)

Now, let x∗ ∈ ωw(xk) and {xkn
} be a subsequence of {xk} which converges weakly to

x∗. Utilizing (3.23), we observe that the subsequence {ykn} of {yk} also converges weakly
to x∗. Since C is closed and convex set, so it is weakly closed, therefore we can confirm
that x∗ ∈ C.

Next, in view of the inequalites (6.41), (6.44), and (6.46) in the Appendix section, we
obtain

λknf(ykn , y) ≥ λknf(ykn , zkn) + ⟨wkn − zkn , y − zkn⟩

≥ λknf(wkn , zkn)− λknf(wkn , ykn)−
µλkn

2λkn+1
∥wkn − ykn∥2

− µλkn

2λkn+1
∥ykn

− zkn
∥2 + ⟨wkn

− zkn
, y − zkn

⟩

≥ ⟨ykn
− wkn

, ykn
− zkn

⟩ − µλkn

2λkn+1
∥wkn

− ykn
∥2

− µλkn

2λkn+1
∥ykn

− zkn
∥2 + ⟨wkn

− zkn
, y − zkn

⟩,(3.27)

for each y ∈ C. It follows from the facts (3.19), (3.20), (3.21), and the boundedness of
{zk} that the right-hand side of the above inequality tends to zero. Thus, by using the
sequentially weakly upper semicontinuity of f and λkn

> 0, we have

0 ≤ lim sup
n→∞

f(ykn
, y) ≤ f(x∗, y),∀y ∈ C.

This means x∗ ∈ EP (f, C) and so ωw(xk) ⊂ EP (f, C).
Next, since x∗ ∈ ωw(xk) ⊂ EP (f, C) is arbitrary and the property of p̃ = PEP (f,C)h(p̃),

we observe that

lim sup
k→∞

⟨xk+1 − p̃, h(p̃)− p̃⟩ = lim
n→∞

⟨xkn+1 − p̃, h(p̃)− p̃⟩

= ⟨x∗ − p̃, h(p̃)− p̃⟩ ≤ 0.(3.28)

Hence, by (3.11), (3.12), (3.25), (3.26), (3.28), and Lemma 2.4, we have

lim
k→∞

∥xk − p̃∥ = 0.

This completes the proof for the first case.

Case 2. Suppose that there exists a subsequence {∥xki − p̃∥} of {∥xk − p̃∥} such that

∥xki
− p̃∥ < ∥xki+1 − p̃∥, ∀i ∈ N.
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According to Lemma 2.5, there exists a nondecreasing sequence {mn} ⊂ N such that
lim

n→∞
mn = ∞, and

∥xmn − p̃∥ ≤ ∥xmn+1 − p̃∥ and ∥xn − p̃∥ ≤ ∥xmn+1 − p̃∥, ∀n ∈ N.(3.29)

It follows from the inequality (3.18) that

(1− βmn
)η∥wmn

− ymn
∥2 + (1− βmn

)η∥ymn
− zmn

∥2

≤ ∥xmn − p∥2 − ∥xmn+1 − p∥2 + (1− αmn)θmn(∥xmn − p∥2 − ∥xmn−1 − p∥2)
+(1− αmn

)δmn
(∥xmn−1 − p∥2 − ∥xmn−2 − p∥2) + 2(1− αmn

)θmn
∥xmn

− xmn−1∥2

+2(1− αmn)δmn∥xmn − xmn−2∥2 + (1− αmn)δmn∥xmn−1 − xmn−2∥2 + αmnM2

≤ (1− αmn)θmn∥xmn − xmn−1∥(∥xmn − p̃∥+ ∥xmn−1 − p̃∥)
+(1− αmn)δmn∥xmn−1 − xmn−2∥(∥xmn−1 − p̃∥+ ∥xmn−2 − p̃∥)
+2(1− αmn

)θmn
∥xmn

− xmn−1∥2 + 2(1− αmn
)δmn

∥xmn
− xmn−2∥2

+(1− αmn)δmn∥xmn−1 − xmn−2∥2 + αmnM2,

whereM2 = sup
n∈N

{|∥h(wmn
)−p̃∥2−∥xmn

−p̃∥2|+(1−βmn
)η∥wmn

−ymn
∥2+(1−βmn

)η∥ymn
−

zmn
∥2}.

Following the line of proof for Case 1, we can demonstrate that

(3.30) lim
n→∞

∥wmn
− ymn

∥ = 0, lim
n→∞

∥ymn
− zmn

∥ = 0,

(3.31) lim
n→∞

∥wmn − zmn∥ = 0, lim
n→∞

∥xmn − ymn∥ = 0,

(3.32) lim sup
n→∞

⟨xmn+1 − p̃, h(p̃)− p̃⟩ ≤ 0,

and

∥xmn+1 − p̃∥2 ≤ (1− γmn)∥xmn − p̃∥2 + γmn

(
3M3σmn

2
+

5M3ψmn

2

+
αmn

M4

2(1− ρ)
+

1

1− ρ
⟨h(p̃)− p̃, xmn+1 − p̃⟩

)
,(3.33)

whereM3 = sup
n∈N

{∥xmn
− p̃∥, ∥xmn

− xmn−1∥, ∥xmn−1 − xmn−2∥} andM4 = sup
n∈N

{
∥xmn

− p̃∥2
}

.

Thus, the relations (3.29) and (3.33) imply that

∥xmn+1 − p̃∥2 ≤ (1− γmn)∥xmn+1 − p̃∥2 + γmn

(
3M3σmn

2
+

5M3ψmn

2

+
αmn

M4

2(1− ρ)
+

1

1− ρ
⟨h(p̃)− p̃, xmn+1 − p̃⟩

)
.(3.34)

Using this one together with the relation (3.29) again, we obtain

∥xn − p̃∥2 ≤ 3M3σmn

2
+

5M3ψmn

2
+
αmn

M4

2(1− ρ)
+

1

1− ρ
⟨h(p̃)− p̃, xmn+1 − p̃⟩.

Then, by using (3.11), (3.12), and (3.32), we have

lim sup
n→∞

∥xn − p̃∥2 ≤ 0.
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Hence, we can conclude that the sequence {xn} converges strongly to p̃. This completes
the proof. □

4. NUMERICAL EXPERIMENTS

This section will provide examples and numerical results to support the presented The-
orem 3.1. Specifically, we will consider the Two-step IVSE Algorithm along with the One-
step ISE Algorithm, the One-step MISE Algorithm, and [28, Algorithm 3.1] denoted as
Tan et al. Algorithm 3.1. All numerical experiments were implemented in Matlab R2024b
and conducted on a MacBook Air with Apple M1 and 8.00 GB of RAM.

Example 4.1. Let H = Rn be an n-dimensional vector space equipped with the Euclidean norm.
The bifunction f̃ , defined according to the Nash-Cournot oligopolistic equilibrium models of elec-
tricity markets (see [8, 24]), is given by:

f̃(x, y) = ⟨Ax+By, y − x⟩, ∀x, y ∈ Rn,

where A, B ∈ Rn×n are matrices such that B is symmetric positive semidefinite and B − A is
negative semidefinite. Note that f̃(x, y)+ f̃(y, x) = (x− y)T (B−A)(x− y),∀x, y ∈ Rn. Thus,
by the property of B −A, we see that f̃ is a monotone operator.

Next, we consider the bifunction f which is generated by

f(x, y) =

{
f̃(x, y), if (x, y) ∈ C × C,

0, otherwise,

where C =
∏n

i=1[−5, 5] is the constrained box, see [27]. We observe that the bifunction f satisfies
Lipschitz-type continuity, see [31].

Here, the numerical experiment is considered under the case n = 10 and the following setting:
the matrices A and B are randomly generated from the interval [−5, 5] such that they satisfy the
above required properties and the ρ-contraction mapping h : R10 → R10 is a 10 × 10 diagonal
matrix, in which each entry of the main diagonal is ρ. The control parameters of the Two-step IVSE
Algorithm, the One-step ISE Algorithm, the One-step MISE Algorithm, and Tan et al. Algorithm
3.1 are set as follows.

• In the proposed Two-step IVSE Algorithm, we choose λ1 = 0.5, τ = 0.6, ς = 0.3, µ = 0.9,
ρ = 0.01, ϵk = 0.5

(k+1)2 , and αk = 1
k+2 .

• In the One-step ISE Algorithm, we take λ1 = 0.5, τ = 0.6, µ = 0.9, ϵk = 0.5
(k+1)2 , αk = 1

k+2 ,
and γk = 0.5(1− αk).

• In the One-step MISE Algorithm, we pick λ1 = 0.5, τ = 0.6, µ = 0.9, η = 0.05, ϵk =
0.5

(k+1)2 , and αk = 1
k+2 .

• In Tan et al. Algorithm 3.1, we set λ1 = 0.5, θ = 0.6, µ = 0.9, ρ = 0.01, δ = 1.05,
ϵk = 0.5

(k+1)2 , αk = 1
k+2 , βk = 0.5, and ξk = 1 + 1

(k+1)1.1 when S = IR10 is identity mapping on
R10.

Besides, the starting points x−1 = x0 = x1 ∈ R10 are randomly generated from the inter-
val [−5, 5]. The Two-step IVSE Algorithm was tested along with the One-step ISE Algorithm,
the One-step MISE Algorithm, and Tan et al. Algorithm 3.1 by using the stopping criteria
∥xk+1−xk∥
∥xk∥+1 < 10−6.
In the first experiment, we fix the parameter βk = 0.01 + 1

k+1 . We conducted experiments to
evaluate the performance of each set of parameters over 10 trials, with independently randomized
initial points in each trial. The presented results represent the average performance across those 10
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trials. Observe that when δk = 0, the two-step inertial method in our proposed algorithm reduces
to the one-step inertial method, as provided in [28, 30].

TABLE 1. Influence of parameters θk and δk in Two-step IVSE Algorithm
where βk = 0.01 + 1

k+1 for the equilibrium problems in Example 4.1

Two-step IVSE θk = 0 θk = 0.25θk θk = 0.5θk θk = 0.75θk θk = θk One-step ISE One-step MISE Tan et al. Alg.3.1
Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time

δk = 0 158.8 0.09 147.0 0.06 134.7 0.06 121.4 0.05 106.2 0.05
δk = 0.25δk 152.4 0.08 140.3 0.06 127.6 0.06 113.3 0.05 104.9 0.05
δk = 0.5δk 146.1 0.07 133.6 0.06 120.2 0.05 106.2 0.05 104.4 0.05 247.6 0.11 220.1 0.09 142.6 0.07
δk = 0.75δk 139.4 0.07 126.5 0.06 110.9 0.05 108.1 0.05 108.8 0.05
δk = δk 132.1 0.06 118.5 0.06 107.1 0.05 110.1 0.05 118.0 0.05

From Table 1, we presented the number of iterations (Iter) and the CPU time (Time) in seconds.
The best choice of the involved parameters for both cases is θk = θk and δk = 0.5δk. This
means that the number of iterations and the CPU time for the Two-step IVSE Algorithm in these
cases are better than in all other considered cases. Furthermore, when the parameter δk = 0,
reducing the Two-step IVSE Algorithm to the One-step IVSE Algorithm, we observe that it yields
a higher number of iterations and CPU time compared to other cases, for each fixed considered
parameter θk ̸= θk. In conclusion, both the number of iterations and the CPU time of the Two-step
IVSE Algorithm are almost superior to those of the One-step ISE Algorithm, the One-step MISE
Algorithm, and Tan et al. Algorithm 3.1.

In the next experiment, we consider the influence of parameter βk by fixing the parameters
θk = θk and δk = 0.5δk. We conducted experiments to evaluate the performance of each set of
parameters over 10 trials, with independently randomized initial points in each trial. The presented
results represent the average performance across those 10 trials.

TABLE 2. Influence of parameter βk in Two-step IVSE Algorithm where
θk = θk and δk = 0.5δk for the equilibrium problems in Example 4.1

Two-step IVSE One-step ISE One-step MISE Tan et al. Alg.3.1
βk Iter Time Iter Time Iter Time Iter Time
0.01 + 1

k+1 94.3 0.04
0.5 140.9 0.07 280.5 0.11 260.1 0.11 133.6 0.06
0.99 − 1

k+1 1119.5 0.40

Based on Table 2, we can suggest that setting the parameter βk = 0.01 + 1
k+1 results in better

numbers of iterations and CPU time compared to other cases. Furthermore, the numbers of itera-
tions and CPU time of the Two-step IVSE Algorithm in this case, βk = 0.01 + 1

k+1 , outperform
those of the One-step ISE Algorithm, the One-step MISE Algorithm, and Tan et al. Algorithm 3.1.

Example 4.2. Let H = Rn be an n-dimensional vector space equipped with the Euclidean norm.
We consider a classical form of the bifunction which given by the Nash-Cournot models, see [19],

f̃(x, y) = ⟨Px+ qn(y + x), y − x⟩, ∀x, y ∈ Rn,

where

P =


0 q q · · · q
q 0 q · · · q
q q 0 · · · q
· · · · · · ·
q q · · · · 0


n×n

,

where q is a positive real number. We know that the bifunctions f̃ is pseudomonotone and it is not
monotone on C, see [4].
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The numerical experiment is conducted under the case n = 10 and the following setting: the
constrained box C, the bifunction f , the contraction mapping h, and the control parameters are all
specified as in Example 4.1, with the parameter βk fixed at 0.01 + 1

k+1 . We note that f satisfies
Lipschitz-type continuity, see [27]. In addition, the positive real number q is randomly generated
from the interval (0, 1) and the starting points x−1 = x0 = x1 ∈ R10 are randomly generated
from the interval [−5, 5]. Here, we conducted experiments to evaluate the performance of each
set of parameters over 10 trials, with independently randomized initial points in each trial. The
presented results represent the average performance across those 10 trials. The Two-step IVSE
Algorithm was tested along with the One-step ISE Algorithm, the One-step MISE Algorithm, and
Tan et al. Algorithm 3.1 by using the stopping criteria ∥xk+1−xk∥

∥xk∥+1 < 10−6.

TABLE 3. Influence of parameters θk and δk in Two-step IVSE Algorithm
where βk = 0.01 + 1

k+1 for the equilibrium problems in Example 4.2

Two-step IVSE θk = 0 θk = 0.25θk θk = 0.5θk θk = 0.75θk θk = θk One-step ISE One-step MISE Tan et al. Alg.3.1
Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time

δk = 0 623.3 0.22 551.0 0.19 520.9 0.18 487.1 0.17 551.6 0.20
δk = 0.25δk 602.2 0.22 542.5 0.19 415.5 0.14 504.6 0.18 456.1 0.16
δk = 0.5δk 500.2 0.18 477.5 0.16 432.3 0.16 484.6 0.17 410.1 0.14 683.8 0.23 671.9 0.23 421.2 0.15
δk = 0.75δk 415.6 0.14 542.4 0.19 512.6 0.18 555.5 0.19 448.7 0.16
δk = δk 468.8 0.16 534.3 0.18 518.0 0.18 500.7 0.18 614.3 0.22

Table 3 reveals that the selected parameters, θk = θk and δk = 0.5δk, result in improved
numbers of iterations and CPU time compared to all other considered cases. Additionally, we
observe that both the number of iterations and the CPU time of the Two-step IVSE Algorithm
outperform those of the One-step ISE and One-step MISE Algorithms. Meanwhile, the iterations
and the CPU time of the Two-step IVSE Algorithm, with some choices for the parameters θk and
δk, exhibit better performance than those of Tan et al. Algorithm 3.1.

Example 4.3. Here, we regard the image restoration problem, when all images have n := m1×m2

pixels and each pixel value belongs into the range [0, 255]. LetH = Rn be an n-dimensional vector
space equipped with the Euclidean norm and C =

∏n
i=1[0, 255] be a constrained box.

The image restoration problem can be modeled by the linear equation system as follows:

(4.35) r = Qx+ v,

where x ∈ Rn is the original image, r ∈ Rn is the degraded image, v ∈ Rn is additive noise, and
Q ∈ Rn×n is the blurring matrix. To solve (4.35), we aim to estimate the original image, vector x,
by utilizing the following minimization problem to minimize the additive noise:

min
x∈C

1

2
∥Qx− r∥2,

see [30]. We take into consideration the bifunction f , which is defined by

f(x, y) = g(y)− g(x), ∀x, y ∈ Rn,

where g(x) := 1
2∥Qx− r∥2. It is obvious that

f(x, y) + f(y, x) = 0, ∀x, y ∈ Rn.

Then, the bifunction f is monotone. Besides, the bifunction f satisfies Lipschitz-type continuity.
During this numerical experiment, the control parameters are imposed as in Example 4.1 by

fixing values of the control parameters θk = θk, δk = 0.5δk, βk = 0.01 + 1
k+1 , while the contrac-

tion mapping h : Rn → Rn is given by h(x) =
x

4
. The starting points x−1 = x0 = x1 ∈ Rn

are randomly generated from the interval (0, 1). The Two-step IVSE Algorithm was tested along
with the One-step ISE Algorithm, the One-step MISE Algorithm, and Tan et al. Algorithm 3.1
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by using the stopping criteria as the number of iterations 2000. Throughout all comparisons, the
original images are two RGB images, peppers and Barbara with the sizes 384×512 and 512×512,
respectively. To obtain the degraded images, the motion blur is applied to the original images with
a motion length of 21 pixels and motion orientation 11◦. We use the peak signal-to-noise ratio
(PSNR), in decibel (dB), to measure the quality of the restored image, which is determined by

PSNR = 20 log10
2552

∥xk − x∥2
,

where x is the original image and xk is the restored image at the k-th iteration. The higher PSNR
value indicates the higher quality restored image. This means the PSNR value increases as the
restored image xk tends to the original image x. The restored images at the 2000-th iteration are
illustrated in Figures 1 and 2, respectively. In the interim, the PSNR values are displayed in Figure
3.

(A) Original image (B) Degraded image (C) Two-step IVSE Algorithm
PSNR = 49.69 dB

(D) One-step ISE Algorithm
PSNR = 46.39 dB

(E) One-step MISE Algorithm
PSNR = 49.14 dB

(F) Tan et al. Algorithm 3.1
PSNR = 41.09 dB

FIGURE 1. Comparison of the restored peppers images in Example 4.3

From Figures 1 and 2, it is evident that the Two-step IVSE Algorithm provides higher PSNR
values in comparison to the One-step ISE Algorithm, the One-step MISE Algorithm, and Tan et
al. Algorithm 3.1 for both tested images. In addition, the plots in Figure 3 demonstrate that the
Two-step IVSE Algorithm yields a more effective solution than the One-step ISE Algorithm, the
One-step MISE Algorithm, and Tan et al. Algorithm 3.1.

5. CONCLUSIONS

This paper introduces a two-step inertial viscosity subgradient extragradient algorithm
with self-adaptive step sizes, specifically designed for solving pseudomonotone equilib-
rium problems within the framework of a real Hilbert space. The proposed algorithm not
only provides a solution but also incorporates additional properties. Notably, the strong
convergence theorem for this algorithm is established without the need for prior knowl-
edge of the Lipschitz constants of the pseudomonotone bifunction, and this convergence
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(A) Original image (B) Degraded image (C) Two-step IVSE Algorithm
PSNR = 40.45 dB

(D) One-step ISE Algorithm
PSNR = 37.22 dB

(E) One-step MISE Algorithm
PSNR = 39.89 dB

(F) Tan et al. Algorithm 3.1
PSNR = 38.41 dB

FIGURE 2. Comparison of the restored Barbara images in Example 4.3

(A) The peppers image with size 384× 512 (B) The Barbara image with size 512× 512

FIGURE 3. The behavior of PSNR values of the RGB images with different
sizes in Example 4.3

result holds under mild constraint qualifications for the scalar sequences. To demonstrate
the effectiveness of the developed algorithm, numerical experiments are conducted, fo-
cusing on Nash-Cournot oligopolistic equilibrium models in electricity markets, Nash-
Cournot models, and the image restoration problem. In the context of future research
directions, consideration should be given to analyzing the convergence rate of the pro-
posed algorithm.
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APPENDIX

This section demonstrates the proof of Lemma 3.6.

Proof. Firstly, we show that C ⊂ Tk, for each k ∈ N. Let k ∈ N be fixed and y ∈ C. Since
vk ∈ ∆k, then there exists qk ∈ NC(yk) such that

λkvk + yk = wk − qk.(6.36)

Using above equality, in view of qk ∈ NC(yk), we get

⟨wk − λkvk − yk, y − yk⟩ = ⟨qk, y − yk⟩ ≤ 0.(6.37)

This implies that y ∈ Tk. This shows that C ⊂ Tk, for each k ∈ N. Consequently, this fact
guarantees that the Two-step IVSE Algorithm is well-defined.

Next, we will show the conclusion of the Lemma by utilizing the above facts. Let
p ∈ EP (f, C). By the definition of zk and Lemma 2.3, we obtain that

0 ∈ ∂2

{
λkf(yk, zk) +

1

2
∥zk − wk∥2

}
+NTk

(zk).

Then, there exists v ∈ ∂2f(yk, zk) and q ∈ NTk
(zk) such that

λkv + zk − wk + q = 0.(6.38)

So, by using the subdifferentiability of f , we have

f(yk, y)− f(yk, zk) ≥ ⟨v, y − zk⟩,∀y ∈ H.(6.39)

In addition, from q ∈ NTk
(zk), we get

⟨q, zk − y⟩ ≥ 0,∀y ∈ Tk.

This together with the equality (6.38) yields that

⟨wk − zk, zk − y⟩ ≥ λk⟨v, zk − y⟩,∀y ∈ Tk.(6.40)

It follows from the relation (6.39) that

⟨wk − zk, zk − y⟩ ≥ λk[f(yk, zk)− f(yk, y)],∀y ∈ Tk.(6.41)

Note that, since p ∈ C ⊂ Tk, we have

⟨wk − zk, zk − p⟩ ≥ λk[f(yk, zk)− f(yk, p)].
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Thus, by utilizing the pseudomonotonic of f , we obtain that

⟨wk − zk, zk − p⟩ ≥ λkf(yk, zk).(6.42)

Furthermore, from the subdifferentiability of f and vk ∈ ∂2f(wk, yk), we have

f(wk, y)− f(wk, yk) ≥ ⟨vk, y − yk⟩,∀y ∈ H.

In particular, from zk ∈ Tk ⊂ H , we get

f(wk, zk)− f(wk, yk) ≥ ⟨vk, zk − yk⟩.(6.43)

Indeed, by the definition of Tk and zk ∈ Tk, we see that

⟨wk − λkvk − yk, zk − yk⟩ ≤ 0

It follows from the inequality (6.43) that

λk[f(wk, zk)− f(wk, yk)] ≥ ⟨yk − wk, yk − zk⟩.(6.44)

Thus, the relations (6.42) and (6.44) imply that

λk[f(wk, zk)− f(wk, yk)− f(yk, zk)] ≥ ⟨zk − wk, zk − p⟩
+⟨yk − wk, yk − zk⟩.(6.45)

On the other hand, by the definition of λk+1, we observe that

f(wk, zk)− f(wk, yk)− f(yk, zk) ≤
µ(∥wk − yk∥2 + ∥yk − zk∥2)

2λk+1
.(6.46)

Using this one together with the inequality (6.45), we get

⟨wk − zk, zk − p⟩ ≥ ⟨yk − wk, yk − zk⟩ −
µλk(∥wk − yk∥2 + ∥yk − zk∥2)

2λk+1
.

Due to the above inequality, we note that

∥wk − p∥2 − ∥wk − zk∥2 − ∥zk − p∥2 = 2⟨wk − zk, zk − p⟩

≥ 2⟨yk − wk, yk − zk⟩ −
µλk(∥wk − yk∥2 + ∥yk − zk∥2)

λk+1
.

This implies that

∥zk − p∥2 ≤ ∥wk − p∥2 − ∥wk − zk∥2 − 2⟨yk − wk, yk − zk⟩

+
µλk(∥wk − yk∥2 + ∥yk − zk∥2)

λk+1

= ∥wk − p∥2 − ∥wk − yk∥2 − ∥yk − zk∥2 − 2⟨wk − yk, yk − zk⟩

−2⟨yk − wk, yk − zk⟩+
µλk(∥wk − yk∥2 + ∥yk − zk∥2)

λk+1

= ∥wk − p∥2 −
(
1− µλk

λk+1

)
∥wk − yk∥2 −

(
1− µλk

λk+1

)
∥yk − zk∥2.

This completes the proof. □
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